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Abstract

A valid Edgeworth expansion is established for the limit distribution
of density-weighted semiparametric averaged derivative estimates
of single index models. The leading term that corrects the normal
limit varies in magnitude, depending on the choice of bandwidth
and kernel order. In general this term has order larger than the n -½

that prevails in standard parametric problems, but we find
circumstances in which it is O(n -½), thereby extending the
achievement of  an n -½ Berry-Essen bound in Robinson (1995). A
valid empirical Edgeworth expansion is also established. We also
provide theoretical and empirical Edgeworth expansions for a
studentized statistic, where the correction terms are different from
those for the unstudentized case. We report a Monte Carlo study
of finite sample performance.
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  1. INTRODUCTION

First-order large sample distribution theory of estimates of semiparametric econometric models

has been extensively studied. A major recent focus has concerned inference on the parametric

component, when the nonparametric curve is estimated by some method of smoothing, such as

kernels or nearest neighbours (see e.g. Manski (1984), Robinson (1987), Powell, Stock and Stoker

(1989), Newey (1990)). In some such cases, estimates actually achieve the first order efficiency

of optimal ones based on a fully parametric model, and more generally they are asymptotically

normal and achieve the same rate of convergence as parametric estimates, namely being -n
1

2

consistent, where is sample size.n

There is no reason to suppose that these correspondences even approximately occur in

small or moderate sample sizes. Indeed the smoothed nonparametric estimates involved in the

semiparametric estimation converge more slowly than which could reasonably be expectedn
1

2 ,

to affect finite sample performance, and indeed many Monte Carlo studies have demonstrated a

sensitivity to the precise implementation of the nonparametric estimates. Analytic study of the

finite-sample distribution theory for semiparametric estimates seems mathematically intractable,

and indeed the precise distributional assumptions which such a theory would require are

incompatible with the ethos of semiparametric inference.

On the other hand, higher-order asymptotic theory, which also has the potential to shed

light on finite-sample performance, seems feasible for semiparametric estimates, under acceptably

general conditions. Parametric estimates typically enjoy a Berry-Esseen bound of order (seen
&

1

2

e.g. Pfanzagl (1971)), and Nagar (see e.g. Nagar (1959)) and Edgeworth  (see e.g. Sargan and

Mikhail (1971)) expansions in powers of Due to the nonparametric smoothing, then
&

1

2 .

semiparametric estimates might be expected to have a larger Berry-Esseen bound, and correction

term of order greater than If so, the semiparametric estimates are inferior to parametricn
&

1

2 .

ones in the sense that their distribution converges to the normal limit more slowly, while the

Bartlett corrections advanced in the parametric literature will be unsuccessful and bootstrap
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replications (e.g. Hall (1992)) would not provide the usual second-order correctness.

Some recent papers have investigated higher-order properties of semiparametric estimates.

The Berry-Esseen bound for averaged derivative estimates of semiparametric index models was

derived by Robinson (1995). He found that while in general the bound is larger than itn
&

1

2 ,

is nevertheless possible to implement the estimate, by appropriate choice of smoothing or

bandwidth number and of kernel order, to achieve the bound, opening up the possibility thatn
&

1

2

some semiparametric estimates can rival the higher-order and bootstrap properties of parametric

estimates. Nagar expansions were developed by Linton (1995, 1996b), for estimates of the

semiparametric partly linear model and of the linear regression model with disturbance

heteroscedasticity of unknown form. Linton (1995, 1996b) found that the leading terms are of

order greater than and showed how their contribution might be minimized by appropriaten
&

1

2

choice of bandwidth. In another paper, Linton (1996a) established valid Nagar and Edgeworth

expansions for a wide class of semiparametric estimates. Making assumptions of a high-level type,

including that the nonparametric estimate converges suitably fast, Linton (1996a) showed that the

nonparametric estimation has no effect on expansions to order and indicated that hisn &1 ,

assumptions can be satisfied by a version of the partly linear model as well as in models where

no smoothing is involved.

The present paper develops a valid Edgeworth expansion for semiparametric density-

weighted averaged derivative estimates of semiparametric index models. Such estimates  were

shown to be - consistent and asymptotically normal for independent and identicallyn
1

2

distributed (iid) observations by Powell, Stock and Stoker (1989) and for weakly dependent

observations by Robinson (1989), while Cheng and Robinson (1994) found that a non-normal

limit could pertain in the event of some long range dependence. The single index model includes

a number of practically important special cases, such as probit, Tobit and Box-Cox and other

transformation models, and averaged derivative estimation has proved popular. However, as in

the Berry-Esseen theory of Robinson (1995), density-weighted averaged derivatives are chosen

for study in large part by virtue of their algebraic simplicity relative to the bulk of other

semiparametric estimates; even in this case the details of higher-order theory are complicated, and
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they would be more so in others, such as in ones employing trimming to handle the effects of

stochastic denominators, where we are unable to say whether similar qualitative conclusions to

ours can be reached.

Our work differs significantly from the Edgeworth theory in the aforementioned Linton

(1996a) reference. Averaged derivatives are not among the illustrations Linton employs, and in

fact do not in general satisfy his orthogonality condition B4(2). Whereas Linton employs a fixed

design (as in Linton (1995, 1996b)) we do not condition on our stochastic explanatory variables,

as in the bulk of first-order theory for semiparametric econometric estimates, including that for

averaged derivatives, such as in the Berry-Esseen theory of Robinson (1995). Unlike Linton

(1996a) we do not achieve an expansion to order but rather focus on the extent to whichn &1 ,

an term may be dominated by other terms. These latter involve the bandwidth, such thatn
&

1

2

the second term in the Edgeworth expansion varies with respect to the choice of bandwidth, which

is suppressed in the treatment of Linton (1996a),  due  to  his assumption of  better - than -

consistency  of  the  nonparametric estimates, which our conditions do not necessarilyn
1

4 �

satisfy. We provide a valid empirical Edgeworth expansion for practical use. Linton’s paper does

not overlap with our detailed treatment of a different and more specialized problem, under

primitive conditions. 

Since our estimate is of U-statistic form, our work can also be compared with that on

Edgeworth expansions of U-statistics in the mathematical statistics literature (see Callaert, Janssen

and Veraverbeke (1980), Bickel, Götze and van Zwet (1986), and a recent treatment of more

general symmetric statistics due to Bentkus, Götze and van Zwet (1997)). However the

dependence of our U-statistic "kernel" on the bandwidth, and thence on sample size, prevents us

from applying the results of these authors, and while our proofs sometimes employ similar

techniques to those in the first two of these papers, our work can be seen more as an extension of

the treatment of averaged derivatives in Robinson (1995), a number of whose intermediate results

we use or extend. As in Robinson (1995), we overcome a serious bias problem by resorting to

higher-order kernels (in the nonparametric estimation). Though our conclusions are substantially

stronger than those of Robinson (1995), our conditions (for the theoretical Edgeworth expansion)
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do not seem to be, with the notable but predictable exception of the addition of a Cramér

condition.

The following section describes the single index model, the averaged derivative estimate

and theoretical and empirical Edgeworth expansions for the estimate normalized by its asymptotic

variance matrix, with regularity conditions for validity. Section 3 proposes a jackknife estimate

of the asymptotic variance matrix and provides valid Edgeworth expansions when the averaged

derivative statistic is studentized by this variance estimate. Section 4 discusses special cases

covered by the Edgeworth expansion in Section 3 and, based on this, derives an optimal

bandwidth choice which minimizes the normal approximation error, and a data-dependent

approximation to this for practical use. The proofs of Theorems in Section 2, along with a number

of technical lemmas, are left to appendices, the substantial extra details needed to complete the

proofs of Theorems 3 and 4 appearing in a companion paper, Nishiyama and Robinson (1998).

Section 5 reports the results of a Monte Carlo study of finite sample performance based on a Tobit

model. 

2. EDGEWORTH EXPANSIONS :  UNSTUDENTIZED CASE

For a variate and a scalar variate we suppose that the regressiond×1 X Y ,

function is known to have single index formg(X )� E(Y�X )

(2.1) ,g(X ) � G ( X )

for some and some column vector denoting transposition. For example, lettingG : R� R ,

V be a scalar variate independent of X and with distribution function F , and the indicator1(� )

function, if or  or, for some increasingY � 1( X � V > 0) Y � ( X � V ) 1( X � V > 0)

f u n c t i o n  t , ,  w e  h a v e  ( 2 . 1 )  w i t h  r e s p e c t i v e l yt(Y ) � X � V

andG(u)�1�F(�u), G(u)�u{1�F(u)}��vdF(v) G(u)��t &1(u�v)dF(v) .

In the first case we have respectively the probit or logit model when is normal or logistic, inV

the second the Tobit and in the last, various transformation models arise on parameterising  F and
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t . Then can be estimated consistently and asymptotically normally and efficiently byn
1

2 �

maximum likelihood. If has been misspecified, such parametric approaches in general lead toF

inconsistent estimates. Regarding F, and thus G, as nonparametric, can be identified only up

to scale, for example, by

(2.2) ,µ̄ �
def

�E{g )(X )f(X )} � c

where is the density of the prime denotes differentiationc � �E{G )( X )f(X )} , f X ,

and the final equality in (2.2) follows from the chain rule. On the other hand, under conditions

imposed below, integration by parts gives

µ̄ � 2E{g(X )f )(X )} � 2E{Y f )(X )}

which can be estimated by the density-weighted averaged derivative statistic

U �
n
2

&1�
n&1

i'1
�
n

j'i%1
Uij ,

given the sample from where(Xi,Yi), i�1,��� ,n (X ,Y) ,

,Uij � (Yi�Yj)K
)

ij , K )

ij � h
&d&1K )(

Xi&Xj

h
)

K is even, differentiable and integrates to one and converges to zero: R d� R h>0

as n� � .

       For a function writek:R d� R, k�k(X),k )�k )(X),k ))� k ))(X),k )))� k )))(X)

where

     k )(x)� � k(x)/� x,k ))(x)� �2k(x)/� x� x ,k )))(x)�� vec(k ))(x))/� x ,

and define q � E(Y 2�X ), r � E(Y 3�X ), s � q� g 2 , µ�µ(X,Y )�Y f )�e ), e�fg,

.a�g )f�µ̄, a )�g ))f�g )f ) , �4E(µ � µ̄)(µ � µ̄)

We introduce the following assumptions.

(i)  .E�Y�3 < �

(ii) is finite and positive definite.

(iii) The underlying measure of can be written as , where  and are(X ,Y ) µX×µY µX µY

Lebesgue measure on and respectively. are iid observations on .R d R (Xi,Yi) (X ,Y )

(iv)  f is (L+1) times differentiable, and f and its first (L+1) derivatives are bounded, for 2L>d+2.

(v) is (L+1) times differentiable, and and its first (L+1) derivatives are bounded. g e
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(vi) is twice differentiable and and areq q ), q )), g ), g )), g ))), E(�Y�3 � X )f, qf )

bounded.

(vii) and vanish on the boundaries of their convex (possibly infinite)f, gf, g ) f, qf

 supports.

(viii) satisfies is differentiable,K(u) K(u)�K(�u) ,

,�R d
{(1��u�L)�K(u)���K )(u)�}du � sup

u R d

�K )(u)� < �

and for the same L as in (iv) and (v),

�R d
u
l1
1 ��� u

ld
d K(u)du

� 1, if l1�����ld�0
� 0, if 0<l1�����ld<L
� 0, if l1�����ld�L .

(ix) as .(logn)9

nhd%2
� nh 2L � 0 n� �

(x)    For a vector ,d×1

,sup
: '1

limsup
*t*6 4

�E exp[{it2 &1 (µ� µ̄)}]� < 1

where .2
�

Assumptions (i)-(iv) and (viii) are identical to corresponding ones of Robinson (1995),

which are discussed there, Assumption (viii) referring to a higher-order kernel K; such kernels

have a long history in bias-reduction of nonparametric estimates, were used by Robinson (1988)

and subsequent authors to achieve - consistent semiparametric estimation, and by Robinsonn

(1995) to control the Berry-Esseen bound of averaged derivative estimates. Assumptions (v)-(vii)

and (ix) somewhat strengthen corresponding ones of Robinson (1995), and Assumption (x) is a

Cramér condition (see e.g. Bhattacharya and Rao (1976)) (note that is bounded away from2

zero under (ii)). In their study of ordinary U-statistics and symmetric statistics, Callaert, Janssen

and Veraverbeke (1986) and Bentkus, Götze and van Zwet (1997) employ more stringent

conditions of Cramér type; however in the context of their Edgeworth expansion in powers

of the former authors establish an expansion to order (withn
&

1

2 , n &1

remainder while the latter authors expand to  with remainder.  Ouro(n &1)) n
&

1

2 O (n &1)

expansion is to order say where  is a sum of plus other terms, which may begn , gn n
&

1

2
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of bigger or smaller order than  depending on the bandwidth h, with remainder term thatn
&

1

2

is only shown to be  The factor in Assumption (ix) is due to the fact that weo(gn) .

consider only expansions for a single linear combination of the vector averaged derivative statistic

U (and a studentized version of this). The development of full multivariate expansions would

require further work (we cannot appeal to the Cramèr-Wold device). Our present set-up allows

higher-order inference on individual elements of (up to scale), which is of practical importance

in itself, as well as on arbitrary single linear combinations of .

Define further

, ,Z � n 1/2 &1 (U � µ̄) F(z) � P(Z � z)

(2.3) ,F
-

(z) � (z)� (z) n 1/2h L
1 �

2

nhd%2
z �

4( 3�3 4)

3n 1/2
(z 2�1)

where is real-valued, and are respectively the distribution and density function of az

standard normal variate, and writing

,
(l1,@@@ ,ld) � �������

�(l1%@@@ %ld)

� x
l1
1 ��� � x

ld
d

(x1,@@@ ,xd) 'X

(2.4) ,1 �
2(�1)L &1

L! � ����
0# l1,@@@,ld# L
l1%@@@%ld'L

�
d

i'1
u
li
i K(u)du E

(l1,@@@,ld) f ) g

,   2 � 2 &2

� K )(u) 2du E(sf)

3 �
&3E (r�3sg�g 3)( f ))3�3s( f ))2( a)�( a)3

4 � �
&3E fs( f ))( a ) )�f( f ))( s ))( a)

,�fs( a)( f )) )�f( g ))( a)2

where the are all finite under our assumptions. The nature and role of the are discussedi i

in the following section.

THEOREM 1 :   Under Assumptions (i)-(x), as n� � ,

.sup
: '1

sup
z R

�F(z)� F
-

(z)� � o(n &1/2 � n &1h &d&2 � n 1/2h L)

We call a theoretical Edgeworth expansion of Theorem 1 establishingF
-

(z) F(z) ,

its validity. We can derive an empirical Edgeworth expansion by replacing the  population ini
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(2.3) by strongly consistent estimates

   ,˜1 �
2(�1)Lˆ&1

L! � ����
0# l1,@@@ ,ld# L
l1%@@@%ld'L

�
d

i'1
u
li
i K(u)du

1
n�

n

i'1

(l1,@@@,ld) f
- )

(Xi) Yi

    ,    ,˜2 � ˆ&2
n
2

&1�
n&1

i'1
�
n

j'i%1
hd%2Wij

- 2

˜3 �
ˆ&3

n �
n

i'1
Vi
- 3

    ,   ˜4 �
ˆ&3

n(n�1)�
n

i'1
�
n

jú i
UijVi

-

Vj
-

where ,ˆ2 �
^

,
^

�
4

(n�1)(n�2)2
�
n

i'1
�
n

jú i
(Uij�U ) �

n

kú i
(Uik�U )

and for positive and a functionb H : R d� R

,f
-

(Xi) �
1

(n�1)b d �
n

jú i
H(

Xi&Xj

b
)

(2.5) ,Ui
-

�
1
n�1 �

n

jú i
Uij

, .Vi
-

� (Ui
-

� U ) Wij
-

� (Uij � Ui
-

� Uj
-

� U )

is a jackknife estimate of .  It may be observed that, notwithstanding the form
^

of and and do not entail explicit estimation of derivatives. 3 4 , ˜3 ˜4

To establish validity of our empirical Edgeworth expansion we require some strengthening

of some of Assumptions (i)-(x), and additional assumptions.

(i)’  .E(Y 6) < �

(iv)’  f is (L+2) times differentiable, and f and its first (L+2) derivatives are bounded, where

2L>d+2. 

(v)’ is (L+2) times differentiable, and and its first (L+2) derivatives are bounded. g e

(ix)’ as .(logn)9

nhd%3
� nh 2L � 0 n� �

(xi) is even and (L+1) times differentiable,H(u)

�R d
H(u)du � 1

and

�R d
� (l1,@@@,ld)H )(u)�du � sup

u R d

� (l1,@@@,ld)H )(u)� < �
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for all integers satisfying .l1,��� ,ld 0� l1� ��� �ld� L

(xii)   and as .b � 0
(logn)2

nbd%2%2L
� O (1) n � �

Notice that need only be a second-order kernel, whereas has to be a higher-orderH K

one unless It is possible to choose with Assumptions (viii) and (xi)d�1 . H(u)�K(u)

simultaneously satisfied. However, in comparing (xii) with (ix) it seems that might in generalb

be chosen larger than  h, while there is a case for avoiding the use of higher-order kernels when

possible.  

Define

(2.6) .F
.

(z) � (z)� (z) n 1/2h L ˜1 �
˜2

nhd%2
z �

4(˜3�3˜4)

3n 1/2
(z 2�1)

THEOREM 2 :   Under Assumptions (i)’, (ii), (iii), (iv)’, (v)’, (vi)-(viii), (ix)’ and (x)-(xii),

   almost surely.sup
: '1

sup
z R

�F(z)� F
.

(z)� � o(n &1/2 � n &1h &d&2 � n 1/2h L)

3. EDGEWORTH EXPANSIONS :  STUDENTIZED CASE

Theorems 1 and 2 concern Z which involves unknown through so that they fall2

short of being fully operational. The same criticism can be levelled against much of the

econometric and statistical literature on Edgeworth expansions, but we nevertheless wish to

develop the previous discussion by considering the studentized statistic Z
^

�

We first validly approximaten 1/2ˆ&1 (U� µ̄) .

F
^

(z) � P(Z
^

� z)

by the theoretical Edgeworth expansion

  .F %(z) � (z) � (z) n 1/2h L
1 �

2

nhd%2
z �

4

3n 1/2
(2z 2�1) 3 � 3(z

2�1) 4

THEOREM 3 :   Under Assumptions (i)’, (ii)-(x),  as n� � ,

.sup
: '1

sup
z R

�F
^

(z) � F %(z)� � o(n &1/2�n &1h &d&2�n 1/2h L)
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The correction terms in are of the same orders as those in the unstudentized caseF %(z)

(see Theorem 1), though their coefficients differ. 

The are unknown, but a feasible, empirical Edgeworth expansion isi

   .F %

^

(z) � (z) � (z) n 1/2h L˜1 �
˜2

nhd%2
z �

4

3n 1/2
(2z 2�1)˜3 � 3(z

2�1)˜4

THEOREM 4 :  Under Assumptions (i)’, (ii), (iii), (iv)’, (v)’, (vi)-(viii), (ix)’ and (x)-(xii),

   almost surely.sup
: '1

sup
z R

�F
^

(z)� F %

^

(z)� � o(n &1/2 � n &1h &d&2 � n 1/2h L)

The conditions in Theorem 3 strengthen those in Theorem 1 only with respect to the

moment condition on Y , while Theorem 2’s conditions are identical to Theorem 4’s. The proofs

of Theorems 3 and 4 entail considerable additional work beyond that in the proofs of Theorems

1 and 2 which are already lengthy and technical,  so we have instead reported the former proofs

in Nishiyama and Robinson (1998). However in the following section we analyze special cases

of Theorem 3 and thereby deduce a novel form of optimal h, which can be approximated for

practical use, and we include studentized statistics along with unstudentized ones, as well as our

bandwidth proposal, in the Monte Carlo study of Section 5.

4. SPECIAL CASES AND BANDWIDTH CHOICE

Theorem 3 covers a number of situations, depending on the choice of kernel order L,

relative to dimension d, and on the rate of decay of the bandwidth h. We classify these according

to L and then h. Let be finite positive constants. Ci, i�1,2,3,4,

I. .d�2
2

< L < 2(d�2)

  (a)  If ,n 3h 2(L%d%2) � 0

.F
^

(z) � (z) �
2z (z)

nhd%2
{1 � o(1)}

  (b) If ,h 	 C1n
&

3

2(L%d%2)

.F
^

(z) � (z) � (C L
1 1 �

2z

Cd%2
1

) (z)n
&2L%d%2

2(L%d%2){1 � o(1)}
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  (c)  If ,n 3h 2(L%d%2) � �

.F
^

(z) � (z) � 1 (z)n 1/2h L{1 � o(1)}

II. .L � 2(d�2)

  (a)  If ,n 1/2hd%2 � 0

.F
^

(z) � (z) �
2z (z)

nhd%2
{1 � o(1)}

  (b) If ,h 	 C2n
&

1

2(d%2)

F
^

(z) � (z) � C L
2 1 �

2z

Cd%2
2

�
4{(2z 2�1) 3�3(z

2�1) 4}

3
(z)

n 1/2
{1 � o(1)}

  (c)  If ,n 1/2hd%2 � �

.F
^

(z) � (z) � 1 (z)n 1/2h L{1 � o(1)}

III. .L > 2(d�2)

  (a)  If ,nhL �
1

n 1/2hd%2
� 0

.F
^

(z) � (z) � 4{(2z 2�1) 3�3(z
2�1) 4}

(z)

3n 1/2
{1 � o(1)}

  (b) If ,h 	 C3n
&

1

L

.F
^

(z) � (z) � C L
3 1 �

4{(2z 2�1) 3�3(z
2�1) 4}

3
(z)

n 1/2
{1 � o(1)}

  (c) If ,h 	 C4n
&

1

2(d%2)

.F
^

(z) � (z) �
2z

Cd%2
4

�
4{(2z 2�1) 3�3(z

2�1) 4}

3
(z)

n 1/2
{1 � o(1)}

  (d) If ,n 1/2hd%2 � 0

.F
^

(z) � (z) �
2z (z)

nhd%2
{1 � o(1)}

  (e) If ,nh L � �

.F
^

(z) � (z) � 1 (z)n 1/2h L{1 � o(1)}

In each of the seven cases I(a)-(c), II(a), II(c), III(d), and III(e), the correction term in the

expansion is of larger order than In the other four cases it is of exact ordern &1/2 .

but of these the cases I(b), II(b), III(b), and III(c), which involve a knife-edge choicen &1/2 ,

of bandwidth, include or (which depend on the kernel ) or both in the correction1 2 K

term. It is case III(a) which corresponds in detail to the "parametric" situation in the sense that K

is not involved, and and are the limits of and (see Appendix3 4 E(V 3
1 ) E(W12V1V2)
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A for the definitions of and ). The term involving and is analogous toV1 W12 3 4

the correction term in the Edgeworth expansion of studentized ordinary U-statistics (seen &1/2

Helmers (1991)). and are related to the third moment of U. and are3 4 1 2

respectively limits of and (see Lemmas 11 and 12) so&1 (EU � µ̄)/h L h d%2E(W 2
12)

that and are related to first and second moments of U. In standard parametric higher-1 2

order theory and do not arise since unbiased statistics with variance are1 2 O (n &1)

typically considered, not, as here, We can also derive  analogous  expressionsO (n &1h &d&2) .

based on  Theorem 1.  For 

example, for (L, d, h) satisfying III(a), we have

(4.1) .F(z) � (z) �
4( 3�3 4)

3n 1/2
(z 2�1) (z){1 � o (1)}

For U and related statistics, Härdle, Hart, Marron, and Tsybakov (1992), Härdle and

Tsybakov (1993), and Powell and Stoker (1996) derived that are optimal in the sense ofh

asymptotically minimizing leading terms in the mean squared error (MSE). These optimal h are

of form

(4.2)    h ( � C ( n &2/(2L%d%2) , 0 < C ( < � ,

where we are in one of the cases I(c), II(c) or III(e), in each of which the leading correction term

is so that bias correction has the greatest impact in improving the quality� 1 (z)n 1/2h L ,

of the normal approximation. However, the conventional approach of relating choice of  h to MSE

is not directed towards producing a version of the statistic which, in some sense, makes the normal

approximation especially good, and in the context of the present paper the latter goal is relevant.

Under (4.2)

(4.3)    .F(z) � (z) � C ( L
1 (z)n

&

2L&d&2

2(2L%d%2){1 � o(1)}

Here, the order of the correction term can be as large as when  (seen &1/2(2d%5) L�(d�3)/2

Assumption (iv)) and tends to only as so (4.2) is certainly not optimal in then &1/2 L/d� � ,

sense of minimizing the error in the normal approximation. The which minimizes theh

integrated MSE of nonparametric derivative-of-density estimates is of form h % �

for but this is even larger than (4.2) and thus provides anC % n &1/(2L%d%2) , 0 < C % < � ,
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even larger correction term than (4.3). Robinson (1995) calculated the rate of decay of thath

minimizes the order of the normal approximation error. This exceeds due ton &1/2

choosing and the more detailed information provided by our EdgeworthL<2(d�2) ,

expansion allows us to discuss the choice of  h itself. In particular, the optimal rate of here ish

that in I(b) as described by Robinson (1995), but we would like to know how to choose inC1

(4.4) .h � C1 n
&

3

2(L%d%2)

One possibility is to minimize the maximal deviation from the normal approximation, by

.C A
1 � argmin

C
max
z R

�(C L
1 �

2z

Cd%2
) (z)�

Because this equals2 > 0

argmin
C

max
z R

(C L� 1� �
2z

Cd%2
) (z)

,� argmin
C

{C L� 1� �
2Z

((C )

Cd%2
} (Z ((C ))

where

.Z ((C ) � Cd%2{(C 2L 2
1 � 4

2
2/C

2d%4)1/2 � C L� 1�}/2 2

Using the envelope theorem, the first order condition of minimization with respect to C is

(4.5) .LCL&1� 1��
(d�2) 2

Cd%3
Z ((C ) (Z ((C )) � 0

Solving (4.5), we derive

(4.6) C A
1 �

(d�2)2 2
2

4L(L�d�2) 2
1

1

2(L%d%2)

@

The second order condition is easily verified using (4.5) and Though (4.6) isZ (

)

(C ) < 0 .

infeasible  since it involves  unknown and we  can  replace and by  their1 2 , 1 2

estimates and in Section 2 to give the feasible version˜1 ˜2

(4.7) C A
1

-

�
(d�2)2˜22

4L(L�d�2)˜21

1

2(L%d%2)

@

The estimates and introduced to provide empirical Edgeworth expansions (Theorems˜1 ˜2 ,

2 and 4), are consistent under the conditions stated there, so that is consistent for theC A
1

-

optimal .C A
1

One could consider variants of this idea for bandwidth choice, for example maximizing
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with respect to z over some desired proper subset of R ,  such as  for some a>0,{z:�z�>a}

perhaps to stress one of the usual critical regions. However, the simple forms (4.6) and (4.7) seem

appealing. Hall and Sheather (1988) (see also Hall, 1992, p.321) used an Edgeworth expansion

for studentized sample quantiles, especially the median, to determine a choice of the bandwidth

employed in the studentization. In their problem, the basic - consistent statistic of interest,n 1/2

the sample quantile, does not involve a bandwidth. In our case, on the other hand, though we also

consider studentization involving a bandwidth, it is the bandwidth in the basic statistic of interest,

the averaged derivative, that is to be chosen using the Edgeworth expansion. Moreover, unlike us,

Hall and Sheather (1988) did not maximize over the argument z, but simply balanced the mean

and variance terms of the expansion for given z, so that their data-dependent bandwidth is z-

dependent (and thus a ’local’ bandwidth). It might be anticipated that the step of maximizing over

z, which is incorporated in our procedure, would lead to a more complicated, perhaps only

implicitly-defined, formula for the optimal C, and the emergence nevertheless of the simple closed

form (4.6) is of some interest. We believe our ’global’ approach could be employed in choosing

the bandwidth in other semiparametric and nonparametric problems involving smoothing.

   5. A MONTE CARLO STUDY

We report results from a Monte Carlo study for the Tobit model

where is bivariate. We tookYi � ( Xi � i) I( Xi � i
 0) Xi�(X1i,X2i)

so  tha t  and(Xi, i)	 N(0,I3) g(x) � x{1� (� x)} � (� x) µ̄ �

We took There is no closed form formula for� /(8 ) . �(1,1)) . , 1, 2, 3,

, the first being needed in the expansions of Theorems 1 and 2, and the last four in the4

expansions of  Theorems 1 and 3,   so  they  were  calculated  by  simulation,  with 100,000

replications,   to  be �
0.00887 0.00458

0.00458 0.00887
, 1�0.397, 2�1.724, 3��0.144



16

and  for example   where4��0.266 , � 10&5
105

i'1
4{µ(Xi,Yi)� µ̄}{µ(Xi,Yi)� µ̄}

are generated independently and identically following the above(Xi,Yi), i�1,...,10
5

Tobit model.  We employed three values of L,  L=4, 8 and 10 which respectively correspond to

the cases I, II and III in Section 4 (and easily satisfy assumptions (iv) and (v)), using normal

density-based multiplicative L-th order bivariate kernel functions proposed in Robinson (1988),

,  whereK(u1,u2) � KL(u1)KL(u2)

,KL(u) � �
(L&2)/2

j'0
cju

2j (u)

such that

(5.1) ,�
(L&2)/2

j'0
cjm 2(i% j) � i0, i�0,1,��� ,(L�2)/2

,m 2j � �u 2j (u)du

and is Kronecker’s delta. The values of calculated from these simultaneous equationsi0 cj

are in Table 1. We chose in estimation of in theH(u1,u2) � (u1) (u2) 1

         TABLE 1

L-th order kernel functions.

     L                           c0 c1 c2 c3 c4

                       4       1.5      -0.5                      � � �

     8       2.185   -2.185   0.4375   -0.02083    �

                      10      1.924   -1.347   0.1230     0.00698   -0.000489

empirical Edgeworth expansions. We considered inference on the two elements of µ̄

individually, but since the results for these are very similar we report them for the first only.

Figures 1-7 compare approximations to the distribution of the unstudentized

statistic where and are the first elements of and(U(1)� µ̄(1))/ , U(1) µ̄(1) U , µ̄ ,

We used  h = 1, 0.8, 0.6 and 0.4 for n=100, and h=0.8, 0.6 and 0.4 for n=400,2�0.00887 .

with 600 replications, and we set b=1.2h following the discussion in Section 2. We report results

for only L=4 because the results for L=8 and 10 are qualitatively much the same while exhibiting
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less bias. The solid line is the empirical distribution function of Z , while the dotted, broken, and

broken-and-dotted lines are the standard normal distribution function , the empirical

Edgeworth expansion (Theorem 2), and the theoretical Edgeworth expansion (Theorem 1)

respectively. The empirical Edgeworth correction results from averaging  across 600˜i

replications for each sample size, bandwidth choice and kernel order. The two empirical

Edgeworth expansions in each Figure involve respectively all three correction terms (shorter

broken line) and one correction term of order  (longer broken line) in (2.6), whichn &1/2

corresponds to the feasible version of (4.1). We examine the "one-term" case because this is the

one we would hope to be able to recommend, since it involves just the "parametric"

correction and, depending only on and but not on and is free of K.n &1/2
3 4 1 2 ,

We first compare the "three-term" empirical Edgeworth expansion (EE3) with the

empirical distribution (ED) and the normal approximation (N), finding a range of  n and h where

EE3 well approximates ED, and better than N, for example, see Figures 1, 2, 3, and 4. It emerges

that  h=1.0 (Figure 1) is too large in that neither N nor EE3 performs well, but when h=0.8 or 0.6

(Figures 2, 3) EE3 is satisfactory, and better than N, whereas when h=0.4 (Figure 4), the opposite

outcome is observed. It is not surprising that N sometimes outperforms EE3 since n is finite (see

Hall (1992), p.45) and the are subject to sampling error. We also considered, but have not˜i

included, the case h=0.1 with n=100, where the variance in the empirical distribution is very large,

and both N and EE3 performed poorly. Neither N nor EE3 could be expected to work well for

sufficiently large or small h. Comparing Figure 6 with Figures 2, 3, say, EE3 appears to improve

with increasing n.

 It might then come as something as a surprise that in most cases the figures reveal that EE3

approximates ED better than the "three-term" theoretical Edgeworth expansion (TE3). A possible

explanation is as follows.  The proof of Theorem 1 (see (A.13)) implies that an alternative

theoretical Edgeworth approximation to (2.3) is

(5.2) .(z)� (z) n 1/2 &1 (EU� µ̄)�
E(W 2

12)

n
z�

4E(v 3
1 )�12E(W12v1v2)

3n 1/2
(z 2�1)
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The expectations are untidy, depending on so the proof goes on to obtain the simpler and moren

elegant involving the n-free However, in comparing (5.2) with the  EE3F
-

(z) , i . ˜i

might seem to most directly estimate (5.2), which might be a more accurate approximation to ED

than TE3, (2.3).  

Comparing shorter broken and longer broken lines, the "one-term" empirical Edgeworth

expansion (EE1) is better for some values of  h depending on  n than EE3, in particular when

(n,h)=(100,0.6) and (400,0.4) (Figures 3 and 7). These are the cases of relatively small h, so that

the bias is small but is relatively large, namely the correction is negligible butn &1h &d&2 ˜1

the one tends to be too large, having the effect of pushing the curve up and down around -1˜2

and 1 respectively. It is clear from the discussion in Section 4 that one expects the choice of  h to

be especially crucial where "one-term" expansions are concerned.

Figures 8-23 compare approximations to the distribution of studentized statistics

 where is the leading element of based on Theorem 4.  Un 1/2(U(1)� µ̄(1))/ˆ , ˆ2
^

,

, and involved in Figures 8-15, 16-19, and 20-23 used respectively kernel functions of˜i ,
^

orders L=4, 8, and 10; see (5.1) and Table 1. We took h=0.2, 0.4, 0.6, 0.8 for each of n=100, 400

with 600 replications similarly to the unstudentized case above. Moreover, for L=8, 10 we include

only results for  n=100  because these for n=400 are very similar. Because the theoretical

Edgeworth expansions (Theorem 3) performed less well than in the unstudentized cases featured

in Figures 1-7, and because they are in any case of less practical interest than empirical

expansions, we exclude the former cases from Figures 8-23 for ease of reading.

Making broad comparisons across the three groups of figures, 8-15, 16-19, and 20-23, we

find that bias tends to vary inversely with L, keeping n and h fixed. This is consistent with the

theoretical (asymptotic) bias-reducing properties motivating higher-order kernels, but Monte Carlo

studies of semiparametric estimates employing such kernels (see e.g. Robinson (1988)) have

found that these properties are not necessarily mirrored in finite samples, so these results of ours

are rather pleasing. Generally in Figures 8-23, we observe that EE3  approximates ED very well

except for largish h, see e.g. Figure 12, where N also performs poorly. Comparing Figures 8-15

with Figures 1-7 for the unstudentized statistic (with L=4 throughout), EE3 is seen to work better
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for the studentized statistic. The reason may be similar to the one we offered for the apparent

superiority of EE3 over TE3 in the unstudentized case, namely, can better normalizeVar(U1)

U than and in view of its construction, more directly estimate When,
^

, Var(U1) .

L=10, the "parametric" case III(a) is justified theoretically, and EE1 performs satisfactorily for

certain (n,h), in particular for (n,h)= (100,0.8) (Figure 20). 

We next consider interval estimation.   A confidence interval based on100(1� )%

N is

(5.3) ,U(1)�
ˆ

n 1/2
z

2

, U(1)�
ˆ

n 1/2
z

2

where satisfies We can correct this interval using Theorem 4.  Invertingz �
4

z
(z)dz � .

the empirical Edgeworth expansion there, we have the Cornish-Fisher expansion (see Hall (1992),

p.88),

     w � z � n 1/2h L˜1 �
˜2

nhd%2
z �

4

3n 1/2
{(2z 2

�1)˜3�3(z
2
�1)˜4}

     � o (n 1/2h L � n &1h &d&2 � n &1/2)

 ,� w̃ � o(n &1/2 � n 1/2h L � n &1h &d&2)

where is the quantile of the sampling distribution. Then the corrected intervalw 100 %

estimate is

(5.4) .U(1)�
ˆ

n 1/2
w̃1&

2

, U(1)�
ˆ

n 1/2
w̃

2

Note that in general so that (5.4) is not symmetric around the point estimatew̃1& /2� �w̃ /2

unlike (5.3). According to our interval estimation in the current Tobit example, thisU(1),

correction is supported when the Edgeworth expansion approximates well the empirical

distribution function, which is mostly the case for the studentized statistic. We report two typical

cases where the correction appears effective. One is when N fails to well approximate ED due to

the large bias of U, and the other is when has variance significantly less than unity. FiguresZ
^

24-27 show the "true" 80% and 90% confidence intervals derived from ED (solid line), the

corresponding interval estimates obtained from N, see (5.3) (dotted line) and from EE3, see (5.4)

(broken line) for (n,h,L)=(100,0.6,4), (400,0.2,4). The vertical closely-spaced dotted line indicates

the true parameter value The true interval is derived like (5.3) or (5.4) asµ̄(1)��1/(8 ) .
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(5.5) ,U(1) �
ˆ

n 1/2
t
1&

2

, U(1) �
ˆ

n 1/2
t

2

where denotes the quantile of ED. Both estimates (5.3) and (5.4) include the truet 100 %

value in all four figures. In Figures 24 and 26, we observe that they are of similar length, though

(5.3) is typically biased to the right and it does not cover the left part of the "true" interval, while

(5.4) covers almost the whole true interval. In Figures 25 and 27, we observe that (5.3) clearly

overestimates (5.5), while (5.4) performs satisfactorily. When (n, h, L)=(100, 0.6, 4), N is biased

to the left (Figure 9) and when (n, h, L)=(400, 0.2, 4), it has larger variance than ED (Figure 15)

so that (5.3) estimates the confidence interval as described. Our experiment demonstrates that the

Cornish-Fisher expansion can produce better interval estimates than N.

We proposed optimal bandwidth choices which minimize the error of the normal

approximation in Section 4. (4.4), (4.6) with L=4 and described above yield the optimali

bandwidth as  h=0.445 and 0.343 for n=100 and 400 respectively. ED with these values of  h, as

well as h=0.2 and 0.6, is compared in Figures 28 and 29 with N, which seems to best approximate

ED with optimal h.

As discussed in Section 4, Theorems 1 and 3 also imply that bias correction should have

the greatest influence in improving the second order properties of U when the minimum MSE

bandwidth is used. In view of Theorem 2 and Lemma 11, estimates the biash (L˜1

consistently and so is a bias-corrected estimate of&1 (EU � µ̄) &1 U � h (L˜1

Table 2 shows the average estimates of&1 µ̄��1/(8 ) . &1 (U� µ̄), h (L˜1,

and  for  each  n from 600 replications when L=4 and the (infeasible)&1 (U � µ̄) � h (L ˜1

minimum MSE bandwidth choice of Powell and Stoker (1996) was used. The bandwidth was

calculated by means of Monte Carlo simulation to be = 0.9048, 0.8061 and 0.7128 for n=100,h (

200, and 400 respectively. We used in estimating Comparing the first and theb�1.2h ( ˜1 .

third column of Table 2, the bias-corrected estimate is seen to perform much better than the

uncorrected one, especially for n=400. Powell and Stoker (1996) also proposed a feasible

minimum-MSE bandwidth ,  which depends on two user-specified parametersh (

-

and (see (4.35), (4.38), and (4.40) of Powell and Stoker (1996)). On the basis of ourh0

calculations, though both absolute bias and MSE were relatively�E(h (

-

�h ()� E(h (

-

�h ()2
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insensitive to (while exhibiting some tendency to decrease in they were highlyh0 h0) ,

sensitive to .

            

The Figures and Table 2 are not available in this electronic version.
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