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Abstract

This paper proposes an equilibrium concept for a class of games in which players
make irreversible costly decisions; these games have been widely used in the recent
I.O. literature. The equilibrium concept is defined, not in the space of strategies, but
in the space of (observable) outcomes. It is weaker than perfect Nash equilibrium,
and involves combining a form of 'survivor principle' with an assumption regarding
entry. This assumption involves only a very weak rationality requirement: if a
profitable opportunity exists in the market, there is 'one smart agent' who will fill it.
This weak equilibrium concept is sufficient to imply some empirically interesting

regularities in the area of market structure.
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I. INTRODUCTION

The game theoretic literature in Industrial Organisation has had a mixed
response in recent years. It has been noted that a rich variety of
plausible models can be constructed, so that a huge range of observed
phenomena can be rationalised within the literature. But this begs an
obvious question: is this class of models so broad that it excludes
nothing? Is the literature empirically empty? (Fisher (1989), Sutton
(1990), Pelzman (1991)).

One response to this problem is offered by the 'bounds’ approach
proposed in Sutton (1991). This approach begins from the notion that
there is usually no one 'true model’ which can adequately represent any
interestingly broad class of industries. Instead, some class of 'admissible
models’ may be defined. The space of feasible outcomes is then
partitioned into those which may be equilibria under some admissible
model, and those which can not be supported as equilibria in any
admissible model. This partitioning is carried out by defining a number
of facets (constraints) in the space of outcomes. Each facet is derived by
reference to the availability of some particular ‘profitable deviation'.
Any outcome lying beyond this facet will be broken by a particular kind
of deviation in any admissible model. The empirical content of the

theory consists of the claim that outcomes must lie within these facets.

This is the first of three papers which set out a more fully developed
version of the bounds’ approach of Sutton (1991). In this first paper, the

aim is to define a set of outcomes bounded by two facets, and to show
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that certain empirically relevant results of the standard game-theoretic
(Nash equilibrium) models follow directly from the properties of these

two facets.

The class of games with which this paper is concerned are the finite
horizon multi-stage games on which much of the recent literature on
market structure rests. In these games, firms first take a sequence of
costly irreversible actions, and these actions then lead to some final
'configuration’ of the market from which agents’ payoffs can be deduced.
This class of games provides models of capacity choice, plant location,
product differentiation, advertising, and R&D outlays. Such games can
be described as consisting of two elements. The first element is a profit
function II() obtained by 'solving out' the final stage subgame; this
function specifies the profit of each firm in terms of the configuration of
plants, product specifications, and so on, which firms have inherited as
a result of earlier investments. The second element is an extensive form
specifying the entry stage(s) of the game. In analysing (perfect)
equilibrium in the entry stage, the function II(+) serves as the payoff
function of the game, in accordance with the standard 'backward

induction’ procedure.

In applying these models, we can sometimes regard the parameters
entering the function II(-) as observable outcomes (number of plants,
products, etc.), and then finesse the presence of unobservables in the
'final stage game' from which TI(*) is derived by making some (weak)
assumptions directly on the function IX(') itself (see for example, Sutton
(1991), Chapters 2,3). The design of the extensive form poses more

serious problems. Only in rare circumstances is it possible to offer any
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convincing argument for the choice of any one of a number of widely
used representations. Issues such as the existence or otherwise of
strategic asymmetries (first mover advantages), and so on, raise questions
which can rarely be addressed by any appeal to data available to the
economist. It is of great interest, therefore, to ask what restrictions can
be placed on outcomes while making the weakest possible assumptions

about the extensive form. This is the aim of the present paper.

The argument is this: by reference to the function TI() alone, it can be
shown that some outcomes can not be supported as perfect Nash
equilibria for any extensive form (chosen from a very broad class of
admissible forms). This allows us to separate out some restrictions on
equilibrium market structure which emanate from the properties of the
IT(") function alone; these form the subject of the present paper. (Those
further restrictions which depend both on II(+) and on the extensive form

are developed in later papers in this sequence.)

There is a second point of interest in the present approach: the results
of this paper can be obtained using only very weak rationality
requirements on agents. The equilibrium concept defined here involves
two restrictions. The first is a (weak) form of the 'survivor principle’,
which states that loss making strategies will be avoided. The second
assumption states that no configuration can survive in which some
profitable opportunity remains unexploited. There is always 'One smart
agent’ who will take up such an opportunity. This assumption is
analogous to the central principle of the economics of finance: that there
are no profitable opportunities for arbitrage. Like that principle, it

derives its force from the fact that it assumes nothing of the general run
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of agents in the market. It merely assumes that there is some agent in
the market who will take advantage of rivals' failures to spot good
opportunities. In modelling situations where agents take costly and
irreversible actions in a series of novel or unique market environments,
the attractiveness of appealing to this very weak rationality requirement

is evident.

What is of interest is that this weak assumption together with a version
of the survivor principle proves to be sufficient to imply certain
important regularities in the area of market structure. In particular, it is
sufficient to generate the basic limit theorems for the 'Exogenous sunk

costs’ and 'Endogenous sunk costs’ models of Sutton (1991).

1. AN EQUILIBRIUM CONCEPT
The class of games which concern us here have the following structure:

There are N players (firms). Firms take actions at certain specified
stages. An action involves occupying some subset, possibly empty, of
locations’ in some abstract 'space of locations'. At the end of the game,

each firm will occupy some set of locations.

The notation is as follows: a location is an element a of the set of
locations A. The set of locations occupied by firm i at the end of the
game is denoted a;, where a, is a subset of A. If firm i has not entered

at any location then a, = 2.




Associated with any set of locations is a fixed and sunk cost incurred in
entering at these locations. This cost is strictly positive and bounded
away from zero, viz. for any a, # @, F(a) 2 € > 0. The N-tuple of all

locations occupied by all agents at the end of the game is written as
{ai} E{ al; azr L N an}

The payoff (profit) of firm i, if it occupies locations a,, is written

O(a;[{a ) == (a;f{ay}) - F(a,)

where {a;} denotes {a;, ..,a,,, a,; .., ay). In most applications of the
theory, the function T (@ [ {ay)) is computed as the payoff function
in some subsequent game, usually called the 'price competition sub-
game’, in which the a, enter as parameters in the firms' payoff functions.
A firm taking no action at any stage incurs zero cost and receives payoff
zero. Assumption 1 introduces two restrictions. Restriction (a) excludes
non-viable' markets in which no product can cover its entry cost.
Restriction (b) ensures that the number of potential entrants N is large (at

equilibrium, we will have at least one inactive player).

Assumption 1: (a) There is some set of locations a, such that
O{a, | {o}) > F(a,) .

(b) The final stage payoff received by all agents is
bounded above by Ne, where N denotes the
number of players and ¢ is the minimum setup
cost (entry fee).




Examples of this structure include:

capacity choice games (here a; collapses to a scalar

representing firm i's level of capacity).

- location games (here a, is a set of locations at which firm i

establishes outlets).

- horizontal product differentiation models. In Hotelling-type
models a; is a set of locations. In 'symmetric’' models of the
Dixit-Stiglitz kind, a; collapses to an integer denoting the

‘number of varieties entered'.

- vertical product differentiation models. Here a, is a set of

locations in the space of products.

The equilibrium concept proposed here is defined not on the space of
strategies, but directly on the space of outcomes, i.e. on the configuration
{a;}. It depends, therefore, only on the function II(-) and not on the

entry game itself, which we have not yet specified:
Definition: {a;} is an Equilibrium Configuration if:
(i)  Viability ('survivor principle’): For all agents i,

1I.

(a; | fayh 20




(ii)  Stability (‘one smart agent’): There is no set of
actions ay,, such that entry is profitable, viz. for

all sets of actions a,,,,

Oy (aga [ {ay}) <o

Condition (i) requires something weaker than Nash equilibrium.
Nonetheless, it is a substantial restriction. It is reasonable in the present
context only because the extensive forms considered in this paper
incorporate complete information, and do not allow exit. (If the class of
extensive forms is broadened to allow for exit, then it is appropriate to
rewrite condition (i) as a requirement that profit net of the avoidable cost
which can be saved by exiting should be non-negative. The effect of
relaxing condition (i) in this way is noted in Section VI(p.20).

It is condition (ii) which is central to what follows. It states that there is
no profitable gap in the market. Can such gaps exist in standard models
of perfect Nash equilibrium? The answer, in general, is 'yes'. However
this is only possible for some rather special combinations of payoff
functions and extensive forms of the entry game. (An example is given
in the Section V.) In the next Section, it is shown that, for a very broad
class of extensive forms, condition (ii) will hold for all outcomes

supportable as perfect Nash equilibria.




HOI. NASH EQUILIBRIA: A CLASS OF EXTENSIVE FORMS

The recent literature on market structure has relied heavily on three

kinds of extensive form in describing the entry/investment process:

(a)  Simultaneous entry, where there is just one entry stage (date),
and all firms are free to make investments at that stage;

(b) Sequential entry, where firms are ranked and each firm is
assigned a different single stage (date) at which it is free to
make investments;

(c) Each firm is free to make investments at any stage (time).

Models (a) and (b) are widely used in ‘capacity choice' games, and in the
product differentiation literature. Model (¢) is sometimes used in the

patent race literature.

While the simultaneous entry and sequential entry models provide many
useful simple examples, it is probably fair to say that their main
attraction lies in analytical simplicity rather than any a priori
reasonableness’ of these forms. Indeed, the simultaneous entry form is
often said to be "unrealistic’ in that firms 'enter over a period of time’ in
practice, so that it may be inappropriate to impose 'strategic symmetry’
on firms; firm 1 may have a 'first mover advantage' in that it may, in
choosing action a,, know that firm 2 will condition its action a, on a,. It
is sometimes said that sequential entry is a more appropriate
representation, in that it permits such stories to be told. Yet authors who
have used sequential entry models have pointed out that the equilibria

of such models have an unattractive feature: if a firm was permitted to
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delay its turn in the sequence, it might be profitable to do so. This is
true, for example, in the simplest 'capacity choice' games (where firms
producing a homogeneous good take turns in building plant capacity;
see Eaton and Ware (1987)).

It might seem at first glance that the obvious choice is to let all firms
move at any time (option (c) above). Even this, however, is open to the
objection that it excludes the kind of strategic asymmetry (first mover
advantage) juét noted. Different firms may in practice be formed at
different times, and may first consider entry to a given market at
different times. To allow for this, it seems appropriate to define a more

flexible setup, as follows:

Assumption 2: (Extensive Form): We define vectors {t} and A'. Firm
iis free to enter any subset of the set of products A
at any stage t, such that , <t < T. The set A' satisfies
A=ATo A" o AL VLE<T.

The date t; is the date of arrival of firm i. Following its arrival, it can
enter a set of products at any stage. The set of products which it is
feasible to produce may expand over time (as a result of eﬁcogenous
changes in the available technology, or otherwise), but will not contract.
The number of firms is finite. T denotes a last stage at which entry can

occur. We exclude infinite horizon games.

Of the three standard entry processes listed above, this setup includes
both case (a), obtained by setting t; = T = 1, and case (c) obtained by
setting t, = 1 and T > 1, for all i. Case (b) is more complicated: for
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many 'well behaved' models, the outcomes available under the Sequential
Entry setup will coincide with those obtained by setting t, =i, and
A'=ATon t; < t < T in the above scheme. This is not Ialways the case,
however. Counterexamples arise in those sequential entry models where
firm i would find it optimal to postpone entry beyond its allocated time.

It seems desirable to allow such a postponement.

Assumption 2 ensures that any outcome that can be supported as a
perfect Nash equilibrium generates an outcome which is an 'equilibrium

configuration' in the sense defined above:

Proposition 1 (Inclusion): Any outcome that can be supported
as a perfect Nash equilibrium is an

equilibrium configuration.

Proof: (Viability): a Nash equilibrium outcome satisfies
(i) since 'Don't Enter’ is an available
action. Playing {o} at every stage
strictly dominates any strategy
violating (i).

(Stability): Assumption 2 implies that all firms
are free to enter any subset of AT at
date T, taking as given the set of
products entered by rivals at that
date. Assumption 1 ensures that
there is at least one firm which has

not entered any product prior to date
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T.  Hence, if (i) is viclated, a
profitable deviation is available to

that firm.

IV. AN ILLUSTRATION: HOTELLING'S SIMPLE
LOCATION GAME

In this section, we illustrate the inclusion property by looking at the
'simple location game' of Hotelling (1929). Here, n firms each choose a
single location on the line segment [0,1]. Consumers are assumed to be
distributed uniformly with density 5. A firm's payoff is simply the
number of consumers closer to it than to any rival; where firms'
locations coincide, they share consumers equally.? It is well known that
the Nash equilibria of this game have the following form (Lipsey and
Eaton (1975)):

n=1 any location choice is a Nash equilibrium.

n==2 the only Nash equilibrium is where both firms locate at
the midpoint (}).

n=3: there is no Nash equilibrium in pure strategies (a
symmetric mixed strategy equilibrium is described by
Shaked (1982)).

“This 'simple location game' should be distinguished from the
Hotelling model proper, in which firms compete in prices in a post-entry
stage.
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n=4: the only pure strategy Nash equilibrium is where two

firms locate at ¥4 and two firms at 34.

n>4: the only pure strategy Nash equilibria are of the
following form: two firms locate at some point a, two
firms locate at (1-a), and the remaining firms occupy
locations strictly between these points. The Nash

equilibrium is not unique for n > 6.

In this simple Hotelling game, the number of firms is taken as a
parameter. What is of interest here is the related one-shot 'entry' game,
specified as follows. A firm's strategy takes one of two forms: either
‘Don't Enter’ (payoff = 0), or 'Enter at some location’, in which case the
payotf is the payoff in the game defined above less some entry fee . We
normalize by setting € = 1. The following analysis is confined to pure
strategy equitibria. It is clear that a configuration involving n active
firms is supported as a Nash equilibrium in the entry game if and only
if it is an equilibrium configuration and the vector of locations forms a
Nash equilibrium in the n-firm Hotelling game. It is also obvious that
an equilibrium configuration involving n firms exists if and only if S lies
in the interval [n,2n].> Bearing this in mind, it is easy to identify the
range of market sizes [S,,5,] over which an n-firm configuration can be
supported. The results are shown in Table 1; the derivation is given in
Appendix 1.

"To construct such a configuration, place firm i at (2i - 1)/(2n) for
i=1, .. n
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Figure 1 illustrates the inclusion relationship in (n,S) space between the
Nash equilibrium outcomes and the equilibrium configurations.

n S Sus
1 1 2
2 2 2
3 - i,
4 4 4
5 6 6
6 6 8

Table 1.  The entry game for Hotelling's simple
location model (single product
firm/simultaneous entry). The table
shows, for each n, the range [S_,Sy] of
market size for which there is a pure
strategy Nash equilibrium involving n
products (firms).

Now this model can be extended in a number of ways, by varying the
extensive form (changing simultaneous entry to sequential entry, say) or
by otherwise altering the strategy space (permitting multiproduct firms,
say). Rather than explore different variations, we here comment on one
case which is of particular interest in the present context. This is where
we use sequential entry, and allow multiproduct firms. In this setting,
it is easy to show that for any S, there is always a (perfect) Nash

equilibrium in which the first firm pre-empts in the sense that it enters

13




the smallest number of products such that no later firm can enter
profitably (n is the smallest integer satisfying n > S/2. This outcome can
also be obtained using an extensive form satisfying Assumption 2 above:
set t, =i and let A" = A be the set of all sets of locations in [0,1]. Again,
there is a (perfect) Nash equilibrium of this game in which firm 1 pre-

empts by entering at these locations.

Figure 1. The range of market sizes [S,,Sy] for which a pure
strategy Nash equilibrium exists in which n products
are entered, for simultaneous entry. All outcomes in
the cone are equilibrium configurations.

14




In this case, we obtain a sequence of equilibria which lie along the lower
ray in Figure 1. Combining this with the simultaneous entry example,
we see that if we pool the equilibria of all 'admissible models' then the
cone containing the equilibrium configurations is 'filled" in the following
sense: for any n, however large, there exist (perfect) Nash equilibria of

'admissible models’ which lie on each boundary of this cone.

V. EXISTENCE

The extension of the simple Hotelling model to 2-dimensions provides
a familiar source of examples of non-existence of Nash equilibria (in pure
strategies). It is well known, for example, that with three firms present
on the plane, there is no pure strategy Nash equilibrium under

simultaneous entry (Shaked (1975)).

The non-existence of a simultaneous entry Nash equilibrium does not
necessarily imply the non-existence of an equilibrium configuration (as
the 3-firm case in 1-dimension shows). It may, however, be the case that

no equilibrium configuration exists, as the following example illustrates:

Let the distribution of consumers on the plane consist of three atoms,
each of weight 3/5, placed on the corners of an equilateral triangle

(Figure 2).

Note that for ¢ = 1, any configuration involving two or more firms
violates the viability condition (i), while any configuration involving no

entry violates the stability condition (ii). We now show that any
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configuration involving exactly one active firm also violates condition (ii),

from which it follows that there is no equilibrium configuration.

Let a single firm be active at location h. We show by construction that
there is some point g(h) at which a rival firm may enter profitably.

Identify a vertex which is closest, or equal closest, to h; label this vertex
A. Drop a perpendicular from h to the opposite side of the triangle, BC.
Let it meet BC, or its projection, at D. If D lies between B and C,
choose g(h) =D. Otherwise, choose g(h) = B or C, whichever is closer
to D. The entrant at g(h) earns profit ®/5 > 1, for it captures the

customers at B and C. Hence there is no equilibrium configuration.

A
he 3/5

3/5 3/5

Figure 2. Nonexistence of an equilibrium configuration in a 2-
dimensional Hotelling model.
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It follows that, for any extensive form satisfying Assumption 2, there is
no Nash equilibrium in pure strategies. However, under sequential
entry, a Nash equilibrium does exist in this example. Let n firms enter
products sequentially. It is clear that the last firm in the sequence enters
one product, and no other firm enters a product. (This illustrates
precisely the 'unattractive’ property of sequential equilibria described by
Eaton and Ware, which was noted in Section IIl. Any firm but the last
would prefer, given the stage assigned to each rival and the rivals'
equilibrium strategies, to delay its move - in fact, to move last in the

sequence.)

VL. AN APPLICATION: THE BOUNDS APPROACH

We now turn to the application of the equilibrium configuration concept
within the 'bounds' approach to the analysis of market structure. The
idea is to use the viability condition (i) and the stability condition (ii) to
define two facets of a set in an appropriately chosen space of outcomes.
It is then shown that the properties of this set induce a lower bound to
concentration as a function of market size. The properties of the lower
bound to concentration as a function of market size are as follows
(Shaked and Sutton (1987), Sutton (1991)):

(i)  if setup costs are fixed exogenously, i.e. each product can be
entered for some given cost , then there is a lower bound to
concentration as a function of market size S, which converges

to zero as S increases.
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This ‘exogenous sunk cost' setup arises as a special limiting case of a
more general model in which a firm is free to spend more on fixed
outlays in some early stage(s) of the game with a view to enhancing
consumers’ willingness-to-pay for the product it offers (Shaked and
Sutton (1987), p.140).

Suppose that by spending more fixed outlays F(-) than rivals - on R&D,
advertising, etc. - a firm can guarantee itself some minimal level of gross

profit n(*) in the final stage subgame:

(ii) if there exists some « >0 and K > 1 such that a firm
spending K times the fixed outlay of its highest spending
rival can thereby achieve gross profit = > aS, then there
exists a positive lower bound, independent of S, to the level
of concentration that can be attained in any perfect Nash

equilibrium.

Properties (i) and (ii) are 'robust’ in the sense that they have been shown
to hold good as a description of perfect Nash equilibria over a broad

class of models?.

Now these properties have been established for Nash equilibria (Shaked
and Sutton (1987)), but the proofs extend immediately to the case of

equilibrium configurations. In the case of property (i), this extension is

*One reason why these bounds properties are of interest is that they
imply as a corollary (i.e. they encompass) certain long-established
correlations between concentration, scale economies, advertising intensity,
etc., (see Sutton (1991), p.123ff.)
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trivial; given the inclusion property (Proposition 1), if the lowest level
of concentration supportable as a Nash equilibrium converges to zero
with S, then the lowest level achieved in any equilibrium configuration

certainly converges to zero with S.

The case of property (ii) is less obvious; but reference to the proof shows
that it is couched directly in terms of conditions (i) and (ii), and can
therefore be applied without modification to the equilibrium
configurations. (See Sutton (1991) p.73-4. It is this observation which

motivated the present paper.)

In what follows, we illustrate how the viability and stability conditions
each define a facet in a suitably chosen space of outcomes, and how the
properties of these facets in turn induce the 'lower bound' properties on
concentration. This can be illustrated within the simplest model of
(horizontal) product differentiation which has been used in the recent
literature: the 'linear demand schedule’ model (Shubik and Levitan
(1980), Deneckere and Davidson (1985), Shaked and Sutton (1987)).

Let each consumer have the same quadratic utility function defined over

n varieties of some good,

8] (xlrxzr .o -;Xn)

=% (x, - X)) -0 X% I XX, +M (1)
K k o<k

19




where M denotes money spent on outside goods, i.e.
M=Y - X pX,
k

This expression defines utility over the domain of {x,} for which all the
marginal utilities U, are nonnegative. The consumer's optimal purchases
will be interior to this domain for all positive price vectors. It is
assumed that the consumer's income Y is sufficiently large to ensure that
the solution to the optimization problem is the interior solution defined
by the set of first order conditions U, =p,, Vk. The parameter q,

0 < 0 <2, is a measure of the degree of substitution between the goods.

If 0 = 0, the cross-product term in the utility function vanishes, while if
o = 2, the goods are perfect substitutes and

U=2Zx, - (Zx, )% +M
K

It follows from (1) that the consumer’s inverse demand curve for good
kis

P =1 -2X, -0 X X, (2)
2=k

Suppose n product varieties are offered, the number offered by firm i
being n;. Assuming zero cost for simplicity, we seek a Nash Equilibrium

in quantities. Let S denote the number of consumers in the economy.
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Firm i offers quantity Sx; of each of its varieties®, the equilibrium price for
these varieties being p;, and it earns profit n, p; x, 8. The first order
condition defining firm i's optimal reply x, then becomes

2 [2+0(n; -1)] %, +0Zn, x5 =1 (3)
3+

where the summation % is over the N-1 rival firms). Solving this system

of equations yields:

1

1 j on. (4)
[2(2 - o) +on; {1 + ? ACED - onj}

Substituting in (2) to obtain p, the stage 2 profit of firm i in a market of
size S = 1 {(which equals n; p; x;) becomes

(2-0) + ony

_ + RE
n(n; |{n;} = [2(2 U)., on,] (5)

2
1+ X e |
j 2(2-0) + ony

oni

The 'solved out’ profit function with respect to which we define the

equilibrium configurations is then

IOI{n;| {n;} =8n(n;|{n;}) -n,e (6)

’It is easy to check that any given firm i will set the same quantity x
of each of its n; varieties; we therefore ease notation by simply writing
its output per variety as x;.
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where ¢ is the setup cost per product.

Using equation (4), we can now define the 'viability’ and 'stability’

conditions in the space of outcomes. We define outcomes in terms of the

pair (él,n) where n = Z 1, isthe total number of varieties entered
1

and

max I

Fd

— nmax

R
> m
d

is the one-firm asset concentration ratio®.

Now the viability condition states that
IO (n; | {ng)) 20

i.e. niSn(niHn_i}) > g )

1

From (5) it is readily checked that, for any vector {n} the profit per

product Sm (n; | {n_;}) /n; attains its minimum for the largest n,.

*This is the most natural concentration index to use within this
example, and it keeps the algebra relatively simple. Extending the
analysis to a sales-concentration ratio C, is straightforward, but the
algebraic expressions are less transparent. It should be noted that, for
any n, the minimum value of both €, and C, are attained at the
symmetric solution where all firms have one variety;
here C, and C, coincide. The lower bound to C, as a function of
market size likewise coincides with the lower bound to C, .
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Label the firms so that the sequence {nj} is nonincreasing; now from the
definition of C, , it follows that n, = n€, . It is then easy to show
(see Appendix 2) that the viability condition (i) can be written as
follows: for any n, the corresponding value of C, is determined by the

equation

— Sn (nC, | n¢,,nc,, ...
nG,

St
I
1]

where the number of firms, N, equals {1/ él) . This defines the
viability schedule in (C,,n) space. This can be written explicitly

(using equation (5)) as

(2-a) + onC,

—_ 8
[2(2~0) + on(l + C))]? e/8 ©

and this represents an upward sloping schedule in (C,, n) space.
A second facet in (C,,n) space may now be defined by combining
the viability condition (i) with the stability condition (ii) (see Appendix

2): Fix n and define C, implicitly via the equation

St(l |nC,, 1, 1 ... 1) =¢

where the number of incumbent firmsis n(1-C,) . This can be
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written explicitly as

5 onC ol1+n(1-8)1 |’
/{1+ S s }=s/s )

2 (2~0) +onC, 4-0

This defines an upward sloping schedule in (C,,n) space, which
interescts the curve 61 = 1/n to the left of (8).

An Mustration

The viability and stability facets are illustrated in Figure 3 for a particular
value of €/5. In each case, the feasible values lying within the set are
shown. Those values which form Nash equilibria in the simultaneous
move game are indicated, as are those values which form equilibria

under sequential entry.

As market size S increases, the zone between the two schedules shifts to
the right. The minimum level of concentration which can be supported
as an equilibrium configuration is defined by the intersection of the
viability schedule with the curve C; = 1/n . As market size goes to
infinity, this minimal level of concentration converges to zero. This is the

first of the two limit theorems noted above.
The viability schedule was defined above in terms of the cost & of

entering a new plant. In some applications, it will be more appropriate

to define it in terms of the avoidable cost &' < € associated with the
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h

closing down of a plant. The replacement of ¢ by ¢’ shifts the viability
schedule to the right.

1.0

0.81

0.6

0.4~
0.2
0 ) 1 1 1 1
0 1 2 3 4 5
Figure 3. The 'Exogenous Sunk Cost' Case: A numerical example

(6 =05, € =0.07,5 =1). Schedules (i) and (ii) are the facets
defined by the viability and stability conditions respectively.
All four points (A, B, C, D) of the form

(C,,n) = —E 1] lying in the shaded area are equilibrium
configurations. The only Nash equilibrium under
simultaneous entry is A. The only Nash equilibrium under
sequential entry is D. As S ~ «, the minimum level of
concentration (point X) converges to zero.
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Endogenous Sunk Costs

This example can be extended to illustrate the case of 'Endogenous sunk
costs’. To do this, we introduce the notion that each good i has a
‘quality’ level u; > 0, and a rise in u, shifts the demand curve for that
good outwards. The simplest setup is one in which the utility function
(1) is modified as follows:

2
U=2|x - 2X|-0x Zx.% .,y (10)
2 k>t U 4,

so that the individual consumer's inverse demand schedule becomes

2X
p, =1 - —%x .9 %
ulf uk g2k U.E

e

(11)

For u, = 0, demand is zero for any p, > 0. An increase in u, swivels the
(linear) demand schedule outwards, about its vertical intercept. (In what

follows, subscripts k and { refer to products; firms are labelled by i and
j)

We assume zero marginal cost, and seek a Nash equilibrium in
quantities. It is convenient to express the solution in terms of the output
variables x,/u, which we write as y,. It is also convenient to express
the average value of y, for the n; products owned by firm i as j-fi. It is
shown in Appendix 2 that the Nash equilibrium is defined by a set of

equations describing the output levels of all products/firms that have
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positive output at equilibrium, viz.

] Z ayu;
S = _ 5
Y1 2{2-g) + on; YT TrT a; { (12)

and for any individual product k owned by firm i,

4-20

yk:?i"'

Two elementary properties follow. (The proofs are included in Appendix
2).

Proposition 2: (i)  Let the quality of any good increase (decrease).
Then the equilibrium profit earned on each other

good decreases (increases).

(ii) Deleting any good raises the equilibrium profit of

each remaining good.
Proposition 3:  Let uy, denote the highest quality on offer. Then a

necessary condition for a product of quality v to have

positive output at equilibrium is v > (0/4) u,,.
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In the case of single product firms the solution reduces to

for u, > [No / (4+(N-1)o)u] and zero otherwise, where N denotes the
number of firms (= number of products). In the former case, the

equilibrium prbfit of firm i equals

ST, = Spyx; - 2 fo,+ 3% (0,50 s (9)

In particular, if all N firms have the same quality u then each firm earns

profit

st (ulN) = 2u* S (15)
[4+(N-1) 0] 2

and if there is only one firm, then profit equals the monopoly profit,

sz (u]1) = (u2/8)s (15)"

Note from Proposition 3 that this last expression also represents the
profit of a firm offering quality u when all its rivals offer qualities of

(o/4)u or less.
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If we set all the qualities equal to unity in this model, then the model
collapses to the basic model (equation (1)). In what follows, we restrict
the qualities to the interval [1,) and we introduce a fixed and sunk cost

F(u) of entering a product of quality u. We set
F{u) = euf

where B > 2. (This restriction on P ensures F(u) rises at least as rapidly
as profit, as u — o see equation (15)'.) If all qualities equal unity, then

the setup cost equals ¢, as in the basic (exogenous sunk costs) model.

We now turn to the viability and stability conditions for this model. In
this section we define these conditions in terms of the standard (sales)
concentration ratio. The viability condition takes the same form as in the
basic (exogenous sunk cost) model, and is obtained by setting all the
qualities equal to unity. The form of the stability condition now changes.
An explicit calculation of the related facet is now difficult, but its

qualitative properties are easily characterised.

The facet shifts left relative to the facet for the exogenous sunk cost
model, at high values of concentration. The intuition for this is seen by
considering the minimum number of products which a monopolist needs
to offer in order to deter entry. The menu of possibilities open to the
monopolist is now extended, relative to the exogenous sunk cost model,

in that he may choose either to offer a large number of products of
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quality 1, or a smaller number of products quality greater than 1. So
long as o is strictly positive, so that there is some degree of substitution
among products, a single product monopolist may be able to deter entry
by setting u sufficiently high. The following property is established in
Appendix 2.

Property L. For any given g >0, then for p sufficiently low (close
to 2) the stability facet passes through the monopoly
solution (C,N) = (1,1).

The second property states that the lower part of the schedule shifts
upwards, reflecting the fact that at low levels of concentration, entry by
a high quality producer bréaks the configuration. This property leads to
the basic 'nonconvergence' result for the 'Endogenous sunk cost model

(see Figure 4).

Property II: For any P > 2, the 1-firm sales concentration ratio C, s

bounded below by

1
c. >
=1 -2
g lG)
(4] 4]

in any equilibrium configuration. In particular, the

stability facet lies above this critical value of C, for all

N, independently of S.
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Proof:

-To establish this result, we calculate an upper bound on the

number of firms that can have positive sales in any

equilibrium configuration.

Consider any configuration in which N firms have positive
sales, the highest and lowest qualities with positive sales
being denoted vy and u,, respectively. Proposition 3 implies

Uy > (4/0) u_.

Since this configuration is viable, it follows from Proposition
2 that there exists a viable configuration of N single product
firms offering qualities in the same range [u, , uy]. (The
viability condition ensures that each firm covers its fixed
costs, and so it must have at least one product that covers its
fixed costs. Assign one such product to each firm and delete
all other products. Proposition 2 ensures that this new N

firm configuration satisfies the viability condition)

Denote the lowest quality offered in this single-product firm
configuration as v. Proposition 2 implies that the profits
earned by this firm cannot exceed the profits it would

earn if all firms had quality v. Hence viability implies,
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using equation (15)’, that

2v e
[4 + (N-1)0]?2

S

F(v) = evhP <

whence (since all qualities are defined on [1,) and B > 2),

vh2 ¢ 2 . S (16)
(4 + (N-1)0]2 €

Now consider an entrant offering a single product of quality
u = (4/0)uy, Al rival products have zero sales, by

Proposition 2, and the entrant's net profit equals (using

(15)"),

2 2
E__S—F(u) :E-—S_SU.B
8 8

The stability condition requires that this be non-positive,

whence

uﬂ"zz_}.-é
8 €

But u = (4/0)u,, = {(4/0)v, whence

(4)2”"2)Vﬁ—2 > 1 S (17)
g 8 &
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-Combining (16) and (17) we have

(4)2([3'2) . 2

1
= > =
[4 + (N-1)0]?2 8

g

whence

RIS

But since C; 2 1/N, this implies Property 1L

(i)

wn

Figure 4.

The general (Endogenous sunk cost) case. The equilibrium
configurations lie in the shaded area. Schedules (i) and (ii)
are the facets defined by the viability and stability conditions
respectively. Schedule (ii) always lies above the horizontal
line labelled C, (Appendix 2). The minimum level of
concentration (point X) is bounded away from zero as market

size S — o,
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VII. CONCLUDING REMARKS

There are two separate lines of argument which can be used to motivate

the present approach.

On the one hand, it may seem reasonable to place a fairly weak
requirement oﬁ agents’ maximizing behaviour in a context where firms
face situations that are in some way novel, and where it is unattractive
to assume that each firm 'knows the true model'. This is a point of view
that has been emphasised in the 'Schumpeterian’ literature on technology
and market structure. But even if such arguments are set aside, so that
all firms are assumed to share the same correct beliefs as to the 'true
model" and to choose optimal strategies relative to those beliefs, it many
for some purposes be better to model the situation by invoking only the
present weak requirement. In analysing outcomes we cannot observe
firms’ beliefs, and so we cannot assess the ex ante optimality of their
actions. We may rationalize many outcomes by positing some particular
extensive form representation and/or by attributing particular beliefs to
agents at past dates. In the present approach, where restrictions are
imposed directly on the space of observed outcomes, we avoid the
temptation of offering excessively detailed 'explanations' of events 'within
the theory’ by postulating some possibly quite complex strategy space

and/or structure of beliefs which is not directly observable.
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This does not imply a denial of the value of adding a richer strategic
structure where we know enough about the market to justify additional
assumptions (For an example, see Sutton (1991), Chapter 9). Rather, it
involves the idea that it is better to first determine what restrictions can
be placed on observed outcomes using assumptions that can be justified
over a very broad range of situations, before proceeding to add

assumptions that can be justified only in a narrower set of circumstances.

Once we define the set of equilibrium configurations in the way

proposed here, the testing of the theory revolves around two questions:

(@) do all observed outcomes lie 'within this set'?

(b) do the observed outcomes 'fill this set'?

In two companion papers, these issues are explored. It can be argued on
the basis of various empirical studies that observed outcomes do indeed
tend to lie 'within this set”. On the other hand, they do not typically 'fill
the set'. Moreover, the reason the bounds defined by theory fail to be
tight' can not be attributed to our relaxation of the Nash equilibrium
notion; rather, it reflects the fact that some configurations, though
'possible’ in the sense that they are (perfect) Nash equilibria, are 'unlikely'
to occur. To make this notion precise, we need to go beyond the analysis

of the present paper. This theme is taken up in Sutton (1995 ab).

’See for example Sutton (1991), Matraves (1993), Robinson (1994).
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APPENDIX 1

Hotelling's Simple Location Model: The Entry Game

Note that the only candidate n-firm equilibria of the Entry game
correspond to the equilibria of the simple Hotelling game in which the

number of firms is fixed at n, for otherwise some firm is not optimally

located relative to its rivals. The following results then follow:

n=1
n=2
n=3
n = 4:

[SaSul = [1,2]

Sm=5y=2

The only candidate equilibrium is A = B = 1. A
deviant can enter at ¥ - ¢, obtaining payoff (%2 - 1¢)S.
Hence if S > 2, the two firm configuration is not a Nash
equilibrium, since (% - %e)S > 6 =1 for ¢ sufficiently
small.

No Nash equilibrium in pure strategies exists.

Sn=5y =4

The only candidate equilibrium is A,B = ¥%4; C,D = %.
A deviant can enter at Y% - ¢, obtaining payoff
(Y4 - %¢)S. Hence if S > 4, the four firm configuration
is not a Nash equilibrium, since (% - %4¢)S > o = 1 for

e sufficiently small.
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n= 6:

S,.=Sy=6 |

The only candidate equilibrium is A =B =1/, C = %,
D =E =°/6. At equilibrium, 1, = 1y = np = 1z = (5/6)
and nc =S5/3. This configuration is viable only if S > 6.
However, if S > 6, then a deviant can enter profitably

at ¥ (whence C and the deviant both earn more than
5/6).

[SSul = [6,8]

Any configuration of the form shown in Figure 5 in
which ¥ < d <!/6is a Nash equilibrium of the Hotelling
model (Eaton and Lipsey (1975)).

For any S € [6,8], a 6-firm equilibrium of the location
game exists. To show this, set d = 1/5. Note that all
firms earn at least profit S + d = 1 (firms C and D earn
more). The highest profit that can be earned by an
entrant is S +d = 1. Hence this is a Nash equilibrium
of the entry game.

For any S outside this range, there is no 6-firm
equilibrium of the entry game. (For S < 6 at least one
firm makes profit S/6 < 1. For S > 8 entry - just to the
left of A, for example - is profitable.)
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A,B C,D E,F
(b) L ! i i ]

1 1 1 Al
3 3 6

Figure 5. Equilibrium configurations in the Simple Hotelling
Model forn = 6. In panel (a) s < d < /6. If d = /¢
firms C and D coincide (panel (b)).
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APPENDIX 2

The 'Linear Demand Schedule' Example

Derivation of the Viability facet (Equation (8))

Note that © (n;|n_;) /n; attains its minimum for the largest n,. Label
firms so that ﬁl >n, 2n; 2 .. Fix a value of n. We aim to find the
lowest value of n, such that
| Tlil St (n,ln_h) >e

For any given n,, consider the minimum of 7 (n; [{n;}) over all vectors
n, satisfying 2nj =n -1, andn <n;, Y Inspection of the profit
function (5) indicates that this minimum is attained whenn, <n,, V. To
see this, notice that merging any two firms of size n, , n, into a firm of

size (n, + n,) reduces the value of the term Z(*) in (5).

Hence the condition (i) becomes

~r

L sn (nC,|nC,,...,nC,) > ¢
nc,

Treating n and C 1 as continuous variables, the Z(} term in equation (5)
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becomes o — whence the viability schedule becomes’

2{(2-0) + onC,
(2-0) + onC 2
-1 1+ on _ - /s
[2(2-0) + onC,]}? 2(2-0) + onC,

from which (8) follows.

Derivation of the Stability facet (Equation (9))

Consider an entrant who enters k products; entering these products is

profitable if and only if

Lsm (klin)) > e
k
Inspection of the profit function indicates that the expression on the left

hand side attains its maximum when k = 1. Hence we many confine

attention to the case

St (1linh > e

Fix a pair of values n and n,. Consider the minimum of the

function ® (1]in;}) over all vectors {n} satisfying X n, =n-n, ,
Se1

'Each term in 2 is the same, and the number of terms equals the

number of firms, which is 1/C,
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where firms are labelled in descending order of size, as before.
Inspection of the profit function (5) indicates that the minimum is
attained when n; = 1, ¥, # 1. Hence the stability condition may be

defined as follows: fix n and define C, implicitly via the equation

St{1|nC,,1,1,...1) ==&

where the number of incumbent firms is n(1-C,) . This can be
written explicitly by noting that we have one firm with nC, products,
and the remaining n-nC, products are each owned by single-product

firms. So the number of firms, prior to entry, equals 1 + n(1-C,)

Hence the Z(-) term in the profit function (5) becomes

onC, , of1+ n(1-C,)]
2(2-0) + onC, 2(2-0) + o

(The first term corresponds to firm 1, while the second corresponds to
the remaining n ( 1—61) firms, plus the entrant) Equation (9) now

follows.
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Endogenous Sunk Costs

Solving the Quality Model

The inverse demand schedule for product k is

— (A1)
The profit of firm i equals

Ty = L Dy Xy
kel

where I denotes the set of products owned by firm i. Firm i's optimal

reply (reaction function) is implicitly defined by the set of equations,

. op
VkEI 1 = -+ E X _______I_ = 0
0 0
where Pe _ . —25 and B __ 0 for § % k.
dx, u? o0x, U, U,

Substituting (Al) into (A2), re-arranging, and subtracting 20 il; from

u
each side of the re-arranged equation yields «

(4 -20) 2k -1-3% 9% x-3 _O
{

> Xy, (A3)
Uy Uil el Uyl

where 2 denotes a sum over all products.
?




The notation can be simplified by defining the new set of output

variables, y, = x, /1, so that (A3) becomes

VkeI, (4 - 20) yy =y, -o0Xy, -~ 03Xy, (Ad)
lex ¢
Equation {A4) implicitly defines the reaction function of firm i. Denote
the number of products owned by firm i as n. Denote the average
quality of these products as u; = (!2 u,)} /n; , and the average value of
eI
the output variable as v; = (Zv,) /n; . Using this notation, we obtain

on summing the set of equations (A4) over the set of products I owned

by firm i, and dividing by n;:

(4 -20) y;=u; ~02y, - o3y,
!

feT

i

Writing ﬂ)E.".Iyﬁ as n,y; and %yﬂ as ?nj?j where ? denotes a

sum over all firms, this becomes
[(2(2-0) + onjly; =u; - oXnyy, (A5)
j

whence we have:

V., y, = ]

1

2(2~0) + on; (A6)

This set of linear equations for the y's can now be solved routinely,

as follows: Multiply both sides of (A5) by on, and sum the resulting
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equation over all firms, to obtain:

o1, U
_ 5 21(2- .
oZny, = —2 (2-0) + ony (A7)
j on.
1+ X .
3 2(2-0) + on.
j
Substituting this into (A6) and simplifying yields
— ony (Uu; - uj)
Uy * 2 -
?i _ 1 j 2 (2 0) + Unj (A8)
2(2 - 0) + on, on.
1+ % J
i 2(2 - 0) + on,

which is equivalent to equation (12) of the text.

Finally, the solution for each individual product owned by firm i can be

expressed in terms of ¥y, as follows. From (A5) it follows that

(4 - 20) y; =u; - onyy; - 020y,
]
while (A4) implies

(4 - 20) y, =y - onyy; - 0‘?113'?3' (A9)




Subtracting this equation from the preceding equation, and simplifying,

yields

— U, — U; '
L AT (A9)"

which is equation (13) of the text.

Lemma 1:

Proof:

Corollary:

Let the quality of some good increase, the other
qualities being held constant. Then the total weighted
output ang?j increases.

]

By inspection of equation (A7).

Introducing any good 1 which has positive output at
equilibrium raises Zn;y; . To see this, define a
'threshold’ quality atjwhich the newly introduced good
has equilibrium output zero (since a good of quality
zero has equilibrium output zero, it follows that there

is such a nonnegative threshold quality).

Introduce a new good at this threshold quality. The
vector of equilibrium outputs for all other goods is
unchanged by the introduction of this new good. (This
follows by inspection of the system of reaction

functions (A4)). Now raise the quality of the new
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Lemma 2:

Proof:

good, and apply Lemma 1.

Let the quality of some good { increase. Then the
equilibrium output of each other good k # { falls.

Label the owner of good k as firm i, and consider first

the case where { belongs to one of i's rivals, i.e. § ¢ L

Lemma 1 implies that raising u, increases In;y;
i
whence (A6) implies that y, falls, It follows from (A9)’

that y, falls.

Now consider the case ¢ € 1. In this case, the increase

in u, raises u, It follows from (A7) that

d —
I { oEj}njyj } <1

Hence the expression on the r.h.s. of {(A5) increases, and
so y; increases. This, together with Lemma 1, implies
so that y, decreases; this can be seen by inspection of
(A9). (The expression on the r.h.s. of (A9) decreases,
since y, increases, while Lemma 1 implies that ?njij

increases.)
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Remark: When the quality of good £ increases, the output
of good { increases, while the output of all other
goods falls, but the combined fall is not enough
to offset the rise in y, so that ?njyj increases

(Lemma 1).

Proposition 2: (i)  Let the quality of any good increase (decrease).
Then the equilibrium profit earned on each other

good decreases (increases).

(ii) Deleting any good raises the equilibrium profit of

each remaining good.

Proof: From the demand schedule (Al), the profit on good k

can be written as

T (X)) = DXy =xk{1 - -QEyQ] - %X{f

This function is strictly increasing on [0,x,*), where x.*

is the equilibrium output defined by (A2).

If the quality of any other good rises, then it follows
from Lemma 2 that y,, and so x,, falls. It also follows

from Lemma 2 that the term X y, rises (Lemma 1
t2k
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Lemma 3:

Proof:

Comparing coefficients,

dm,
0%,

ox

implies that ¥n,y, = Xy, rises, while Lemma 2
j !

implies that y, falls). Hence =, falls. This establishes

part (i).

The proot of part (ii} follows by first considering the
entry of a good at a quality such that its output is

exactly zero, and then applying part (i).

Let the set of goods offered by firm i that have positive
sales at equilibrium be labelled u, > ... > u, > u,. Then
u, > (a/2) u,.

The first order conditions for maximization of

(n, + ®, + ... + ) imply that if x_ ,x; > 0 then

omy _ . 4 20 , _ 20 %
dx, 270yt a 3*l,n Us
om X
= Y 20 i 42Xl 20w 3o g

we have that f u< (0/2) u, then
ot

= for all output vectors, which implies a contradiction.

Il
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Proposition 3:  Let uy be the highest quality on offer. Then a
necessary condition for a good of quality v to have

positive output at equilibrium is that v > (0/4)u,,.

Proof: Equation (A2) implies that a necessary condition for

y; > 0 is that

_ on. (u. - u.)
1
i > X J =

j 2(2 - 0) + on; (A10)

Identify the firm offerring the highest quality, which we label u,,.
Denote the number of products offered by this firm (that have positive
sales at equilibrium) as ny, and the average quality of these products as
uy. Note that Lemuma 3 implies that each of the ny -1 other products
offered by this firm must have quality (0/2)u,, or higher. Hence:

1 o
uMz?M l+(nM—l)§ Uy (All)

Consider the firm i with the lowest average quality, u,. For this firm, all

terms in the sum on the r.h.s. of (Al0) are nonnegative, whence

— ony, (U, — u;)

U, Al2
* 2(2 - o) + on, (A2)
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Combining (A11) and (A12) it follows that

T, » (0/4)u, (A13)

1

Now suppose firm i offers a range of qualities, the lowest being v. We
now show that if v < (o/4)uy,, then v has zero sales at equilibrium. For
suppose the contrary. Then delete all other goods offered by firm i. By
Proposition 2, the output of v now increases, and so is still positive. But

now v = u;, whence (Al3) is violated. It follows that v > (a/4)u,,.

Equilibrium Configurations
In this section, the qualities are defined on the interval {1,=).

Property I (Leftward Shift): For any given o > 0, then for B
sufficiently low (close to 2) the stability

facet passes through the monopoly solution

(CLN) = (1,1).

To show this, note that the monopolist's profit is (u?/8)S. Choose the

level of u such that the monopolist earns just enough profit to cover his
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fixed costs,

2
3-8~S = F(u) = euf (A14)

whence

082 = % (A15)

We aim to show that no entrant may profitably enter with any quality

v 2 1. (Recall that quality is defined on the domain [1,=).) To see this,

note firstly that if v > u, he earns profit no greater than —Y;-S - gvh

Since P > 2, it follows from the definition of u (equation (A14)) that this

is negative. If 1 < v < %u , the entrant has output zero, and so

earns negative profit. Hence we may confine attention to the case where
u 4

the quality ratio u/v lies in the interval 1 < - < o

Denote the ratio u/vbyk, 1 < k < % , whence (A15) implies:

vb2 - S . _1 (Al6)

From the profit function (15), we have (on writing u, = v, u = (u + v)/2
and N = 2),
2

v R e e
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and this is negative if

vz » Z (4 - ko)?2 % (A17)

(4 +0)? (¢ ~ 0)°

Combining (A16) and (Al7), entry is unprofitable if

S 4

Kk B-2 _{(4 + 0)

2
_ 2
= 0)} (4 ko)

or

(4 - ko)2kbB2 g{ (4 + 0)4(4 - o) }2

Recall that 1 < k < 4/0. Note that the expression on the Lhs. is

decreasing in k on this domain if P < 2 + 42_00 , whence the

expression on the Lh.s. takes its maximum at k = 1, where it equals (4-

a)>. It follows that forall B < 2 + 2_00 , the inequality is satisfied.
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