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Abstract

A valid Edgeworth expansion is established for the limit distribution
of density-weighted semiparametric averaged derivative estimates
of single index models. The leading term that corrects the normal
limit varies in magnitude, depending on the choice of bandwidth
and kernel order. In general this term has order larger than the n S
that prevails in standard parametric problems, but we find
circumstances in which it is O(n '1/2), thereby extending the
achievement of ann ™ Berry-Essen bound in Robinson (1995). A
valid empirical Edgeworth expansion is also established. We also
provide theoretical and empirical Edgeworth expansions for a
studentized statistic, where the correction terms are different from
those for the unstudentized case. We report a Monte Carlo study
of finite sample performance.
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1. INTRODUCTION

First-order large sample distribution theory of estimates of semiparametric econometric models
has been extensively studied. A major recent focus has concerned inference on the parametric
component, when the nonparametric curve is estimated by some method of smoothing, such as
kernelsor nearest neighbours (seee.g. Manski (1984), Robinson (1987), Powell, Stock and Stoker
(1989), Newey (1990)). In some such cases, estimates actually achieve the first order efficiency
of optimal ones based on afully parametric model, and more generally they are asymptotically
normal and achieve the same rate of convergence as parametric estimates, namely being n 7
consistent, where n issamplesize.

There is no reason to suppose that these correspondences even approximately occur in
small or moderate sample sizes. Indeed the smoothed nonparametric estimates involved in the
semiparametric estimation convergemoreslowly than n g ,  which could reasonably be expected
to affect finite sample performance, and indeed many Monte Carlo studies have demonstrated a
sensitivity to the precise implementation of the nonparametric estimates. Analytic study of the
finite-sampledistribution theory for semi parametri c estimates seems mathematically intractable,
and indeed the precise distributional assumptions which such a theory would require are
Incompatible with the ethos of semiparametric inference.

On the other hand, higher-order asymptotic theory, which also has the potential to shed
light onfinite-sample performance, seemsfeasiblefor semiparametric estimates, under acceptably
general conditions. Parametric estimatestypically enjoy aBerry-Esseenbound of order n E (see
e.g. Pfanzagl (1971)), and Nagar (see e.g. Nagar (1959)) and Edgeworth (see e.g. Sargan and
Mikhail (1971)) expansions in powers of n 2 . Due to the nonparametric smoothing, the
semiparametric estimates might be expected to have alarger Berry-Esseen bound, and correction
term of order greater than n E . If s0, the semiparametric estimates are inferior to parametric
ones in the sense that their distribution converges to the normal limit more slowly, while the

Bartlett corrections advanced in the parametric literature will be unsuccessful and bootstrap



replications (e.g. Hall (1992)) would not provide the usual second-order correctness.

Somerecent papershaveinvestigated higher-order propertiesof semiparametric estimates.
The Berry-Esseen bound for averaged derivative estimates of semiparametric index models was
derived by Robinson (1995). He found that while in general the bound is larger than n E , It
Is nevertheless possible to implement the estimate, by appropriate choice of smoothing or
bandwidth number and of kernel order, toachievethe n 2 bound, opening up the possibility that
some semiparametric estimates can rival the higher-order and bootstrap properties of parametric
estimates. Nagar expansions were developed by Linton (1995, 1996b), for estimates of the
semiparametric partly linear model and of the linear regression model with disturbance
heteroscedasticity of unknown form. Linton (1995, 1996b) found that the leading terms are of
order greater than n 2 and showed how their contribution might be minimized by appropriate
choice of bandwidth. In another paper, Linton (1996a) established valid Nagar and Edgeworth
expansionsfor awide classof semiparametric estimates. M aking assumptionsof ahigh-level type,
including that the nonparametric estimate converges suitably fast, Linton (1996a) showed that the
nonparametric estimation has no effect on expansions to order n !, and indicated that his
assumptions can be satisfied by aversion of the partly linear model as well asin models where
no smoothing isinvolved.

The present paper develops a valid Edgeworth expansion for semiparametric density-
weighted averaged derivative estimates of semiparametric index models. Such estimates were
shown to be n 7. consistent and asymptotically normal for independent and identically
distributed (iid) observations by Powell, Stock and Stoker (1989) and for weakly dependent
observations by Robinson (1989), while Cheng and Robinson (1994) found that a non-normal
limit could pertain in the event of some long range dependence. The singleindex model includes
a number of practically important special cases, such as probit, Tobit and Box-Cox and other
transformation models, and averaged derivative estimation has proved popular. However, asin
the Berry-Esseen theory of Robinson (1995), density-weighted averaged derivatives are chosen

for study in large part by virtue of their algebraic simplicity relative to the bulk of other

semiparametric estimates; eveninthiscasethedetailsof higher-order theory are complicated, and



they would be more so in others, such as in ones employing trimming to handle the effects of
stochastic denominators, where we are unable to say whether similar qualitative conclusions to
ours can be reached.

Our work differs significantly from the Edgeworth theory in the aforementioned Linton
(19964a) reference. Averaged derivatives are not among the illustrations Linton employs, and in
fact do not in general satisfy his orthogonality condition B4(2). Whereas Linton employs afixed
design (asin Linton (1995, 1996b)) we do not condition on our stochastic explanatory variables,
asin the bulk of first-order theory for semiparametric econometric estimates, including that for
averaged derivatives, such as in the Berry-Esseen theory of Robinson (1995). Unlike Linton
(1996a) we do not achieve an expansiontoorder n 1, but rather focus on the extent to which
an n 2 term may be dominated by other terms. These |atter involve the bandwidth, such that
the second termin the Edgeworth expansion varieswith respect to the choice of bandwidth, which
Is suppressed in the treatment of Linton (1996a), due to his assumption of better - than -

n i consistency of the nonparametric estimates, which our conditions do not necessarily
satisfy. We provide avalid empirical Edgeworth expansion for practical use. Linton’s paper does
not overlap with our detailed treatment of a different and more specialized problem, under
primitive conditions.

Since our estimate is of U-statistic form, our work can also be compared with that on
Edgeworth expansionsof U-statisticsinthemathematical statisticsliterature (see Call aert, Janssen
and Veraverbeke (1980), Bickel, Gotze and van Zwet (1986), and a recent treatment of more
general symmetric statistics due to Bentkus, Goétze and van Zwet (1997)). However the
dependence of our U-statistic "kernel" on the bandwidth, and thence on sample size, prevents us
from applying the results of these authors, and while our proofs sometimes employ similar
techniquesto thosein thefirst two of these papers, our work can be seen more as an extension of
the treatment of averaged derivativesin Robinson (1995), anumber of whose intermediate results
we use or extend. As in Robinson (1995), we overcome a serious bias problem by resorting to
higher-order kernels (in the nonparametric estimation). Though our conclusions are substantially

stronger than those of Robinson (1995), our conditions (for the theoretical Edgeworth expansion)



do not seem to be, with the notable but predictable exception of the addition of a Cramér
condition.

Thefollowing section describes the singleindex model, the averaged derivative estimate
and theoretical and empirical Edgeworth expansionsfor the estimate normalized by itsasymptotic
variance matrix, with regularity conditions for validity. Section 3 proposes a jackknife estimate
of the asymptotic variance matrix and provides valid Edgeworth expansions when the averaged
derivative statistic is studentized by this variance estimate. Section 4 discusses special cases
covered by the Edgeworth expansion in Section 3 and, based on this, derives an optimal
bandwidth choice which minimizes the normal approximation error, and a data-dependent
approximation to thisfor practical use. The proofsof Theoremsin Section 2, along with anumber
of technical lemmas, are |eft to appendices, the substantial extra details needed to complete the
proofs of Theorems 3 and 4 appearing in a companion paper, Nishiyama and Robinson (1998).
Section 5 reportstheresults of aMonte Carlo study of finite sample performance based on a Tobit

mode!.

2. EDGEWORTH EXPANSIONS : UNSTUDENTIZED CASE

For a dx1 variate X and a scalar variate Y, we suppose that the regression
function g( X) =E(Y|X) isknown to havesingleindex form
(21)  g9(X) =G(p*X) ,
forsome G: R- R andsomecolumnvector 3, t denotingtransposition. For example, letting
V beascalar variate independent of X and with distributionfunctionF,and 1(-) theindicator
function,if Y=1(R'X+V>0) or Y=(B'X+V) 1(p'X+V>0) or, forsomeincreasing
function t, t(Y) =p'X+V, we have (2.1) with respectively
G(u) =1-F(-u), G(u) =u{1-F(u)} +fvdF(v) and G(u) :ft Tu+v) dF(v) .
In the first case we have respectively the probit or logit model when V isnormal or logistic, in

the second the Tobit and inthelast, various transformation model s arise on parameterising F and
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t.Then B canbeestimated n 2 - consistently and asymptotically normally and efficiently by
maximum likelihood. If F hasbeen misspecified, such parametric approachesin general lead to
Inconsistent estimates. Regarding F, and thus G, as nonparametric, 3 canbeidentified only up

to scale, for example, by
def

22) p = -Eg(X)f(X)} =cp ,
where ¢ = -E{G/(p*X)f(X)}, f isthedensityof X, theprimedenotesdifferentiation
and the final equality in (2.2) follows from the chain rule. On the other hand, under conditions
imposed below, integration by parts gives

p=2E{g(X)f (X)} =2E{ Y (X)}

which can be estimated by the density-weighted averaged derivative statistic

(Y B0

=1
giventhesample (X, Y;), i =1, ,n from (X%, Y), where
U; = (Y, -Y) K|, Kj=haik( 50

K : RY R is even, differentiable and integrates to one and h>0 converges to zero
as n- oo,

For afunction k: R9~ R, write k=k(X), k’=k(X), k”=k”(X), k" =k"(X)
where

K/(x) =0k(x)/ax, k"(x) =0°k(x)/oxdx*, k"”(x)=0vec(k”(x))/aox*T,
and define g =E(Y2|X), r =E(Y3|X), s=qg-9g2%, u=p(X Y) =Yf'-e’, e=fg,
a=g'f+y, a’=g”f +gf’'", =4E(u-W) (L-W) " .

We introduce the following assumptions.

(i) E|Y]P<e .
(i) = isfinite and positive definite.
(iii) Theunderlying measure of (X', Y) canbewrittenas W, Xy, ,where g, and p, are
Lebesguemeasureon RY and R respectively. (X, Y;) areiidobservationson (X*, Y)
(iv) fis(L+1) timesdifferentiable, and f and itsfirst (L+1) derivatives are bounded, for 2L>d+2.

(v) g is(L+1)timesdifferentiable, and e anditsfirst (L+1) derivatives are bounded.



(vi) q istwice differentiableand q’, q”, g/, g”, g, E(|Y|®*|X)f, and gf ' are
bounded.
(vii) f, of, g’f, and gf vanishon theboundaries of their convex (possibly infinite)
supports.
(viii) K(u) satisfies K(u) =K( -u) , isdifferentiable,

JL A (14Ul [KCu) [ +IKCu) [}du + sup[K/(u) | < =,

usRY

and for thesame L asin (iv) and (v),

= 11 | f I 1+"'+| d:o
f dul'l... uédK( u) du =0, if O<l +-+ <L
" # 0! |f I 1+"’+| d:L
9
(ix) m;]igdnz) S nh2 - 0 as no e
n +

(x) Fora dx1 vector v ,

sup |imsup|Eexp[{it2c, vi(pu-W)}]| <1,

viviv=l |t|-

where o2 =v'z v |

Assumptions (i)-(iv) and (viii) are identical to corresponding ones of Robinson (1995),
which are discussed there, Assumption (viii) referring to a higher-order kernel K; such kernels
have along history in bias-reduction of nonparametric estimates, were used by Robinson (1988)
and subseguent authorsto achieve |/n - consistent semiparametric estimation, and by Robinson
(1995) to control the Berry-Esseen bound of averaged derivative estimates. Assumptions (v)-(vii)
and (ix) somewhat strengthen corresponding ones of Robinson (1995), and Assumption (X) isa
Cramér condition (see e.g. Bhattacharya and Rao (1976)) (note that 03 Is bounded away from
zero under (ii)). In their study of ordinary U-statistics and symmetric statistics, Callaert, Janssen
and Veraverbeke (1986) and Bentkus, Goétze and van Zwet (1997) employ more stringent
conditions of Cramé& type; however in the context of their Edgeworth expansion in powers

1
of n 2, the former authors establish an expansion to order n ! (with
1
remainder o(n 1)) whilethelatter authorsexpandto n 2 with O(n 1) remainder. Our

1

expansionistoorder g,, saywhere g, isasumof n 2 plusother terms, which may be
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of bigger or smaller order than n 2 depending on the bandwidth h, with remainder term that
isonly shownto be o(g,) . The v factor in Assumption (ix) is due to the fact that we
consider only expansionsfor asinglelinear combination of thevector averaged derivativestatistic
U (and a studentized version of this). The development of full multivariate expansions would
require further work (we cannot appeal to the Cramér-Wold device). Our present set-up allows
higher-order inferenceonindividual elementsof 3 (uptoscae), whichisof practical importance
initself, aswell as on arbitrary single linear combinations of 3 .
Define further
Z =nY2s(U-p) L F(z) =P(Z<2) ,
23) F(z) - o(2) -(z){nY2htx, + 2 #xg 3x,)

(22—1)} :
nhd+2 3n 1/2
where z isreal-valued, ® and ¢ arerespectively the distribution and density function of a

K

standard normal variate, and writing
[
A(Il' "'vld) _ a( 1 d)
| |
OXq e axy’
1 d (Xl* "',Xd)T:X

2(-1) ‘o)t

(2.4) K, = TOZ Z {f % Uil K( ) du}E[(A(l TR Y /) g} ’

T, o Taelli=1

—_ A

Ll

4L
- 202 [{viK/(u) Pdu E(sf) |
= o.,°E|(r -3sg-g3) (v'f )3-3s(v'f )2(vra) -(v'a) 3

K, = —ogsE[f s(vif ) (viah) -f(vif ) (vis’) (vra)
~fs(vra) (vif V) +f (vig) (via)? ,
wherethe x, areadl finite under our assumptions. The nature and role of the x; arediscussed

in the following section.

THEOREM 1: Under Assumptions (i)-(x),as n- o,
sup sup|F(z) “F(2) | =o(nY2+nthd2.+nt2pt
viviv=l ZeR
Wecdl IN:( z) atheoretical Edgeworth expansionof F(z) , Theorem 1 establishing

itsvalidity. Wecan derivean empirical Edgeworth expansion by replacingthe population x, in



(2.3) by strongly consistent estimates

2(-1) %t n ~/
%, = 20D y -y Hu 'K(u) du EZ{A“P RN (x.)}v. ,
L! O<l g, Iyl ni= ! !
[+l g=L
~ -3
5 ~of n -qn-=1 n di2 ~ 2 5 o, & ~ 3
K = O_\) h ’ K = l
2 (2) |:1j;1 Wi 3 nZ; !
'(‘573 n. n ~ o~
%, = ” U V.V,
K4 n(n—l).z:;j;\) (N
where &% =visv
2

4 i{z —U)}{;(uik—ur},

(n 1) (n-2) 2= |7
and for positive b and afunction H: R~ R

1 0 X -X;
f(X) = WJ; H =)
25 U - n—%ljz. U,

/o= ViU -U) LW, = (U - - U L)

% is a jackknife estimate of = . It may be observed that, notwithstanding the form
of x, and x,, %k, and %, donotentail explicit estimation of derivatives.

Toestablishvalidity of our empirical Edgeworth expansionwerequire some strengthening

of some of Assumptions (i)-(x), and additional assumptions.
(i) E(Y®) <=
(iv) fis(L+2) times differentiable, and f and its first (L+2) derivatives are bounded, where
2L>d+2.

(v) g is(L+2) timesdifferentiable, and e anditsfirst (L+2) derivatives are bounded.

9
(ix)’ (1ogn) ™ |, hhot © 0 as ne =
nh d+3
(xi) H(u) isevenand (L+1) timesdifferentiable,
f JH(u)du=1
R
and

[ 4o R Uy jdu + supja® e O H Uy | <
R

ueRY



foralintegers | |, -+, 1, satisfying O< | +- +| ;<L .
(xit) b -0 and (nlb?ji%ri)zf =0(1) asn- e

Noticethat H need only be a second-order kernel, whereas K hasto be ahigher-order
one unless d=1. It is possible to choose H(u) =K(u) with Assumptions (viii) and (xi)
simultaneously satisfied. However, in comparing (xii) with (ix) it seemsthat b might in general
be chosen larger than h, while there is a case for avoiding the use of higher-order kernels when
possible.

Define

- ) % 4(%,+3%,)
(26) F(z) = o(z) —@(Z){nllzhLKl+ nh§+22 + 33nl’24 (22-1)} .

THEOREM 2: Under Assumptions (i)', (ii), (iii), (iv)", (v)’, (vi)-(viii), (ix)and (x)-(xii),

sup sup|F(z) —Ié(z) | =o(nY2+nth92+n¥2nly almost surely.

viviv=l ZeR

3. EDGEWORTH EXPANSIONS: STUDENTIZED CASE

Theorems 1 and 2 concern Z which involves unknown 3 through 03 so that they fall
short of being fully operational. The same criticism can be levelled against much of the
econometric and statistical literature on Edgeworth expansions, but we nevertheless wish to
develop the previous discussion by considering the studentized statistic £:

nY25 ' (U-H) . Wefirst validly approximate
IA:( z) = P( % <Z)
by the theoretical Edgeworth expansion

: x 4
Fi(2) = 0(2) —p(2) [0t - oz - {22240k + 3(2241)

THEOREM 3: Under Assumptions (i)', (ii)-(x), as n- o,

sup sup|F(z) - F(z)| = o(n Y2+n 1h d2.nl2p Ly

viviv=l ZeR

10



Thecorrectiontermsin F *(z) areof thesameordersasthosein the unstudentized case
(see Theorem 1), though their coefficients differ.

The x, areunknown, but afeasible, empirical Edgeworth expansion is

+ _ _ 124 Ly K, 4
F'(z) =o(z) -o(z)|n"""h "k, R 312

{227+ 1)%, +3(z%+1) 3<4}‘ .

THEOREM 4 : Under AAssumptions @), (i), (iii), (iv)’, (v)", (vi)-(viii), (ix)and (x)-(xii),
sup suFE)|IA:(z) -F(2)| =o(nY2+nth92+n¥2nL) almost surely.
viviv-l Z¢€

The conditions in Theorem 3 strengthen those in Theorem 1 only with respect to the
moment condition on Y, while Theorem 2's conditions are identical to Theorem 4’s. The proofs
of Theorems 3 and 4 entail considerable additional work beyond that in the proofs of Theorems
1 and 2 which are already lengthy and technical, so we have instead reported the former proofs
in Nishiyama and Robinson (1998). However in the following section we analyze special cases
of Theorem 3 and thereby deduce a novel form of optimal h, which can be approximated for
practical use, and we include studentized statistics along with unstudentized ones, aswell as our

bandwidth proposal, in the Monte Carlo study of Section 5.
4. SPECIAL CASES AND BANDWIDTH CHOICE

Theorem 3 covers a number of situations, depending on the choice of kernel order L,
relative to dimension d, and on the rate of decay of the bandwidth h. We classify these according
toLandthenh.Let C, i =1, 2, 3,4, befinite positive constants.
d+2

2

. <L<2(d+2) .

@ If n3h2(t=d=2) . o
x,Z2¢(2)
nhd+2

F(z) - o(z) + {1+0(1)} .

(b)If h ~ Cn Zoad

K -2L+d+2

F(z) = o(2) —(ClLKl— ji)cp(z)nZ(bM){l +0(1)} .
G

11



(© If n3h2(td2) - o
F2) - o(2) ~x,0(Z)nY2h Y1 + o(1)}
. L=2(d+2)

(a) If rll/2hd+2 -0 ’
x,29(2)

F(2) - o(2) - 200

{1+0(1)} .
(b)If h ~ czn’2<dl+2> ,
K,Z

F(2) - o(2) -|Cix, - 5

2) (1 + o(1)}

- M(2z 2+1) k5+3(Z 2+1) x,} | o
3 n
(© If N¥2hd2 . o

II\:(Z) = d(2) —chp(z)nllzh L1 +o0(1)}

. L>2(d+2)
1
L Ed
@It nhe oz - 0

F(z) = o(z) +4{(2z22+1) x,+3(2?%+1) x,}

A1 -0y
()If h ~Cn
) 4{(2z%+1) x,+3(Z?+1) x,}

2 o(2) (1 4 0(1)} .

n1/2

F(z) =o(z) -|Cx,

@©If h ~ Cn 27
K,Z . 4{(2z2%+1) K3+3(22+1) K,}

F(z) - o(2) - o2) 14 0(1)} .

cd2 3 n 12
(@If n¥zpez. o L7
’ ,29(2)
F(2) = o(2) «“E 2201+ o(1))
©I1f nht - « |

IA:(z) = d(2) —chp(z)nl’zh L1+ 0(1)}
In each of the seven cases 1(a)-(c), I1(a), I1(c), I11(d), and I11(€), the correction term in the

expansion is of larger order than n 2. In the other four cases it is of exact order

n 2 put of thesethe cases|(b), I1(b), I11(b), and I11(c), which involve a knife-edge choice

of bandwidth, include x, or x, (which depend on the kernel K ) or both in the correction

1

term. Itiscasell1(a) which correspondsin detail to the "parametric” situation in the sense that K

isnot involved, and x, and x, arethelimitsof E(V.) and E(W,V,V,) (seeAppendix

3 4

12



A for the definitions of V, and W, ). The term involving x, and x, is analogous to

3 4

the n 2 correction term in the Edgeworth expansion of studentized ordinary U-statistics (see
Helmers (1991)). x, and «x, are related to the third moment of U. x, and x, are
respectively limits of o,V (EU-H)/h' and h92E(W5) (see Lemmas 11 and 12) so

that x, and x, arerelated to first and second moments of U. In standard parametric higher-

1 2

order theory x, and x, do not arise since unbiased statistics with variance O(n 1) are

1
typically considered, not, ashere, O(n *h 972) . Wecanalsoderive analogous expressions
based on Theorem 1. For

example, for (L, d, h) satisfying I11(a), we have

4(xy+3x,)

(41)  F(z) =2(2) —W(Zz—lm(z){lw(l)} :

For U and related statistics, Hardle, Hart, Marron, and Tsybakov (1992), Hérdle and
Tsybakov (1993), and Powell and Stoker (1996) derived h that are optimal in the sense of
asymptotically minimizing leading termsin the mean squared error (MSE). These optimal h are
of form
(42) h*=C'n (L2 0<C'<w,
wherewe arein one of the casesI(c), I1(c) or 111(e), in each of which the leading correction term
is -x,p(z)n2h ", sothat biascorrection has the greatest impact in improving the quality
of the normal approximation. However, the conventional approach of relating choiceof hto MSE
isnot directed towards producing aversion of the statistic which, in some sense, makesthennormal
approximation especially good, and in the context of the present paper the latter goal isrelevant.
Under (4.2)

(43) F(z) =o(z) -C'x,0(z)n <—dd>{ 1+0(1)}

Here, the order of the correctionterm canbeaslargeas n +/2(24*5 when L=(d+3)/2 (see
Assumption (iv)) andtendsto n /2 onlyas L/ d- «, s0(4.2)iscertainly notoptimal inthe
sense of minimizing the error in the normal approximation. The h which minimizes the
integrated MSE of nonparametric derivative-of-density estimates is of form h' =

C'n V(2L+d=2) = for 0<C <, butthisiseven larger than (4.2) and thus provides an

13



even larger correction term than (4.3). Robinson (1995) calculated the rate of decay of h that
minimizes the order of the normal approximation error. This exceeds n Y2 due to
choosing L<2(d+2) , and the more detailed information provided by our Edgeworth
expansion allows usto discuss the choice of hitself. In particular, the optimal rateof h hereis
that in 1(b) as described by Robinson (1995), but we would like to know how to choose C, in

(44) h=C/n T

One possibility isto minimize the maximal deviation from the normal approximation, by

c/ = argm nmax|(Clx, - o ) o(2) |
C zeR 1 Cd+2 .
Because x, >0 thisequals
_ . K,Z
argm nmax(C*|x, | + OI2)cp(z)
C zeR *

_ . x,Z"(C) .
= arng n{C |Kl‘ +W}@(Z (€)) .,

where
Z°(C) = C¥2[(C% k] +4xy/ CH 4 V2 _Clix |}/ 2, .
Using the envelope theorem, the first order condition of minimization with respect to Cis

d+2) x
(4.5) {LCLlJQJ—S—EE%TEZ*(C)}@(Z*(C))-—O.

Solving (4.5), we derive

(4.6) ClA{ (d+2)21<§ }Z(L—ldz)

4L(L+d+2) &
The second order condition is easily verified using (4.5) and Z */( C) <0. Though (4.6) is

infeasible since it involves unknown x, and x,, we can replace x;, and x, by their

1 1

estimates I<l and T<2

4.7) éﬁ{ (d+2) *%; Fﬁ%a

in Section 2 to give the feasible version

AL(L+d+2) K2

Theestimates k, and %,, introducedto provideempirical Edgeworth expansions(Theorems

1
2 and 4), are consistent under the conditions stated there, so that C is consistent for the
optimal C/* .

One could consider variants of thisideafor bandwidth choice, for example maximizing

14



with respect to z over some desired proper subset of R, suchas {z: |z|>a} for some a>0,
perhapsto stress one of the usual critical regions. However, the simpleforms (4.6) and (4.7) seem
appealing. Hall and Sheather (1988) (see also Hall, 1992, p.321) used an Edgeworth expansion
for studentized sample quantiles, especially the median, to determine a choice of the bandwidth
employed in the studentization. In their problem, thebasic n/? - consistent statistic of interest,
the sample quantile, does not involve abandwidth. In our case, on the other hand, though we aso
consider studentization involving abandwidth, it isthe bandwidth in the basic statistic of interest,
the averaged derivative, that isto be chosen using the Edgeworth expansion. Moreover, unlikeus,
Hall and Sheather (1988) did not maximize over the argument z, but simply balanced the mean
and variance terms of the expansion for given z, so that their data-dependent bandwidth is z-
dependent (and thusa’local’ bandwidth). It might be anticipated that the step of maximizing over
z, which is incorporated in our procedure, would lead to a more complicated, perhaps only
implicitly-defined, formulafor theoptimal C, and the emergence neverthel essof thesimpleclosed
form (4.6) is of someinterest. We believe our *global’ approachcould be employed in choosing

the bandwidth in other semiparametric and nonparametric problems involving smoothing.

5. A MONTE CARLO STUDY

We report results from a Monte Carlo study for the Tobit model
Y, = (BX +¢g) I (B'X +¢>0) where X =(X,, X,;) * is bivariate. We took
(X' &)~ N0, 1) so that  g(x) = BX{1-0(-pX)} +o(-px) and f =

-B/ (8m) . Wetook B=(1,1)’. Thereisno closed form formulafor %, Ky, Ky, K

2! 737

x, , thefirst being needed in the expansions of Theorems 1 and 2, and the last four in the

expansionsof Theorems1and 3, so they were calculated by simulation, with 100,000

0. 00887 0.00458

replications, to be ¥ = )
P 0. 00458 0. 00887

x, =0. 397, x,=1. 724, Kg = -0. 144
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10°
and x,=-0.266, forexample ©=107°3 4{p(X,Y,) -I{u(X.,Y,) -u}* where
i=1
(X5 Y),i=1,..., 10° are generated independently and identically following the above
Tobit model. We employed three values of L, L=4, 8 and 10 which respectively correspond to
the cases |, Il and I11 in Section 4 (and easily satisfy assumptions (iv) and (v)), using normal
density-based multiplicative L-th order bivariate kernel functions proposed in Robinson (1988),
K(ug, u,) =K (u)) K (u,) , where
(Lf):lz .
KL(U) = = CjUJ(p(U) )
such that
(L=2)/2 _
(5.1 Z; ij2(i+j):6i0’ i =0, 1, ,(L-2)/2 ,
] =

m,, :fUchp(u)du ,

and & , isKronecker'sdelta Thevaluesof ¢ j calculated from these simultaneous equations

i0

arein Table 1. Wechose H(u,, u,) = o(u,) o(u,) inestimationof x, inthe

1

TABLE 1

L-th order kernel functions.

4 15 -05 - - -
8 2185 -2.185 0.4375 -0.0208 -
10 1924 -1.347 0.1230 0.00698 -0.000489

empirical Edgeworth expansions. We considered inference on the two elements of [
individually, but since the results for these are very similar we report them for the first only.
Figures 1-7 compare approximations to the distribution of the unstudentized
statistic (U(l) —H(l))/o, where Uy and ﬁ(l) are the first elements of U, pu, and
0?=0.00887. Weused h=1,0.8, 0.6 and 0.4 for n=100, and h=0.8, 0.6 and 0.4 for n=400,
with 600 replications, and we set b=1.2h following the discussion in Section 2. Wereport results

for only L=4 because the results for L=8 and 10 are qualitatively much the same while exhibiting

16



less bias. The solid lineisthe empirical distribution function of Z , while the dotted, broken, and
broken-and-dotted lines are the standard normal distribution function ® , the empirica
Edgeworth expansion (Theorem 2), and the theoretical Edgeworth expansion (Theorem 1)
respectively. The empirica Edgeworth correction results from averaging %,  across 600
replications for each sample size, bandwidth choice and kernel order. The two empirical
Edgeworth expansions in each Figure involve respectively all three correction terms (shorter
broken line) and one correction term of order n /2 (longer broken line) in (2.6), which
corresponds to the feasible version of (4.1). We examine the "one-term" case because thisisthe
one we would hope to be able to recommend, since it involves just the "parametric"

n Y2 correction and, depending only on «x

and K, butnoton x, and Ky isfreeof K.

3 1

We first compare the "three-term” empirical Edgeworth expansion (EE3) with the
empirical distribution (ED) and the normal approximation (N), finding arange of nand h where
EE3 well approximates ED, and better than N, for example, see Figures 1, 2, 3, and 4. It emerges
that h=1.0 (Figure 1) istoo largein that neither N nor EE3 performswell, but when h=0.8 or 0.6
(Figures 2, 3) EE3 issatisfactory, and better than N, whereas when h=0.4 (Figure 4), the opposite
outcome is observed. It isnot surprising that N sometimes outperforms EE3 since nisfinite (see
Hall (1992), p.45) and the %, are subject to sampling error. We also considered, but have not
included, the case h=0.1 with n=100, wherethevarianceintheempirical distributionisvery large,
and both N and EE3 performed poorly. Neither N nor EE3 could be expected to work well for
sufficiently large or small h. Comparing Figure 6 with Figures 2, 3, say, EE3 appearsto improve
with increasing n.

It might then come as something asasurprisethat in most casesthefiguresreveal that EE3
approximates ED better than the"three-term” theoretical Edgeworth expansion (TES3). A possible

explanation is as follows. The proof of Theorem 1 (see (A.13)) implies that an alternative

theoretical Edgeworth approximation to (2.3) is

E(Wz) | 4E(V7) +12E(W,v,v,)
n

2_
a1 (z°-1) ¢ .

(52) o(2) ~¢(2) {n 126 Lo (EU-) +
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Theexpectationsare untidy, dependingon n sothe proof goesonto obtain thesimpler and more
elegant IN:( z) , involving the n-free x, . However, in comparing (5.2) with the k, EE3
might seem to most directly estimate (5.2), which might be amore accurate approximation to ED
than TE3, (2.3).

Comparing shorter broken and longer broken lines, the "one-term” empirical Edgeworth
expansion (EEL) is better for some values of h depending on n than EE3, in particular when
(n,h)=(100,0.6) and (400,0.4) (Figures 3 and 7). These are the cases of relatively small h, so that
the biasissmall but n "*h 92 isrelatively large, namely the %, correction is negligible but
the k, onetendsto betoo large, having the effect of pushing the curve up and down around -1
and 1 respectively. It isclear from the discussion in Section 4 that one expects the choice of hto
be especially crucial where "one-term" expansions are concerned.

Figures 8-23 compare approximations to the distribution of studentized statistics

n2( Uy ~Hyy)) /G, where &% istheleading element of ; , based on Theorem 4. U
, ¥, and % involved in Figures 8-15, 16-19, and 20-23 used respectively kernel functions of
ordersL=4, 8, and 10; see (5.1) and Table 1. We took h=0.2, 0.4, 0.6, 0.8 for each of n=100, 400
with 600 replicationssimilarly to the unstudentized case above. Moreover, for L=8, 10 weinclude
only results for n=100 because these for n=400 are very similar. Because the theoretical
Edgeworth expansions (Theorem 3) performed lesswell than in the unstudentized cases featured
in Figures 1-7, and because they are in any case of less practical interest than empirical
expansions, we exclude the former cases from Figures 8-23 for ease of reading.

Making broad comparisons across the three groups of figures, 8-15, 16-19, and 20-23, we
find that bias tends to vary inversely with L, keeping n and h fixed. Thisis consistent with the
theoretical (asymptotic) bias-reducing propertiesmotivating higher-order kernels, but Monte Carlo
studies of semiparametric estimates employing such kernels (see e.g. Robinson (1988)) have
found that these properties are not necessarily mirrored in finite samples, so these results of ours
arerather pleasing. Generally in Figures 8-23, we observe that EE3 approximates ED very well

except for largish h, see e.g. Figure 12, where N also performs poorly. Comparing Figures 8-15

with Figures 1-7 for the unstudentized statistic (with L=4 throughout), EE3 is seen to work better
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for the studentized statistic. The reason may be similar to the one we offered for the apparent
superiority of EE3 over TE3 in the unstudentized case, namely, Var (U,) can better normalize
Uthan 3, and ; , Inview of its construction, more directly estimate Var (U;) . When
L=10, the "parametric" case I11(a) isjustified theoretically, and EE1 performs satisfactorily for
certain (n,h), in particular for (n,h)= (100,0.8) (Figure 20).

We next consider interval estimation. A 100( 1 -o) % confidence interval based on
Nis

~

o o]
(53) (U(l)_nl/zz%’ U(1)+n1/22 :

vle

where z = satisfies f “o(z)dz =y. Wecancorrectthisinterva using Theorem4. Inverting
z
theempirical Edgeworth expansion there, we havethe Cornish-Fisher expansion (seeHall (1992),

p.88),

. K 4
WY:zv+nl’2hL1<l— j z, - —
nhd+2 3nt

+O(nllzhL+n—1h—d—2+n—1/2)

{(222+1) %, +3(z7+1) &}

:WY+O(n—l/2+n1/2hL+n—lh—d—2) ’

where W, isthe 100y % quantile of the sampling distribution. Then the corrected interval

estimateis

O ~
, U —W

o o«
(54) Uiy - Mg My T

(1) 1/2 1

n
Note that W,  ,# -W_, ingenera so that (5.4) is not symmetric around the point estimate

~Nle

U(l)’

correction is supported when the Edgeworth expansion approximates well the empirical

unlike (5.3). According to our interval estimation in the current Tobit example, this

distribution function, which ismostly the case for the studentized statistic. We report two typical
cases where the correction appears effective. Oneiswhen N failsto well approximate ED dueto
the large bias of U, and the other iswhen % has variance significantly less than unity. Figures
24-27 show the "true" 80% and 90% confidence intervals derived from ED (solid line), the
corresponding interval estimates obtained from N, see (5.3) (dotted line) and from EE3, see (5.4)
(brokenline) for (n,h,L)=(100,0.6,4), (400,0.2,4). Thevertical closely-spaced dotted lineindicates

the true parameter value |, ., =-1/ (8m) . Thetrueinterva isderived like (5.3) or (5.4) as
(1
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where t y denotesthe 100v % quantile of ED. Both estimates (5.3) and (5.4) include the true
valuein all four figures. In Figures 24 and 26, we observe that they are of similar length, though
(5.3) istypically biased to the right and it does not cover the left part of the "true” interval, while
(5.4) covers aimost the whole true interval. In Figures 25 and 27, we observe that (5.3) clearly
overestimates (5.5), while (5.4) performs satisfactorily. When (n, h, L)=(100, 0.6, 4), N is biased
to the left (Figure 9) and when (n, h, L)=(400, 0.2, 4), it has larger variance than ED (Figure 15)
so that (5.3) estimates the confidenceinterval as described. Our experiment demonstratesthat the
Cornish-Fisher expansion can produce better interval estimates than N.

We proposed optimal bandwidth choices which minimize the error of the normal
approximation in Section 4. (4.4), (4.6) with L=4 and x, described above yield the optimal
bandwidth as h=0.445 and 0.343 for n=100 and 400 respectively. ED with these values of h, as
well ash=0.2 and 0.6, iscompared in Figures 28 and 29 with N, which seemsto best approximate
ED with optimal h.

Asdiscussed in Section 4, Theorems 1 and 3 also imply that bias correction should have
the greatest influence in improving the second order properties of U when the minimum MSE

bandwidth is used. In view of Theorem 2 and Lemma 11, h *Lkl estimates the bias

~

o, V(EU-H) consistently and so o,'v:U-h"“k. is a biascorrected estimate of

1
o,'vii=-1/ (8mnc) . Table 2 shows the average estimates of o,'vi(U-H), h "%,
and o,'vi(U-f) -h*t %, for each nfrom 600 replications when L=4 and the (infeasible)
minimum MSE bandwidth choice of Powell and Stoker (1996) was used. The bandwidth was
calculated by meansof MonteCarlosimulationtobe h * =0.9048,0.8061 and 0.7128for n=100,
200, and 400 respectively. Weused b=1. 2h " inestimating %, . Comparingthefirstandthe
third column of Table 2, the bias-corrected estimate is seen to perform much better than the
uncorrected one, especially for n=400. Powell and Stoker (1996) also proposed a feasible
minimum-MSE  bandwidth hN* ,  which depends on two user-specified parameters
h, and © (see(4.35), (4.38), and (4.40) of Powell and Stoker (1996)). On the basis of our

calculations, though both absolutebias |E(h“-h ") | andMSE E(h *-h*)? wererelatively
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insensitive to h,, (while exhibiting some tendency to decrease in h,) , they were highly

sensitiveto t.

The Figures and Table 2 are not available in this electronic version.
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