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Nontechnical Summary

It should be such a small step, to go from knowing a little about whether
an economy grows fast or slow to knowing also a little about whether

the bulk of the world's wealth will shift from one group of countries
to another|from West to East, say. Simply populate the planet with

di�erent model economies, about each of which one understands a little,
and then apply that same understanding, magni�ed, to the entire cross

section of countries: something useful should pop out at the end.

The problem is, What if economies interact with each other in sub-

tle ways that one cannot have predicted, regardless of how much un-

derstanding one has obtained about how a single economy behaves in
isolation? Such insights are commonplace, when economists study strate-

gic behaviour between �rms or trading partners, peer-group e�ects be-
tween collections of workers or classes of students, and even network

externalities between products. It is only unusual to try and understand
the growth dynamics of groups of entire macroeconomies using the same

ideas.

The current paper makes one attempt at this. First, it documents

facts on the world's evolving distribution of incomes across countries. The
stylized features that arise from the study are (i) an emergent twin peaks

in the cross-country distribution; (ii) persistence; and, simultaneously,

(iii) mobility. It is natural to interpret these features more generally as
strati�cation and polarization in the cross-section of countries. These

features suggest that economies might, indeed, interact with each other
in ways di�erent from what a \representative economy" model might

predict. It is empirics like these that capture, say, the rise of a bloc of Far
East Asian economies over and above the original economic leaders, while
at the same time other parts of the globe continue to languish. These
facts put empirical 
esh on ideas about convergence clubs of countries,

immune from the usual statistical problems of sample selection.

Second, the paper develops a model of cross-sectional, cross-economy

interaction that generates endogenously patterns of \convergence-club"



dynamics, consistent with some (but not all) of the stylized facts noted

above. The dynamics in the model are driven by a tension, for each

economy, between the bene�ts of being part of a bloc of other economies,
and the bene�ts of going its own way.

Finally, guided informally by the theoretical model, the paper stud-
ies the role of speci�c explanatory factors|geographical location (who is

physically close to whom) and cross-country patterns of exchange (who
trades with whom)|in explaining observed patterns of cross-country in-

come distribution dynamics. These factors turn out to explain a large
part of those cross-section dynamics.
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1. Introduction

This paper describes some recent research on patterns of growth across countries:

the facts that this paper seeks to document and to explain are given in the stylized

features of Fig. 1.

Fig. 1 is a caricature that will inform my subsequent analysis. Below, I will

describe which aspects of this �gure have been established to be accurate, and

which remain conjecture. For the time being, however, it is useful simply to note

some features in the caricature.

The horizontal axis in Fig. 1 indexes time; the vertical axis, per capita incomes.

Fig. 1 records, for di�erent time points, (the densities corresponding to) cross-

country per capita income distributions. As drawn, the distribution at time t

shows most countries having a medium level per capita income; there are few that

are very rich, and few very poor.

Over time, cross-country income distributions 
uctuate: Fig. 1 makes explicit

the distribution again at t + s. In general, there is one such object for each time

period. Fig. 1, therefore, is like a time-series plot, except that instead of recording

the trajectory of a scalar or vector quantity|like GNP, money, or the price level|

the �gure comprises the trajectory of an entire distribution.

A �rst immediate question that pictures like Fig. 1 address is whether poor

countries are catching up with rich ones. That would happen if, for example, the

sequence of distributions collapses over time to a degenerate point limit. But in

general that need not occur, and there are other ways whereby the poor can catch

up with the rich|as illustrated, for instance, by the criss-crossing arrows.

Fig. 1, provocatively, shows the distribution at t + s to have a twin-peaks

property: there is a clustering together of the very rich, a clustering together of

the very poor, and a vanishing of the middle income class. By contrast, these

features were not present at the earlier time t: it therefore seems reasonable to call

Fig. 1 a picture of emerging twin peaks.

In this work, there is nothing special about there being precisely two peaks

or modes in the time t + s distribution: What is important instead is that such
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features have surfaced when previously they were absent. What also matters is

that these features have a natural interpretation in terms of polarization: those

portions of the underlying population of economies collecting in the di�erent peaks

may be said to be polarized, one group versus another. More generally, if more

than two peaks emerged, it might be natural to call the situation strati�cation.

With the underlying population being countries, the economic historian's notion

of convergence clubs|of countries catching up with one another but only within

particular subgroups (e.g., Baumol 1986)|is also apposite.

This paper concerns that body of research on cross-country economic growth

that attempts to re�ne empirically and to understand theoretically such emerging

twin-peaks properties.1 Such a focus might seem excessively narrow: it is useful,

therefore, to note how this work relates to other areas of research.

To study the dynamics of cross-section distributions of country incomes|as

given in Fig. 1|is to combine simultaneously elements of macroeconomic rea-

soning, microeconomic analysis, and econometric modelling. The researcher is

concerned with macroeconomic performance|measured in national income and

aggregate growth|but for a rich cross section of individual cross sectional units,

all potentially interacting with one another. Thus, macroeconomic theories of

growth are relevant, but so are microeconomic models of cross-sectional interac-

tion. Fig. 1 makes explicit that the success or failure of any one country makes

qualitative economic sense only in context: What does a 5% annual growth rate

mean|is it high or is it low|if no other economy grows at less than 10% per year?

Or if no other economy has ever grown at more than 1% per year?

Arrows drawn in Fig. 1 indicate a variety of intra-distribution dynamics. Some

countries rich at time t+ s had already been rich at time t; similarly, others poor

at t + s had already been poor at t. There is, therefore, persistence. However,

1 Even though I have just argued that interest should not be thus con�ned, I

will continue to use the phrase \emerging twin-peaks" for two reasons: one, it is
a convenient and evocative shorthand; and two, the cross-country data, discussed
below, do support the twin-peaks description.
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there is also churning ormobility: some of those rich at t+s had begun poor; some

of those poor at t + s had begun rich. From these and from the vanishing of the

middle-class between t and t + s, it is also natural to suppose a separating : some

groups of economies originally close together in the middle class have subsequently

separated, with some becoming much richer than others|even though they had

begun close together.

Fig. 1 thus contains a rich spectrum of dynamic behavior. Not only is the

global, external shape of the distribution evolving|with twin peaks emerging,

and strati�cation and polarization settling in|but also intra-distribution mobility

is simultaneously occurring. Some portions of the distribution display persistence

in rich and poor states, others show overtaking dynamics, and yet others a slowing-

down in growth so that they are themselves overtaken. Put di�erently, there are

both shape and mobility dynamics in the distributions in Fig. 1. An appropriate

econometric analysis should capture these. Moreover, researchers might be inter-

ested not just in modelling such features in the historical record: they might seek

also to project these measured tendencies forwards from the observed sample. In

Fig. 1 what if t + s is some time in the future? The econometric analysis should

provide a model that allows such calculations.

How does this generate new econometrics? Simply tracking the moments of

the cross-sectional distributions in Fig. 1 will typically shed no light on many

of the characteristics I have just described. Similarly uninformative, for Fig. 1,

would be giving extensive tabulations of the univariate time-series behavior of each

of the underlying cross-sectional units or indeed of documenting the multivariate

time-series characteristics of selected subsets of those cross-sectional units. Cross

sectional and panel data regressions, if all they do is capture the behavior of a

conditional average, will be altogether unrevealing for the dynamics of the entire

cross-section distribution.2 What a researcher needs to do is to analyze those

2 The statements in this paragraph should not be taken as intending anything
stronger than what they actually assert. They refer to the features of Fig. 1, no
more and no less.
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evolving distribution dynamics directly.

Formulating the problem of economic growth in the form of Fig. 1, draws an

equivalence between the analysis of growth and of distribution.3 It is not that

higher growth can cause or, alternatively, be driven by greater inequality, but

rather the two are considered simultaneously. Note, however, that the distribution

that is relevant here is the distribution of income across countries, not that within

a given economy. Thus, the problem considered in this study di�ers from the

classical set of questions prominently considered by Kuznets and subsequently

re�ned in Benabou (1996b), Galor and Zeira (1993), Persson and Tabellini (1994),

and many others.

From the perspective of economic growth empirics, the work described below

relates to research using convergence predictions to distinguish endogenous and

neoclassical growth. That literature is large, but helpfully summarized in Barro

and Sala-i-Martin (1995) and Sala-i-Martin (1996). However, some papers have

argued that that growth and convergence literature is uninformative for whether

poor countries are catching up with rich ones, and unrevealing in general for the

dynamics of the distribution of welfare across countries (e.g., Friedman 1992, Leung

and Quah 1996, Quah 1993a, b, 1996b, c, f).4 Such ambiguity, on the other hand,

cannot taint the analysis following from Fig. 1.

Finally, independent of macroeconomic analyses of aggregate growth, the

study of distributions and their dynamics has long been a central part of economic

analysis, not just of personal incomes (e.g., Atkinson 1995; Cowell, Jenkins, and

Litch�eld 1996; Durlauf 1996; Esteban and Ray 1994; Loury 1981; Schluter 1997;

and Shorrocks 1978; among others) but also of many other economic categories

including earnings, �rm and industry shares, regional economic performance, and

3 Bliss (1996) and Quah (1996b) have also taken this perspective, although
without the cross-sectional interaction that will �gure prominently below.

4 Other papers relevant to this debate include Ben-David (1994), Bernard
and Durlauf (1996), Canova and Marcet (1995), Desdoigts (1996), Durlauf and
Johnson (1995), Galor (1996), and Jones (1997).
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occupational categories (e.g., Lamo 1996, Lillard and Willis 1978, Lucas 1978,

Konings 1994, Koopmans 1995, Quah 1996a, Singer and Spilerman 1976, and Sut-

ton 1995).

While the current work shares ideas with all of these, it also di�ers in a number

of signi�cant ways. But those putative contributions will be easier to see at the

end rather than the beginning of the paper.

The remainder of the presentation then is organized as follows: Section 2 puts

empirical 
esh on the caricature given in Fig. 1: the shape and mobility dynamics

sketched in Fig. 1 are broken down further into density and Tukey box plots, and

stochastic kernels. A simple illustrative model is given in Section 3|the model is

highly stylized; its purpose is only to suggest the kinds of conceptual modelling

issues that will be further helpful. Section 4 builds on those ideas and illustrates

the role of conditioning in explaining the distribution dynamics documented in

Section 2. Section 5 summarizes the conclusions from this study.

2. A �rst empirical analysis

Fig. 2 plots the log of per capita incomes across 105 countries, all relative to the

world average per capita income in each year. The underlying data are drawn from

the well-known Summers-Heston (1991) dataset.

On the vertical axis in the �gure, zero indicates equality with the world av-

erage. Time proceeds sequentially along the axis marked Year. Along the axis

marked Economy are the di�erent countries. The particular ordering on this axis

gives no insight. Nor will it be used below. For the record, however, the ordering

is alphabetical within continents, beginning in Africa with Algeria and Angola,

and ending in Oceania with Vanuatu and Western Samoa.

To relate Fig. 2 to Fig. 1, observe that at each point on the Year axis, one can

slice across the graph, parallel to the Economy axis, and recover the point-in-time

cross-country income distribution. I have computed Fig. 3.d and Fig. 3.b doing

exactly that.
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2.a Shapes

If I did no more than this, however, I would, of course, have lost important dy-

namic, intra-distribution information|I will return to this point below. For the

time being, this procedure gives a sequence of snapshots of the resulting income

distributions across countries. Fig. 3.d and Fig. 3.b provide two views of these

cross-sectional distributions. The �rst, Fig. 3.d, is a sequence of kernel-smoothed

densities taken at roughly decade-long intervals. The second, Fig. 3.b, is a sequence

of Tukey boxplots for the same underlying data and for the same time periods.

A quick word on inference is useful here: Fig. 3.d and Fig. 3.b record proper-

ties of the population. The data that go into these �gures cannot be interpreted

as a random sample. In the language of Efron and Tibshirani (1993), these �gures

are direct representations of a census: they are not pictures of a random sample

from which statistical analysis can help us infer properties of the true underlying

population. These pictures already are that population. Thus, from the perspec-

tive of statistical inference, classical random sampling assumptions do not hold.

Below, when I turn to models of endogenous cross-sectional interaction, we will

see that the departure here from a classical sampling framework goes even deeper.

The kernel-smoothed estimates in Fig. 3.d were obtained using a Gaussian

kernel.5 By how the data are de�ned, 1=2 on the horizontal axis indicates one-half

the world average per capita income; 2 indicates twice the world average; and so

on. Looking across three decades, we see that in 1961 a nascent twin-peakedness|

the �rst mode at a little less than 1, the second at slightly greater than 2:5|was

beginning to be visible. By 1988 that second peak had become pronounced. The

relative income distance between the peaks doubled from about 1:5 in 1961 to

more than 3 in 1988. Finally, for the observations extant, these tendencies appear

monotone: the data show no reversals in the dynamics just described.6

5 I took the data non-negativity into account following the procedure and au-
tomatic bandwidth choice given in Silverman (2.10 and 3.4.2, 1986).

6 Bianchi (1995)|using bootstrap tests for multimodality related to ideas in
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For completeness, I give in Fig. 3.d.l and Fig. 3.d.w two other related snapshot

density sequences. In Fig. 3.d.l the distributions are in natural logs of per capita

income; in Fig. 3.d.w the distributions are weighted by the relative numbers of

people in each economy. One convenient interpretation of the second is that it

shows the distributions of individual incomes across people in the world, assuming

that within each economy individual personal incomes are equally distributed, and

thus equal to the level of per capita income. Properly interpreted, the \emerging

twin peaks" character remains, but is modi�ed. In logs, the peaks are closer

together|as one would expect|but the rise of the higher peak at the expense

of the second remains pronounced. Weighted by populations, the distribution

sequence shows three peaks, rather than two: the rise of the higher peaks appears

to be at the expense of the middle (valley) group. Thus, although details di�er,

the principal message of the \Emerging twin peaks" Fig. 1 comes through in a

range of perturbations on the empirical analysis.

Fig. 3.b is a sequence of Tukey boxplots constructed from exactly the same

data used in Fig. 3.d. To understand these pictures, recall the construction of a

Tukey boxplot.7 The box in the middle of each boxplot describes central tendencies

of a distribution: the thin line inside the box locates the median; the top and

bottom edges are the 75th and 25th percentiles respectively. The middle 50% of

the distribution is thus contained in the box; the height of the box|ignoring its

vertical location|is the inter-quartile range.

In Fig. 3.b the middle box for each of the years grows in extant: thus, the

middle 50% of the cross-section distribution can be covered only by progressively

Izenman and Sommer (1988) and Silverman (1981, 1983)|and Paap and van Dijk
(1994)|using density mixture techniques|have provided statistical descriptions

on this sequence of pictures, earlier given in Quah (1993b). Jones (1997) presents,
in essence, the same picture. Cowell, Jenkins, and Litch�eld (1996) have noted

similar twin-peakedness in UK personal income distributions.
7 Although this is relatively unused in economics and econometrics, it is a fa-

miliar textbook object in statistics; see, e.g., Cleveland (1993).
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larger portions of income space. Put di�erently, the middle 50% of the distribution

is spreading out; or, when taken together with the evidence in Fig. 3.d, the middle-

income class is vanishing|precisely as in Fig. 1.

Emanating from the middle box in each Tukey boxplot are rays reaching

to upper and lower adjacent values. If the inter-quartile range is r, then the

upper adjacent value is the largest income value observed no greater than the 75th

percentile plus 1:5 � r. The lower adjacent value is similarly de�ned, extending

downwards from the 25th percentile. Indicated by asterisks in Tukey boxplots are

upper and lower outside values|observations that lie outside the upper and lower

adjacent values. From a statistical perspective, these might considered outliers|

in the current application, however, these denote the macroeconomies that have

performed extraordinarily well or extraordinarily poorly relative to the bulk of

other macroeconomies. They represent real people and real countries, not just

observations that might be useful to delete in a statistical analysis.

Fig. 3.b shows no extraordinarily poorly-performing economies|or, more ac-

curately, when economies performed especially badly, they were not alone. On

the upside, by contrast, the early part of the sample showed several outstanding

performers: there is a sprinkling of asterisks in the early boxplots. However, over

time, parts of the rest of the world have caught up with these initially very rich

economies, even as other parts of the world remained poor. Unlike the upper por-

tion, the lower part of the boxplot has never risen, and, indeed, relative to the

median shows a continuing decline.

These two descriptions Fig. 3.d and Fig. 3.b have 
eshed out and con�rmed

the shape dynamics sketched in the twin-peaks picture Fig. 1. We turn now to the

mobility dynamics also depicted in Fig. 1 but not yet examined in the data.
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2.b Mobility

An easy way to quantify churning or intra-distribution dynamics in a sequence of

distributions is to discretize the space of income values, and then simply count

the observed transitions out of and into distinct discrete cells. For instance, in

Fig. 4|which reproduces the essential features of Fig. 1|one might add up the

number of transitions out of cell II into cells I and III respectively (and everywhere

else), and then normalize those counts by the total number of observations. Using

discrete cells that span the space of all possible realizations, one can then construct

a transition probability matrix (as in, e.g., Quah 1993a, b).

It is well-known, however, that such a discretization can distort dynamics in

important ways when the underlying observations are continuous variables (see,

e.g., Chung 1960). The solution is not to use a discretization at all, but to retain

the original set of continuous income observations in quantifying intra-distribution

dynamics. Doing that is like allowing the number of distinct cells fI; II; III; : : :g in

Fig. 4 to tend to in�nity and then to the continuum. The corresponding transition

probability matrix tends to a matrix with a continuum of rows and columns. In

other words, it becomes a stochastic kernel, as graphed in Fig. 5.s (below, I provide

a more precise technical derivation of a stochastic kernel).

The �gure shows the stochastic kernel for 15-year transitions in our relative-

income data, averaging over 1961 through 1988. From any point on the axis marked

Period t extending parallel to the axis marked Period t+ 15 the stochastic kernel

is a probability density function: the projection traced out is non-negative and

integrates to unity. That projection is similar to a row of a transition probability

matrix: such a row has all entries non-negative and summing to 1. Roughly

speaking, this probability density describes transitions over 15 years from a given

income value in period t.

A graph such as Fig. 5.s shows how the cross-sectional distribution at time t

evolves into that at t + 15. If most of the graph were concentrated along the 45-

degree diagonal, then elements in the distribution remain where they began. If, by

contrast, most of the mass in the graph were rotated 90 degrees counter-clockwise
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from that 45-degree diagonal, then substantial overtaking occurs|the rich become

poor, and the poor rich, periodically over 15-year horizons. If most of the graph

were concentrated around the 1-value of the Period t+15 axis|extending parallel

to the Period t axis|then over a 15-year horizon, the cross-section distribution

converges towards equality. Generalizing this, if most of the mass located parallel

to the Period t axis, with projections on period t-values equal to each other, then

the kernel is one where a single (15-period) iteration takes any initial distribution

to the same long-run distribution. Dynamics over longer horizons can be studied

by recursively applying a given stochastic kernel.8

In Fig. 5.s a twin-peaks property again manifests. Over the 15-year horizon, a

large portion of the probability mass remains clustered around the main diagonal.

However, along that principal ridge, a dip appears in the middle-income portion

while the kernel itself rises towards local maxima in both poor and rich parts of

the income range. Contour plot Fig. 5.s.c makes this clearer. The two peaks

in the stochastic kernel|because they sit (almost) on the 45-degree diagonal|

correspond to what Durlauf and Johnson (1995) call \basins of attraction". At

the same time, however, while the middle-income class is vanishing, portions of

the cross section do transit from high to low and from low to high: the stochastic

kernel is positive almost everywhere, and communicates across the entire range of

income values.

Fig. 5.sl, Fig. 5.sl.c, Fig. 5.sw, and Fig. 5.sw.c provide comparable stochastic

kernel representations on, respectively, the log and population-weighted versions

8 Of course, there is no logical necessity why only 15-year horizons need be

considered. Moreover, other statistics (i.e., real-valued functionals) of a stochastic
kernel might also be considered, beyond just the visual description given in the

text. For further exploration of these issues, see Durlauf and Johnson (1994), and
Quah (1993a, b, 1996a, b) who studied kernels estimated over varying horizons,

and ergodic characterizations, mobility indexes, and �rst passage-times calculated
o� estimated kernels. Desdoigts (1994) Lamo (1996), and Schluter (1997) have
used related ideas in empirical research.
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of the income distributions. In both cases, the message from the unweighted per-

capita income is amended but not overturned. The twin peaks are closer together in

the log case (as in just the snapshot density sequence Fig. 3.d.l), but the stochastic

kernel again shows clearly the polarization dynamics. In the population-weighted

case, the multiplicity of peaks is again evident.

To sum up this �rst pass through the data, we conclude that the data con�rm

most of the stylized features earlier given in Fig. 1. There is a wide spectrum

of intra-distribution dynamics|overtaking and catching-up occur simultaneously

with persistence and languishing|while overall the twin-peaks shape in the cross-

sectional distribution emerges.

3. A simple model and empirical implications

What might explain these \emerging twin-peaks" regularities? In particular, what

theoretical models and further empirical analyses will shed light on these stylized

facts?

Given this assignment, it is hard to see what insights will obtain from a con-

ventional approach: study standard \growth and convergence" models of repre-

sentative economies, and then analyze such models using panel-data econometric

methods that absorb heterogeneity into \individual e�ects". Sure, those tech-

niques deal with data that show rich cross section and time-series variation (as in

the uninformative Fig. 2 above), but that fact alone does not recommend them.9

Individual-e�ects panel data methods had been developed to take into account the

inconsistency in estimating regression coe�cients when unobserved heterogeneity

is correlated with regressors (Chamberlain 1984 makes this particularly clear).

They were not designed to naturally provide a picture of how an entire distri-

bution evolves. Those regression methods average across the cross section: they

can give only a picture of the behavior of the conditional mean, not of the whole

distribution. Moreover, sweeping out individual heterogeneities, in the current

application, amounts to no more than resigning oneself to leave unexplained the

9 See, however, Islam (1995) and Nerlove (1996) for an opposing view.



{ 12 {

(signi�cant) di�erences across individual countries. But this is precisely what we

wish to understand here.

Instead, it is reasonable to guess that more insightful for studying twin-peaks

behavior will be theorizing directly in terms of the entire distribution, and permit-

ting explicit patterns of cross-section interaction|clustering together into distinct

clumps|to endogenously emerge. Examples of such models exist. They include

those in Durlauf (1993), Ioannides (1990), Kirman, Oddou, and Weber (1986),

Townsend (1983) and Quah (1996d). Here, I present a simpli�ed version of the

model in Quah (1996d); it is stripped down to an extent that allows insight into

key issues but at some cost in rigor and economic motivation.10

Let J be the index set of economies, taken as �xed throughout the discussion.

A coalition of economies is a subset C of J. Each economy l in J is characterized

by an economy-speci�c stock hl, which can be interpreted as human capital. This

stock is used in two nonrival ways: �rst, it represents the potential for technical

progress and ongoing growth|it is the source of useful ideas. Second, it pro-

duces non-storable output for current consumption|it is an input in a production

technology.

Production occurs from coalitions of economies forming to jointly produce

a single nondurable consumption good. Denote the total output of coalition C

by YC. Assume that YC depends on the distribution of hl across l in C, and is

increasing in each hl. Assume also that out of total coalition output, economy

l in C gets portion  (YC; hl), with  increasing in both arguments, and satisfying

exact product exhaustion: X
l in C

 (YC; hl) = YC:

10 Pursuing this cross-section interactions approach re
ects a bias based on in-
stinct, not necessarily anything more rigorous. There might well be simpler ex-

planations for the twin peaks: e.g., distinct groups of economies having di�ering
preferences, giving rise to di�ering investment rates, or even just underlying pro-
ductivity shocks having a particular, bimodal distribution.
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(Primitive assumptions implying these properties would be �rst, compensation

according to marginal product and second, the CES technology

YC =

� X
l in C

h�l

�1=�
; 0 < � < 1;

with �, describing the elasticity of substitution in the CES production function,

giving isoquants between linear and Cobb-Douglas technologies. Quah (1996d)

gives the natural interpretation of these properties as economies of scale deriving

from specialization.)

By these assumptions, enlarging the coalition always increases total output

YC. The compensation scheme  then ensures that all economies unanimously

agree to be in the single grand coalition comprising the entire cross section. This,

therefore, is a force for consolidation. If this were all there were at work, the

cross-sectional interaction would be trivial: the only coalition that exists includes

simultaneously all members of the cross section J.

Turn now to the dynamics of hl. Denote for each coalition C the average value

of hl's across C by HC. Suppose that human capital in economy l in C evolves as:

_hl = e�(hl; HC) for l in C;

with e� increasing in both arguments and homogeneous degree 1. This says sim-

ply that human capital in economy l accumulates not just from the human cap-

ital already extant in it, but also from the average human capital extant in the

economies with which l interacts.11 Dividing by hl, this becomes the proportional

growth equation:
_hl=hl = e�(1; HC=hl)

def
= �(HC=hl):

By construction � is increasing in the ratio HC=hl.

11 It is not essential that it be exactly the average HC that a�ects e�, just that
it be some appropriate functional of the distribution of h's in the coalition C.
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It is now easy to see the force for fragmentation, and against the single grand

coalition forming. Economies in higher average h coalitions have faster propor-

tional growth rates. The problem with allowing a coalition to get too large is that

the coalition then (typically) lowers its average HC: this would slow growth for

all the economies already in the coalition. Economies already in good coalitions

would, ceteris paribus, refuse to admit economies that lower the coalition average

HC.

The force for consolidation (the compensation  (YC; hl)) is a level e�ect|it

a�ects current consumption. The force for fragmentation (the growth �(HC=hl))

is a slope e�ect|it a�ects future consumption. Parameterizing economies' dis-

count rates for intertemporal consumption allows calibrating the tradeo� across

level and slope e�ects, and thus provides a theory of endogenous coalition for-

mation. Equilibrium is a set of coalitions fC1;C2;C3; : : :g such that no economy

assigned to a coalition wishes to belong to a di�erent coalition agreeing to admit

it. Quah (1996d) describes an equilibrium that comprises nontrivial consecutive

subsets of the cross section J of economies. Then, as shown in Fig. 6.2, the distri-

bution of incomes across economies within the same coalition converges towards

equality; those across di�erent coalitions separate and then diverge.

The equilibrium distribution dynamics that arise depends on the functions �

and  and, signi�cantly, also on initial conditions in the distribution of h. If, the

initial distribution were not that given in Fig. 6.2, but instead that of Fig. 6.1,

then the model implies convergence of the entire cross section, not subsets, to a

single degenerate point mass.

The ideas here can be enriched in a variety of ways: if what mattered were

some multi-dimensional attribute and not just the single-dimensioned h, then equi-

librium coalitions need not be consecutive (as in Fig. 6.1 and Fig. 6.2), but might

intermesh in some form of a seamless web. If important stochastic disturbances

perturbed each economy's development process, then overtaking and criss-crossing

across coalitions and di�erent parts of the income distribution might occur.

The basic insight, however, remains: by studying interactions across the cross
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section, one gets a picture of how the entire distribution evolves through time.

Clustering|the polarization or strati�cation that emerges in Fig. 6.2|into con-

vergence clubs then manifests as a central part of the economic reasoning. For

empirical analysis, it is useful to note that these endogenous cross-section inter-

actions result in violation of the classical random sampling assumptions that are

traditionally adopted in work with cross-sectional data.

In general, the coalitions that form in equilibrium might be only implicit: no

formal observable organization need be arranged to house them. An equilibrium

such as Fig. 6.2 is to a degree already consistent with the emerging twin-peaks

stylized facts previously discussed. But can empirics shed further light on the

dimensions along which such coalitions (implicitly) form? I turn next to this.

4. Conditioning

The emerging twin-peaks picture in Fig. 1 is an instance of unconditional dynamics.

What the analysis leading up to Fig. 6.2 has done is provided a set of predictions

largely consistent with those unconditional dynamics. Put another way, Fig. 1

is a reduced form consistent with one particular structure|that described in the

previous section. The goal of this section is to obtain independent, auxiliary evi-

dence that might shed more light on the link between the underlying structure and

the reduced-form distribution dynamics of Fig. 1. Such an exercise might even be

regarded as explaining distribution dynamics.

Note that to explain distribution dynamics, in the sense used here, is more

involved than, say, discovering a particular coe�cient to be signi�cant in a regres-

sion of a dependent variable on some right-hand side variables. What we seek is

an empirical computation that helps us understand the law of motion in an entire

distribution.

The key insight is to turn on its head the reasoning behind the \unconditional

dynamics" already given. Just as stochastic kernels quantify how distributions

evolve through time, they can also describe how a set of conditioning factors alter

the cross-sectional distribution of income. Thus, to understand if a hypothesized
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set of factors explains emerging twin-peaks features, we can simply ask if the

stochastic kernel transforming the unconditional distribution to a conditional one

removes those same features.

To see how this works in detail, recall the technical derivation of a stochastic

kernel. Since we are concerned here with real-valued incomes, the underlying state

space is the pair (R;R), i.e., the real line R together with the collection R of its

Borel sets. Let B(R;R) denote the Banach space of bounded �nitely-additive set

functions on the measurable space (R;R) endowed with total variation norm:

8� in B(R;R) : j�j = sup
X
j

j�(Aj)j;

where the supremum in this de�nition is taken over all fAj : j = 1; 2; : : : ; ng �nite

measurable partitions of R.

Empirical distributions on R can be identi�ed with probability measures on

(R;R); those are, in turn, just countably-additive elements in B(R;R) assigning

value 1 to the entire space R. Let B denote the Borel �-algebra generated by the

open subsets (relative to total variation norm topology) of B(R;R). Then (B;B)

is another measurable space.

Note that B includes more than just probability measures: an arbitrary ele-

ment � in B could be negative; �(R) need not be 1; and � need not be countably-

additive. On the other hand, a collection of probability measures is never a linear

space: that collection does not include a zero element; if �1 and �2 are probability

measures, then �1 � �2 and �1 + �2 are not; neither is x�1 a probability measure

for x 2 R except at x = 1. By contrast, the set of bounded �nitely-additive set

functions certainly is a linear space, and as described above, is easily given a norm

and then made Banach.

Why embed probability measures in a Banach space as we have done here?

A �rst reason is so that distances can be de�ned between probability measures; it

then makes sense to talk about two measures|and their associated distributions|

getting closer to one another. A small step from there is to de�ne open sets of
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probability measures, and thereby induce (Borel) �-algebras on probability mea-

sures. Such �-algebras then allow modelling random elements drawn from col-

lections of probability measures, and thus from collections of distributions. The

data of interest when modelling the dynamics of distributions are precisely random

elements taking values that are probability measures.

This framework allows a more rigorous description of the stochastic kernels

already used above. Let Ft denote the distribution of incomes across economies

at a given time t. Associated with Ft is a measure �t in (B;B). If (
;F;Pr) is

the underlying probability space, then �t is the value of an F=B-measurable map

�t : (
;F) ! (B;B). The sequence f�t : t � 0g is then a B-valued stochastic

process.

How should the law of motion for such a process be modelled?

The simplest scheme for doing so is analogous to the �rst-order autoregression

from standard time-series analysis:

�t = T �(�t�1; ut) = T �ut
(�t�1); t � 1;

where T � is an operator that maps the product of measures together with general-

ized disturbances u to probability measures; and T �ut
absorbs the disturbance into

the de�nition of the operator. (Why the � appears in T � and T �ut
will be clari�ed

below.) This is no more than a stochastic di�erence equation taking values that

are entire measures; equivalently, it is an equation describing the evolution of the

distribution of incomes across economies.

To understand the structure of operators like T �ut
, it helps to use the following:

STOCHASTIC KERNEL DEFINITION: Let � and � be elements of B that

are probability measures on (R;R). A stochastic kernel relating � and � is a

mapping M(�;�) : (R;R)! [0; 1] satisfying:

(i) 8y in R, the restriction M(�;�)(y; �) is a probability measure;

(ii) 8A in R, the restriction M(�;�)(�; A) is R-measurable;

(iii) 8A in R, we have �(A) =
R
M(�;�)(y; A) d�(y).
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To see why this is useful, �rst consider (iii). In an initial period, for given y,

there is some fraction d�(y) of economies with incomes close to y. Count up all

economies in that group who turn out to have their incomes subsequently fall in a

given R-measurable subset A � R. When normalized to be a fraction of the total

number of economies, this count is precisely M(y; A) (where the (�; �) subscript

can now be deleted without loss of clarity). Fix A, weight the count M(y; A) by

d�(y), and sum over all possible y's, i.e., evaluate the integral
R
M(y; A) d�(y).

This gives the fraction of economies that end up in state A regardless of their

initial income levels. If this equals �(A) for all measurable subsets A, then �

must be the measure associated with the subsequent income distribution. In other

words, the stochastic kernel M is a complete description of transitions from state

y to any other portion of the underlying state space R.

Conditions (i) and (ii) simply guarantee that the interpretation of (iii) is valid.

By (ii), the right hand side of (iii) is well-de�ned as a Lebesgue integral. By (i),

the right hand side of (iii) is a weighted average of probability measures M(y; �),

and thus is itself a probability measure.

How does this relate to the structure of T �ut
? Let b(R;R) be the Banach space

under sup norm of bounded measurable functions on (R;R). Fix a stochastic kernel

M and de�ne the operator T mapping b(R;R) to itself by

8f in b(R;R); 8y in R : (Tf)(y) =

Z
f(x)M(y; dx):

Since M(y; �) is a probability measure, the image Tf can be interpreted as a

forwards conditional expectation. For example, if all economies in the cross section

begin with incomes y, and we take f to be the identify map, then (Tf)(y) =R
xM(y; dx) is next period's average income in the cross section, conditional on

all economies having income y in the current period.

Clearly, T is a bounded linear operator. Denote the adjoint of T by T �. By

Riesz Representation Theorem, the dual space of b(R;R) is just B(R;R) (our

original collection of bounded �nitely additive set functions on R); thus T � is a
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bounded linear operator mapping B(R;R) to itself. It turns out that T � is also

exactly the mapping in (iii) of the Stochastic Kernel De�nition, i.e.,

8� probability measures in B; 8A in R : (T ��)(A) =

Z
M(y; A) d�(A):

(This is immediate from writing the left-hand side as

(T ��)(A) =

Z
1A d(T

��)(y) =

Z
(T1A)(y) d�(y) (adjoint)

=

Z �Z
1A(x)M(y; dx)

�
d�(y) (de�nition of T )

=

Z
M(y; A) d�(y); (calculation)

with 1A the indicator function for A.)

The de�nition of a stochastic kernel nowhere requires that � and its image �

under T � be sequential in time. Thus, a stochastic kernel M representing T � can

be used to relate any two di�erent distributions, in particular an unconditional

observed distribution, and one conditional on a set of explanatory factors.

To sharpen the focus, we return to the model of cross-sectional interaction

given in Section 3. In that model, while under certain conditions strati�cation

emerges, as in Fig. 6.2, that feature is absent if we consider each economy only

in relation to the other members of its implicit coalition. In particular, condition-

ing each economy's observations on the behavior of its neighbors, the distribution

dynamics imply convergence to a degenerate point mass. This motivates the fol-

lowing:

CONDITIONING SCHEME DEFINITION: For a collection of economies

J, a conditioning scheme S is a collection of triples, one for each economy l in

J and time instant t, with each triple comprising:

(i) �l(t) an integer lag,
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(ii) Cl(t) a subset of J, and

(iii) !l(t) a set of probability weights on J never positive outside Cl(t),

The subset Cl(t) is the collection of economies associated with, or neighbors of,

l at time t. Since the weights !l(t) can be positive only on Cl(t), they determine the

relative importance of the di�erent economies in Cl(t) in the evolution of economy

l at time t. Finally, �l(t) is the lag in time: it indicates the delay with which

developments in the economies in Cl(t) a�ects l. Since �l(t) can be a positive

constant, l's associated neighbors Cl(t) can include l itself.

Sometimes, it will be convenient to use an arbitrary scaled version of the

probability weights !l(t), i.e., an appropriate collection of non-negative numbers

having a nonzero sum. Such an alternative collection will be denoted !l(t). The

probability weights !l(t) of a conditioning scheme can always be constructed from

!l(t), so that referring only to the latter is without loss.

If Y = fYl(t) : l in J and t � 0g denotes the original observations on (relative)

per capita incomes, de�ne the conditional version Y jS = eY by

eYl(t) def
= Yl(t)=bYl(t)

where bYl(t) def
=

X
j in Cl(t)

!j(t)Yj(t� �l(t)):

In words, Y jS comprises per capita incomes relative to one's neighbors, appropri-

ately weighted.12

Some special cases will help develop intuition. Fix �l(t) = � > 0; take Cl(t) =

flg, i.e., just the economy itself; and de�ne !l(t) = f1 on Cl(t) and 0 elsewhereg.

Then the stochastic kernel mapping the unconditional distribution in Y to the

12 If the denominator bYl(t) were replaced by the exponential of the conditional

expectation of Yl(t) conditioned on G, then eYl(t) is the exponential of the expec-
tations error, log(Yl(t))� log(bYl(t)) = log(Yl(t))�E (log(Yl(t))jG).
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conditional Y jS is just the usual Markov stochastic kernel for � -period transitions.

It is this, for � = 15, that is graphed in Fig. 5.

For the second example, �x �l(t) = 0; take Cl(t) = Cl(0) to be the set of

economies physically contiguous with l but excluding l itself; and let !l(t) be the

set of population sizes at time t��l(t) = t in each of the economies in Cl(0). ThenbYl(t) is the per capita income in all contiguous economies abutting on l; and eYl(t)
is per capita income in l relative to that in the surrounding economies. In words

Y jS is per capita income relative to one's physical neighbors. The stochastic kernel

mapping Y ! Y jS would depart from the identity map if the convergence clubs

of Section 3 were spatially concentrated: most interaction and exchange occurred

within groups of countries physically close to one another.13

Fig. 7.s displays precisely that stochastic kernel. The graph here has the same

interpretations as previously given for Fig. 5.s, except that the axes are now Orig-

inal and Conditioned rather than Period t and Period t + 15. (For completeness,

I also give Fig. 7.d and Fig. 7.b showing the densities and boxplots for Y jS.) The

most prominent change comparing stochastic kernels in Fig. 7.s and Fig. 5.s is

the counter-clockwise shift in mass to parallel the Original axis. Put di�erently,

spatial factors account for a large part of the distribution of incomes across coun-

tries: rich economies are typically close to|interact more with|other rich ones;

similarly poor economies are typically close to other poor ones.

The snapshot densities for Y jS displayed in Fig. 7.d and Fig. 7.b no longer

show emerging twin-peaks features. In summary, it appears that the polarization

earlier identi�ed in the unconditional distribution-dynamics of cross-country in-

comes is well-explained by physical geography. Not only are rich countries located

close to other rich ones, such tendencies have magni�ed through time.

13 If we generalize beyond cross-country growth, this particular conditioning
scheme provides a natural empirical counterpart to the theoretical e�ects described

in Benabou (1996a), Durlauf (1996), Ioannides (1996), and others. It complements
the empirical analysis of Brock and Durlauf (1995). Quah (1996e) had used a form
of conditioning scheme to study aspects of globalization in Europe.
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However, while physical geography has been just shown to play an important

role in cross-country income distribution dynamics, it is likely international trade

that most economists would identify as the interactions of Section 3. This is

easily incorporated in the conditioning-schemes analysis, and constitutes the third

example. Let �l(t) = 0 so that there is no delay. Fix T to be the end period of

the observed sample, and take Cl(t) = Cl(T ) to be that set of l's trading partners

at time T such that their total trade (imports plus exports) share is at least 50%

of l's total trade at T . Finally, let !l(t) = !l(T ) be the measured trade shares

of the di�erent economies in Cl(t) out of l's total trade accounts. The stochastic

kernel mapping Y ! Y jS now describes the importance of trade in explaining

cross-country income distribution dynamics.14

Fig. 8.s displays the stochastic kernel for Y ! Y jS with S trade conditioning.

Here, the counter-clockwise twist in the kernel towards the vertical is even more

pronounced than in Fig. 7.s: rich countries trade mostly with other rich ones; and,

interestingly, the very poorest countries, mostly with rich ones again. The way

to see this is to notice that the stochastic kernel in Fig. 8.s clusters about 1 on

the high end of the Original scale, but about a value less than 1/2 on the low

end. Fig. 8.d and Fig. 8.b give the densities and boxplots for Y jS. In Fig. 8.d the

second peak that emerges in 1988 is at the average 1. Fig. 8.b show the conditional

distributions to be relatively compact (i.e., have their support relatively narrow);

the vanishing of the middle-income class is no longer visible.

The conditioned income distributions give information on dynamics as well.

14 I have also experimented with using only imports or only exports in this

de�nition and with T set to the beginning or middle rather than the end of the
sample: not much changes in the conclusion. The conditioning scheme described

here is more intricate than just measuring the openness of an economy|here,
information on who trades with whom is used. Additional factor content data,

as for example in Coe and Helpman (1995) or Eaton and Kortum (1996), might
additionally be exploited to more sharply focus on the learning and technology
components in cross-country interaction.
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Fig. 7.dyn and Fig. 8.dyn provide stochastic kernel representations on 15-year

transitions in space- and trade-conditioned incomes. For space, Fig. 7.dyn shows a

marked improvement in convergence possibilities|the poor catching up with the

rich|except at the very highest income levels: the stochastic kernel is concentrated

parallel to the Period t axis on the average value of 1. For trade, however, that

increase in convergence dynamics is most obvious only for middle-income countries.

To summarize, this section has provided a set of empirical computations de-

signed to explain the emerging twin-peaks dynamics earlier documented. Using

the idea of an endogenously-determined set of cross-section neighbors being im-

portant, this section developed the notion of conditioning schemes for empirical

use. Applied to space and trade, we see a �rst glimpse of how important and large

such cross-sectional interaction e�ects might be. The importance of trade here is

not just expressed in blanket measures of how open an economy is; emphasized

instead are patterns of who trades with whom.

5. Conclusions

This paper has analyzed patterns of economic growth across countries from the per-

spective of distribution dynamics. In doing so, it uncovered empirical regularities|

emerging twin peaks, incipient polarization and strati�cation|that are hidden to

traditional methods of empirical analysis.

Those distribution-dynamic features call for explanation. This paper has

argued that such explanation is noteworthy in two signi�cant respects: It will

(i) di�er from conventional models of growth and accumulation in the direction

of theorizing in terms of the entire cross section distribution, and (ii) depart from

standard techniques of econometric analysis|both in the empirical e�ects that

have to be modelled and in permitting the cross-sectional interaction that the

theoretical reasoning had suggested would matter.

The paper has developed a class of conditional distribution analyses using the

idea of conditioning schemes. These showed the importance of space and trade|

endogenous cross-sectional interaction more generally|for understanding cross-
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country patterns of growth. Unlike traditional studies on trade and growth, the

study above emphasized not measures of openness to trade, but instead empirical

patterns of who trades with whom. Although considerable progress has taken

place, much remains to be done still in rigorous theoretical and empirical analyses

of such cross-sectional dynamics.
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Fig. 1: Emerging twin peaks
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Fig. 2: (Log) Relative per capita incomes across 105 countries





Fig. 3.d: Densities of relative (per capita) incomes across 105 countries

(a): 1961 (b): 1970

(c): 1980 (d): 1988



Fig. 3.b: Boxplots, relative (per capita) incomes across 105 countries

1961, 1970, 1980, 1988





Fig. 3.d.l: Densities of log relative (per capita) incomes across 105 countries

(a): 1961 (b): 1970

(c): 1980 (d): 1988





Fig. 3.d.w: Densities of relative (per capita) incomes across 105 countries

Weighted by population

(a): 1961 (b): 1970

(c): 1980 (d): 1988



Fig. 4: Discretization for intra-distribution dynamics
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Fig. 5.s: Relative Income Dynamics across 105 Countries





Fig. 5.s.c: Relative Income Dynamics across 105 Countries
Contour plot

Contour plot at levels 0.2, 0.35, 0.5



Fig. 5.sl: Log Relative Income Dynamics across 105 Countries





Fig. 5.sl.c: Log Relative Income Dynamics across 105 Countries
Contour plot

Contour plot at levels 0.2, 0.35, 0.5





Fig. 5.sw: Relative Income Dynamics across 105 Countries
Weighted by population





Fig. 5.sw.c: Relative Income Dynamics across 105 Countries
Weighted by population. Contour plot

Contour plot at levels 0.2, 0.35, 0.5
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Fig. 6.1 : Convergence, one-world
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Fig. 6.2: Convergence, two-coalition polarization
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Fig. 7.s: Stochastic kernel, relative (per capita) incomes across 105 Countries

Spatial conditioning





Fig. 7.d: Densities of relative (per capita) incomes across 105 countries

Spatial conditioning

(a): 1961 (b): 1970

(c): 1980 (d): 1988





Fig. 7.b: Boxplots, relative (per capita) incomes across 105 countries

Spatial conditioning

1961, 1970, 1980, 1988



Fig. 7.dyn: Spatial-conditioned relative income dynamics





Fig. 8.s: Stochastic kernel, relative (per capita) incomes across 105 countries

Trade conditioning





Fig. 8.d: Densities of relative (per capita) incomes across 105 countries

Trade conditioning

(a): 1961 (b): 1970

(c): 1980 (d): 1988





Fig. 8.b: Boxplots, relative (per capita) incomes across 105 countries

Trade conditioning

1961, 1970, 1980, 1988



Fig. 8.dyn: Trade-conditioned relative income dynamics


