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Abstract

Whittle pseudo-maximum likelihood estimates of parameters for stationary

time series have been found to be consistent and asumptotically normal in the

presence of long-range dependence. Generalizing the definition of the

memory parameter d, we extend these results to include possibly

nonstationary (0.5 � d < 1) or antipersistent (-0.5 < d < 0) observations. Using

adequate data tapers we can apply this estimation technique to any degree of

nonstationarity d ��������	
��	�
������������������ 	
������������ 	
���������

We analyse the performance of the estimates on simulated and real data.
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1 Introduction

Exact and approximate Gaussian maximum likelihood ("Whittle") estimates of parametric sta-

tionary time series models have been shown to have the same �rst-order asymptotic properties

under long memory as earlier shown under short memory (e.g. Fox and Taqqu, 1986, Dahlhaus,

1989, Solo, 1989, Giraitis and Surgailis, 1990, Hosoya, 1996). A covariance stationary series with

spectral density (sd) f(�) satisfying

f(�) � Gj�j�2d as �! 0; (1)

where G > 0, jdj < 1
2
and "�" means the ratio of left and right sides tends to 1, is said to have

long memory if 0 < d < 1
2
, short memory if d = 0 and negative memory if �1

2
< d < 0.

Nonstationary time series have frequently been assumed to belong to the ARIMA class,

such that a �nite number of integer di�erences produces an ARMA short memory process, the

degree of di�erencing being determined by diagnostics such as unit root tests (see Box and

Jenkins, 1976). More generally, fractional ARIMA models can be considered such that integer

di�erencing is assumed to produce a series with spectrum satisfying (1), with d = 0 not assumed.

Equivalently, a nonstationary fractional ARIMA series Xt is such that (1�L)dXt is a stationary

and invertible ARMA, where d > 1
2
is a real number and L is the lag operator.

Beran (1995) considered a time domain version of Whittle estimation to estimate d along

with other parameters in nonstationary fractional ARIMA models. Ling and Li (1997) extended

his approach to allow for conditional heteroscedasticity, while Beran, Bhansali and Ocker (1998)

discussed model selection in the autoregressive case. We discuss Beran's asymptotic justi�cation

below, in view of which we analyze an alternative, discrete-frequency domain version of Whittle.

As originally designed for stationary environments (see Hannan, 1973) this of course involves

the parameterized sd. However for nonstationary series no sd exists. Nevertheless if U
(s)
t =

(1 � L)sXt; s = bd + 1
2
c, t > 0, is covariance stationary with mean � and sd fU(s)(�) behaving

as ��2(d�s) around � = 0 we de�ne the pseudo sd (psd) of Xt as

f(�):=j1� ei�j�2sfU(s)(�) � G j�j�2d as �! 0: (2)

Note that if 2d � 1, f(�) is not integrable in [��; �], is not a sd and cannot represent a

decomposition of the (in�nite) variance of the nonstationary time series. However, as suggested

by Solo (1992) and Hurvich and Ray (1995), the psd f(�) can be interpreted as the limit of the

expected sample periodogram, as in the stationary framework. This property was used in Velasco

(1999a, b) to show that semiparametric narrow-band estimates of the memory parameter d of

stationary time series (see Geweke and Porter-Hudak, 1983) have the same desirable asymptotic

properties for d � 1
2
as shown by Robinson (1995a, b) for �1

2
< d < 1

2
with tapering needed for

large enough d or to eliminate polynomial trends.
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Figure 1: Arizona tree-ring widths (548-1047).

We illustrate the analysis of possibly nonstationary long memory series with the �rst 500

observations of a series of annual tree-ring widths in Arizona from 548 A.D. onwards obtained by

D. A. Graybill in 1984 and maintained by R. Hyndman at www-personal.buseco.monash.edu.au/~

hyndman/TSDL. The time plot of Figure 1 shows the prototypical behaviour of long range

dependent data with several local trends raising doubts about stationarity. We �rst analyze

this question from a semiparametric point of view and compute Robinson's (1995b) Gaussian

semiparametric estimate for bandwidths m = 25 and 50 with the original and di�erenced series,

adjusting the value of d in the latter case.

Table 1: Memory of tree-ring widths. Semiparametric estimatesbdSemip m = 25 m = 50

Xt .586 (.100) .584 (.071)

�Xt .599 (.100) .594 (.071)

Though all estimates give values bd > 0:5; con�dence intervals based on the asymptotic normal

distribution and the standard errors in parentheses include stationary values. These are valid

for both stationary and nonstationary series as far as �0:5 < d < 0:75, see Velasco (1999b).

We also tried Robinson's (1994b) score tests of stationary and nonstationary hypotheses for

fractional exponential (FEXP(q)) models with Bloom�eld exponential modeling of short range

behaviour (see Section 4). They do not reject the null hypothesis d = do � 0:5 comparing one-

sided statistics to a standard normal for any low order FEXP(q) model. However for q � 2 the

following t-ratios indicate the presence of some higher level of memory:

Turning to fractional ARIMA modeling, Beran's (1995) estimation procedure selects an

AR(3) model with bd = :611 (:051); while a simpler AR(2) model gives bd = :551 (:057): These

estimates use fractionally di�erenced data together with a time domain approximation to an

ARMA Gaussian likelihood. In fact if we assume that the series is nonstationary and take dif-
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Table 2: Tests of fractional hypothesis for tree-ring widths

do .4 .5 .6 .7

q = 0 1.08 -2.16 -4.18 -5.50

q = 1 1.42 -1.03 -2.76 -3.97

q = 2 4.04 1.83 .14 -1.13

q = 3 3.87 1.99 .50 -.66

q is the order of the FEXP(q) model maintained under the null.

ferences the results are very close: bd = :627 (:051) and bd = :564 (.057) with similar �ts for the

AR(3) and AR(2) parameters.

In the present paper we justify the
p
n-consistency and the use of normal approximations

and asymptotic standard errors for the frequency domain (possibly tapered) Whittle estimates of

nonstationary series with no prior assumptions on d. For the stationary increments of the tree-

ring widths the best �t of Whittle estimates is given by an AR(2) model with bd = :563. However,

working with the original, nonstationary, series and without constraining bd to the stationary

interval, the same criterion �nds that bd = :556 with almost the same autoregressive parameters.

This indicates the claimed robustness to nonstationarity of frequency domain estimation, which

could be reinforced by tapering the data if the trending behaviour were very strong. Using

the cosine bell taper ((4) below) we con�rm the small degree of nonstationarity. We also tried

FEXP(2) models, obtaining similar values of bd, in agreement with the score tests.

Table 3: Memory of tree-ring widths. Parametric estimatesbdWhittle AR(2) FEXP(2)

No taper Cos taper No taper Cos taper

Xt .556 (.057) .536 (.082) .617 (.071) .613 (.099)

�Xt .563 (.057) .501 (.084) .609 (.071) .574 (.099)

The rest of the paper is organized as follows. The following section presents the parametric

model and discusses the properties of the tapered Fourier transform of nonstationary time series.

Section 3 de�nes the Whittle estimates and establishes their asymptotic properties. The �nite

sample properties of the estimates are examined in a Monte Carlo experiment in Section 4, while

Section 5 applies the methods discussed to two empirical series. The technical assumptions and

results are summarized in Appendix A, with proofs in Appendix B.
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2 THE MODEL AND THE DISCRETE FOURIER TRANS-

FORM

We assume that the psd of Xt satis�es (2) and belongs to the parametric class de�ned by

f(�;�2; �) =
�2

2�
k(�; �)

where � = (�(1); : : : ; �(a))0 (with d = �(1)), and �2 are any admissible values of the unknown

parameter vector �o and scalar �2o . Thus f(�) = f(�;�2o ; �o). We assume thatZ �

��
log k(�; �)d� = 0; all �: (3)

In stationary series, with d < 1
2
, (3) indicates that �2, functionally independent of �, is the

variance of the best linear predictor for a process with sd f(�; �2; �). It was employed by

Hannan (1973) in his treatment of short memory series and could be relaxed at cost of some

extra complexity (see Robinson, 1978, Hosoya and Taniguchi, 1982). However (3) covers standard

parameterizations of fractional ARIMA and FEXP models.

De�ne the tapered discrete Fourier transform (DFT) of Xt for t = 1; : : : ; n, and �j = 2�j=n,

j integer, and a taper sequence fhtgnt=1 as

w(�j) = w(Xt; ht; �j) :=

 
2�

nX
t=1

h2t

!�1=2 nX
t=1

htXte
i�j t;

and the tapered periodogram as I(�j) = jw(�j)j2. The usual DFT has ht � 1. Typically ht

downweights the observations at both extremes of the sequence, leaving largely unchanged the

central part of the data.

For short memory processes the untapered periodogram is an inconsistent but asymptoti-

cally unbiased estimate at continuity points of the sd and approximately independent across

frequencies �j. Robinson (1995a) extended such results for long range dependent series, while

Velasco (1999a) further extended them to certain nonstationary processes when the memory

is not too high, d < 1, now with respect to the psd (see Appendix A). However the bias and

dependence of the periodogram ordinates are a�ected by sharp peaks in the psd. Tapering was

suggested by Tukey (1967) to control leakage problems in spectral estimation when nonstation-

arity is suspected, as was checked in di�erent frameworks by Zhurbenko (1979), Robinson (1986)

and Dahlhaus (1988) among others.

Zhurbenko (1979) used a class of data weights fh(p)t g suggested by Kolmogorov, with p =

1; 2; : : : ; and N = n=p assumed to be integer, proportional to the coeÆcients cp;N(t) given by

p(N�1)X
t=0

ztcp;N (t+ 1) = (1 + z + � � �+ zN�1)p =

 
1� zN

1� z

!p
:
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These tapers can be obtained by increasingly smooth convolutions of the uniform density (see

Alekseev, 1996), and when p = 1 give the nontapered DFT weights, ht � 1, when p = 3 they are

similar to the full cosine bell

ht =
1

2

�
1� cos

2�t

n

�
; (4)

while when p = 4 they are very close to Parzen's weights,

ht =

8>>>><>>>>:
1� 6

����2t�nn

���2 � ���2t�nn

���3� ; N < t < 3N ;

2
n
1�

���2t�nn

���o3 ; 1 � t � N;

3N � t � 4N:

The asymptotic properties of the taper sequences depend crucially on the kernel

Dh(�):=
nX

t=1

hte
i�t;

which is the Dirichlet kernel when ht = 1, and we use them to characterize an extended class of

data tapers. We say that a non-negative, symmetric (around bn
2
c) and normalized (supht = 1)

sequence of data tapers fhtgn1 is of order p if the following two conditions are satis�ed:

1. For n=p integer

Dh(�) =
a(�)

np�1

�
sin[n�=2p]

sin[�=2]

�p
; (5)

where a(�) is a complex function, whose modulus is bounded and bounded away from zero,

with p� 1 derivatives, all bounded for � 2 [��; �].

2. For some 
h, 0 < 
h � 1, limn!1 n�1
Pn

t=1 h
2
t = 
h.

Then it can be shown that Parzen weights are of order p = 4 but cosine bell ones are

of order p = 1, while sharing some properties with tapers of order p = 3, as discussed in

Appendix A. Henceforth when p = 1 we will imply the usual DFT without tapering and the

tapered periodogram with a taper of order p will be denoted as Ip(�j):

As suggested by a referee, summation by parts yields, for a di�erentiable taper which vanishes

at the boundaries, with derivative h0t,

w(Xt; ht; �) �
ei�

1� ei�

�
w(�Xt; ht; �) +

w(Xt; h
0
t; �)

n

�
;

for � 6= 0 (mod2�), explaining why a suÆciently smooth taper (i.e. a taper of suÆciently high

order p) can deal with arbitrary levels of memory d, justifying also de�nition (2). In fact, from

Hurvich and Ray (1995) and Velasco (1999a), we can obtain Solo's (1992) inversion calculation

for f(�) in the nonstationary case,

E[Ip(�jp)] =

 
2�

nX
t=1

h2t

!�1Z �

��
jDh(�� �jp)j2 f(�)d� � f(�jp);
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as n ! 1. Then the tapered periodogram can be asymptotically unbiased for the psd f of

nonstationary series at Fourier frequencies �jp, j 6= 0 (modN), not too close to the origin, though

with increased correlation between adjacent ordinates (see Theorems 3 to 5 in Appendix A).

Furthermore, using (5) for a data taper of order p

w(t`; ht; �jp) = 0; ` = 0; 1; : : : ; p� 1; (6)

so tapers also remove polynomial trends in the observed sequence as when e.g. the mean � 6= 0;

if we concentrate on the same set of frequencies �jp; j 6= 0 (modN).

3 WHITTLE ESTIMATES

To estimate �o we use a possibly tapered version of Hannan's (1973) discrete frequency-domain

Whittle objective function

Qn(�) =
2�p

n

X
j(p)

Ip(�j)

k(�j ; �)
:

Here
P

j(p) is a sum over j = p; 2p; : : : ; n�p; assuming for simplicity that n=p is an integer. Thus

we omit zero frequency, for mean-correction purposes in the stationary case, while the exclusion

of frequencies �j between �p; �2p; : : : ; �n�p is for (polynomial) trend correction and to guarantee

the boundedness of the periodogram expectation under nonstationarity. This Qn(�) cannot be

replaced by an integral, corresponding to the continuous Whittle objective function, but in any

case the discrete form is computationally more convenient and makes more direct use of the fast

Fourier transform and functional form for k(�; �). The omission of frequencies when p > 1 could

be avoided to achieve greater eÆciency, for example if it is known that do <
2
3
and � = 0. As in

Hannan (1973) we do not require Gaussianity.

We estimate �o by b� = argmin
�2�

Qn(�);

and estimate �2o by b�2 = Qn(b�):
Here �o 2 �, a compact set, and do 2 �(1) = [r1;r2], a closed interval, �1

2
< r1 < r2 <

1. Thus as in Beran (1995) we exclude noninvertible series. Unlike for the implicitly-de�ned

semiparametric estimators of d (Robinson, 1995b, Velasco, 1999b) there is no restriction on

the upper limit r2, but the maximum degree of memory do that we can estimate consistently

depends on the tapering applied.

In our statements of Theorems 1 and 2 we refer to assumptions listed in Appendix A.

Theorem 1 Under Assumptions 1 to 4, with p � bdo + 1
2
c + 1 [only p > do when � = 0 or

do <
1
2
], b�!p �o and b�2 !p �

2
o as n!1.
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The estimates b� based on untapered observations (p = 1) are consistent for nonstationary

observations and any do < 1, but only if � = 0; thus covering nonstationary but "mean-reverting"

data (1
2
� d < 1) without drift. When � 6= 0 we need an increased degree of tapering to eliminate

the deterministic trend present in integrated series, d � 1
2
, by (6). If � is known to be 0 (and

there are no other deterministic trends) the tapering required for consistency is the minimum

to obtain a periodogram with bounded expectation in (6) when the psd diverges at the origin,

p > do. In any case more tapering is needed to obtain asymptotically normally distributed b�.
Depending on the de�nition of �, in the proof we have to consider separately the cases where

it is possible that d � do� 1
2
and those where r1 > do� 1

2
, because of the non-uniform behaviour

of Qn(�): A similar problem and solution appeared �rst in Robinson's (1995b) treatment of

Gaussian semiparametric estimation for stationary and invertible long memory series with do 2

(�1
2
; 1
2
): This question also a�ects Beran's (1995) treatment of nonstationary fractional ARIMA

models.

Beran (1995) considered time domain approximate Gaussian maximum likelihood (ML) es-

timates based on untapered data, whatever the degree of nonstationarity. Of course when sta-

tionarity is correctly assumed his estimates are known to have the same asymptotic properties

as ours with p = 1; since only di�erent approximations to the Gaussian likelihood are being

employed. For the nonstationary case, Beran's de�nition of nonstationary processes in e�ect

di�ers from ours: for the case of a simple fractionally di�erenced (0; d; 0) model, he considers

(1� L)doXt = �t; t > 0; = 0; t � 0; (7)

where �t is white noise, whereas we take

(1� L)sXt = Ut; t > 0; = 0; t � 0; (8)

(1� L)do�sUt = �t; t = 0;�1; : : : ;

for s = bdo+ 1
2
c: He considered the objective function n�1

Pn
t=2

h
(1� L)dXt

i2
: Under (7) this is

n�1
Pn

t=2

h
(1� L)d�do�t

i2
; and for consistency one has to consider uniform convergence proba-

bility arguments with respect to the whole parameter spaces of admissible d, and existence of an

asymptotic global minimum at d = do. This involves consideration of the processes (1�L)d�do�t
which are stationary for d > do� 1

2
and nonstationary otherwise. In fact it is the neighbourhood of

d�do = �1
2
which causes most diÆculty because (1�L)�1=2�t is at the stationary/nonstationary

border. Our alternative de�nition (8) of nonstationary processes, when combined with tapers,

avoids this diÆculty. The Taylor expansion employed by Beran (1995, p. 670) to prove consis-

tency seems to be circular since the op(1) error in the expansion for n1=2(b�� �o) is only justi�ed
when b� is in a suitably small neighbourhood of �o; which presupposes the consistency to be

established, while for asymptotic normality of implicitly-de�ned extremum estimates such as

his a rigorous previous proof of consistency is essential. At the same time tapering involves

7



Table 4: Bias of bd for Fractional ARIMA(2,d,0) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1bd G-SEM -.037 -.041 -.036 -.023 -.078 -.350 -.206 -.105 -.267 -.246 -.225 -.362

W-p -.006 .002 .002 -.025 -.137 -.395 -.023 .070 -.095 -.081 -.067 -.456

W-2S -.017 .002 -.003 .000 -.027 -.014 -.033 .116 -.034 -.037 -.037 -.073

ML-2S -.002 .004 .004 -.004 -.028 -.030 -.012 .128 -.022 -.020 -.016 -.109

Taper, p = 2bd G-SEM -.068 -.064 -.059 -.048 -.059 .007 -.270 -.261 -.253 -.237 -.222 -.188

W-p -.037 -.026 -.023 -.018 .006 .017 -.082 -.076 -.071 -.061 -.050 -.029

W-2S -.018 -.009 -.013 -.016 -.007 .009 -.035 -.031 -.033 -.036 -.037 -.031

ML-2S -.006 .007 .005 .007 .020 .030 -.014 -.010 -.011 -.009 -.004 .013

an eÆciency loss (see Theorem 2 below), and Beran's simulations support his insight that ML

estimates of fractional models have the classical
p
n-consistency, asymptotic normality and eÆ-

ciency properties. Indeed, it is consistent with Robinson's (1994b) �ndings that score tests for a

unit root and many other stationary and nonstationary null hypotheses, when directed against

fractional alternatives such as (7), have standard asymptotics, since the test statistic depends

on only the null di�erenced data. By contrast unit root tests against autoregressive alternatives

have nonstandard asymptotics (see e.g. Solo, 1984).

We now discuss the asymptotic normality of b�.
Theorem 2 Under Assumptions 1 to 4, 7 to 9 and

(i) Assumption 5 if p = 1 (� = 0 or do <
1
2
), with do <

3
4
;

(ii) Assumption 6 if p > 1 (any �), such that p � bdo + 1
2
c+ 1, � > 1,

as n!1
p
n(b� � �o)!d N

�
0; 4� p�p�

�1
o

�
:

The asymptotic variance formula is the same as for stationary series, with

�o =

Z �

��

�
@

@�
log k(�; �o)

��
@

@�0
log k(�; �o)

�
d�;

and it may be shown that

2�

n

n�1X
j=1

�
@

@�
log k(�j ; b�)�� @

@�0
log k(�j ; b�)�

is a consistent estimate of �o. �p is the taper variance in
ation factor, �p = limn!1

Pn
k=p;2p;:::

h2(�k) with h(�) =
�Pn

1 h
2
t

��1Pn
1 h

2
t cos t�, which takes the values 1.05000, 1.00354 and 1.00086
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Table 5: Standard deviation of bd for Fractional ARIMA(2,d,0) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1bd G-SEM (.079) .088 .097 .102 .101 .086 .087 (.091) .124 .178 .178 .174 .172 .081

W-p (.046) .049 .053 .056 .056 .119 .065 (.073) .093 .141 .137 .135 .132 .191

W-2S (.046) .048 .056 .051 .050 .217 .049 (.073) .090 .126 .090 .089 .089 .237

ML-2S (.046) .049 .054 .055 .049 .120 .045 (.073) .088 .129 .096 .097 .099 .196

Taper, p = 2bd G-SEM (.112) .165 .151 .152 .154 .143 .165 (.129) .201 .203 .202 .200 .199 .199

W-p (.069) .078 .081 .080 .079 .074 .065 (.110) .146 .147 .147 .146 .145 .146

W-2S (.046) .049 .052 .051 .049 .049 .045 (.073) .089 .091 .090 .088 .088 .094

ML-2S (.046) .058 .058 .059 .061 .059 .055 (.073) .099 .100 .101 .103 .106 .110

for the Zhurbenko data tapers with p = 2; 3; 4 respectively, implying modest increments of the

variance of 5%, .35% and .09% for each of the data tapers (apart from the extra factor p due to

the sampling of frequencies). Note that if we summed for k = 1; 2; : : : ; n in �p by considering

all Fourier frequencies in Qn, then by Parseval's identity �p = limn!1 n(
P
h2t )

�2
P
h4t would

be the usual tapering variance correction (see e.g. Dahlhaus, 1985) and �1 = 1 by orthogonality

of the sine and cosine functions.

The same result holds for the cosine bell taper (4) when do <
3
2
and � = 0 (or do <

1
2
for any

�) are known, where in this case it is possible to include all frequencies �j, 2 � j � n� 2, in Qn

as if actually p = 1, obtaining �cos =
35
18
. This accounts for a reduction of the variance of over

33% from setting p as 3, involving then only asymptotically uncorrelated periodogram ordinates

in Qn (see Theorem 4 in Appendix A).

In fractional models, because of the separate modeling of short and long run behaviour,

� = (d; �(�1))0, f(�;�2; �) = (�2=(2�)) j1 � ei�j�2d h(�; �(�1)), where h is a short memory sd,

corresponding, for example, to an ARMA or Bloom�eld (1973) exponential model (see (9) below),

the asymptotic variance of the parameter estimates is free of do, and therefore of the degree of

nonstationarity of the observed time series (apart from the e�ects of tapering if used), and again

is consistent with the nature of the score tests of Robinson (1994b). Initial di�erencing improves

asymptotic eÆciency only if a lower order taper is used (with smaller p, since the contribution of

�p is of less signi�cance), but this makes all estimates more sensitive to peaks or nonstationarity

at other frequencies (see the conclusions of Hauser (1999) for stationary fractional ARIMAmodels

and various methods of approximate ML estimation, including tapered-Whittle estimates). In

any case, the steeper f(�) at � = 0, i.e. the larger d; the worse the asymptotic approximations

9



Table 6: Bias of b�1 and b�2 for Fractional ARIMA(2,d,0) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1b�1 W-p -.004 -.004 -.005 -.081 -.316 -.601 .011 .038 .047 .041 .035 -.503

W-2S .001 -.003 .001 -.004 .003 .003 .015 .014 .014 .014 .014 .019

ML-2S -.007 -.003 -.001 .000 .006 .015 .004 .009 .009 .008 .005 .064b�2 W-p .003 .006 .001 .112 .390 .585 .008 .004 .003 .004 .005 .575

W-2S .002 .005 -.004 .005 .002 .002 .007 .007 .007 .006 .006 .026

ML-2S .000 .002 -.008 .002 .000 -.002 .002 .002 .002 .001 .001 .009

Taper, p = 2b�1 W-p .010 .014 .013 .010 .002 .048 .042 .040 .038 .033 .029 .019

W-2S .001 .003 .005 .006 .002 .015 .017 .013 .013 .014 .014 .010

ML-2S -.005 -.005 -.004 -.005 -.008 .037 .005 .003 .003 .002 -.001 -.010b�2 W-p -.001 -.006 -.005 -.005 .000 .009 .000 .001 .001 .002 .004 .008

W-2S .002 .000 -.001 -.001 .002 .027 .007 .008 .007 .006 .006 .010

ML-2S .000 -.003 -.004 -.004 -.001 .011 .002 .002 .001 .001 .001 .003

can be expected for �nite samples.

4 SIMULATION RESULTS

In this section we investigate the performance of Whittle estimates for simulated stationary

and nonstationary data. We generated independent samples of two Gaussian time series models

with several values of the memory parameter d and two sample sizes (n = 200 and 512, with

1000 and 100 replications respectively). The short memory components are ARMA(2,0) with

autoregressive parameters �1 = 0:65, �2 = �0:6 and � = 4, and Bloom�eld's (1973) exponential

model as proposed in Robinson (1994a, p. 73), with parameters �2 = 2�e�1 (which corresponds

to �0 = �1 in the usual parameterization), �1 = 5 and �2 = �3, leading to the FEXP(2) model

f(�;�2; �) =
�2

2�
j1� ei�j�2de�1 cos �+�2 cos 2�: (9)

These models have variances of similar order of magnitude and psd of similar shape, with a

peak around �=3 and comparable behaviour at the origin. The memory parameters used were

d = �0:4 to analyze series close to non-invertibility, d = 0:4, to compare with the stationary case,

d = 0:6; 0:9, nonstationary but still mean-reverting series, and d = 1:1; 1:4, di�erence stationary

(� = 0).
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Table 7: Standard deviation of b�1 and b�2 for Fractional ARIMA(2,d,0) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1b�1 W-p (.044) .043 .047 .043 .098 .187 .088 (.071) .078 .101 .107 .106 .106 .204

W-2S (.044) .043 .048 .041 .049 .043 .046 (.071) .078 .077 .077 .077 .077 .102

ML-2S (.044) .043 .048 .043 .048 .042 .044 (.071) .078 .079 .080 .081 .081 .147b�2 W-p (.036) .036 .039 .037 .123 .188 .065 (.057) .058 .075 .081 .081 .081 .115

W-2S (.036) .036 .038 .036 .038 .036 .031 (.057) .058 .059 .059 .059 .059 .103

ML-2S (.036) .035 .038 .036 .037 .035 .030 (.057) .058 .058 .058 .058 .058 .061

Taper, p = 2b�1 W-p (.066) .063 .071 .070 .070 .063 .215 (.106) .115 .115 .115 .115 .114 .115

W-2S (.044) .043 .046 .046 .045 .043 .197 (.071) .078 .077 .077 .076 .077 .078

ML-2S (.044) .045 .049 .049 .050 .046 .190 (.071) .082 .083 .083 .084 .085 .086b�2 W-p (.054) .054 .050 .050 .050 .054 .061 (.085) .082 .082 .082 .082 .082 .083

W-2S (.036) .036 .031 .031 .031 .036 .128 (.057) .058 .059 .059 .059 .059 .060

ML-2S (.036) .035 .031 .030 .030 .035 .058 (.057) .058 .058 .058 .058 .058 .058

Stationary ARFIMA series were simulated by the S-PLUS function arima.fracdiff.sim

and then integrated an integer number of times if d � 0:5. For the exponential models (9), we

simulated �rst the short memory model with d = 0 and then integrated fractionally to reach

the appropriate value of d. For the short memory simulation of the exponential models we used

the Davies and Harte (1987) algorithm, as programmed by Beran (1994), using the �rst 50

autocovariances obtained by numerical integration of the sd.

Non-tapered (p = 1) and tapered (with Zhurbenko taper of order p = 2) data were considered.

Also the cosine bell taper (4) was used but the results were similar to the taper with p = 2 and

are not reported here. The estimates compared are the following:

1. G-SEM: Gaussian semiparametric narrow-band estimate of d (Robinson, 1995b, Velasco,

1999b) with bandwidth numbers m = 30 (20 for the FEXP model) and 40 for each sample

size.

2. W-p: Whittle estimates b�.
These estimates are consistent and asymptotically normal for all d we tried when tapering

is applied, but only consistent for d < 1; and asymptotically normal for d < 3
4
if the raw series

is used. Using the Whittle memory estimates b�1 = bd(p) from W-p, it is possible to fractionally

di�erenceXt to achieve approximate short memory stationarity and then use standard untapered

11



Table 8: Bias of bd for Bloom�eld FEXP(2) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1bd G-SEM -.072 .169 .258 .086 -.099 -.396 -.150 -.191 -.175 -.144 -.480 -.373

W-p -.149 -.009 .093 .026 -.137 -.426 -.259 -.359 -.379 -.397 -.623 -.411

W-2S -.175 -.121 -.156 -.208 -.215 -.020 -.313 -.361 -.386 -.380 -.639 -.362

Taper, p = 2bd G-SEM -.130 -.117 -.108 -.099 -.093 -.079 -.242 -.253 -.215 -.205 -.179 -.149

W-p -.074 -.064 -.056 -.053 -.085 -.121 -.216 -.225 -.203 -.208 -.239 -.335

W-2S .546 -.054 -.041 -.101 -.135 -.221 .365 -.202 -.214 -.144 -.176 -.374

stationary long memory methods to evaluate the �rst Whittle step in 2., which uses possibly

tapered nonstationary inputs. We propose two alternative two-step (asymptotically equivalent)

procedures, where the second step's input is in both cases the untapered �
bd(p)Xt:

3. W-2S: Two-Step Whittle estimates, where the second step is Whittle (stationary) estima-

tion, p = 1.

4. ML-2S: Two-Step time domain (stationary) ML estimates for ARIMA stationary series,

where the second step is implemented by the S-PLUS function arima.fracdiff.mle (see

Haslett and Raftery, 1989).

All parametric estimates (2. through 4.) use the same (known) true model, since otherwise

the estimates of d are not guaranteed consistent for the second step (even if enough tapering were

applied), and tapering is only used for the �rst step estimates, since it is hoped that di�erencing

achieves stationarity of the second step inputs.

For Whittle estimates (and the Gaussian semiparametric), the minimum of Qn was found

using the S-PLUS function nlmin. We report bias and standard error across replications. The

asymptotic standard deviations for each particular sample size are in parentheses, taking into

account the tapering applied and assuming that the two-step estimates have the ML asymptotic

variance.

4.1 ARFIMA models

The summary of the simulations is contained in Tables 4 and 5 for the estimates of d and in

Tables 6 and 7 for the estimates of �1 and �2.

12



Table 9: Standard deviation of bd for Bloom�eld FEXP(2) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1bd G-SEM (.079) .102 .192 .149 .044 .020 .024 (.112) .171 .161 .162 .158 .437 .198

W-p (.070) .114 .167 .177 .089 .027 .018 (.113) .193 .188 .190 .176 .349 .216

W-2S (.070) .126 .133 .125 .124 .106 .187 (.113) .200 .178 .184 .204 .392 .368

Taper, p = 2bd G-SEM (.119) .144 .141 .141 .142 .150 .158 (.168) .292 .279 .290 .278 .275 .285

W-p (.102) .118 .113 .110 .112 .131 .149 (.163) .267 .257 .266 .251 .256 .277

W-2S (.070) .225 .147 .158 .144 .177 .105 (.113) .263 .203 .203 .216 .247 .193

When no tapering is applied (p = 1) the estimation of d breaks down if d > 1, but even for

these values of the memory parameter the two-step procedures give consistent estimates because

the Whittle procedure tends to report bd � 1, so the di�erenced series with these initial estimates

of d are stationary. The bias in Table 4 decreases for all estimates in sample size, and the large

bias for semiparametric estimates can be explained in part by sub-optimal bandwidth choices.

The asymptotic standard deviation gives a good indication of the variability of the Whittle

estimates, but tends to increase slightly with the memory d (see Table 5). The simulations

con�rm the consistency of Whittle tapered estimates for all d. Nevertheless the bias is larger

than for two-step estimates and the standard deviations are also slightly larger than expected.

This increment in variability of tapered Whittle leads to an increase in the variance of the two-

step ML estimates, but not of the two-step Whittle estimates, so time domain estimation seems

more sensitive to previous fractional di�erencing.

In Table 6 tapered Whittle estimation provides better results for the short memory ARMA

parameters than for the memory parameter d, with very close behaviour to that of the two-step

procedures in terms of bias, while in Table 7 the standard deviation, though larger, is very well

approximated by the asymptotic outcome. However, for the �rst autoregressive parameter �1;

the tapered estimates produce larger biases than the other methods in some particular cases.

Here the invariance of the results across d is even more evident (except for d > 1 and p = 1

when untapered procedures yield inconsistent estimates). In conclusion, for the largest sample

size the asymptotic theory gives a good approximation to the �nite sample behaviour of Whittle

estimates, con�rming the uniform behaviour of the estimates across d, even for nonstationary

series.
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Table 10: Bias of b�1 and b�2 for Bloom�eld FEXP(2) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1b�1 W-p -.725 -2.119 -3.605 -4.703 -4.858 -4.944 -.752 -1.074 -1.365 -2.364 -1.813 -3.001

W-2S -.753 -.823 -.717 -.864 -1.580 -3.648 -.909 -1.127 -1.356 -1.589 -1.235 -2.813b�2 W-p .905 1.653 2.468 2.949 2.989 3.018 1.150 1.527 1.757 2.345 1.708 1.793

W-2S .961 .924 .909 1.107 1.591 2.387 1.350 1.572 1.776 1.868 1.606 2.167

Taper, p = 2b�1 W-p .132 .113 .099 .077 -.007 -.256 .373 .393 .327 .278 .160 -.304

W-2S -3.580 -1.031 -1.155 -1.302 -1.691 .618 -3.711 -1.479 -1.435 -2.024 -2.457 2.008b�2 W-p .040 .032 .029 .044 .209 -.875 .142 .154 .161 .240 .426 -1.142

W-2S 2.088 .957 1.025 1.231 1.544 1.178 2.388 1.551 1.550 1.844 2.159 1.583

4.2 Exponential models

In Tables 8 to 11 we report the results for exponential models with the same values of d as used

before. The conclusions for n = 200 and for all untapered estimates of d are rather negative, with

large biases (Table 8) and variability (Table 9) relating to the asymptotic value, probably due to

a diÆcult distinction between the short memory and long memory components of this particular

model. Nevertheless, tapered Whittle estimation for n = 512 produces for all d reasonable biases

and standard deviations, the smallest across all methods and quite close to the asymptotic ones,

while both two-step estimations break down in many cases.

The superiority of tapered Whittle "W-p" estimates for the memory parameter of fractional

exponential Bloom�eld models carries over also for the short memory parameters �1 and �2,

for which the untapered two-step procedures completely fail in capturing the true model for

many parameter value combinations (Tables 10 and 11). Here Zhurbenko weights with p = 2 for

tapered estimates appear superior than the cosine bell in terms of bias for most values of d.

Our simulations agree with Dahlhaus' (1988) �nding that tapering is desirable in estimating

short memory parameters when the sd has peaks due to AR roots close to the unit circle, which

are similar to the zero frequency singularity of the psd of fractionally integrated processes.

5 ILLUSTRATIVE EXAMPLES

In this section we analyze the two empirical series studied by Beran (1995), Chemical Process

Temperature readings (Series C) and Chemical Process Concentration readings (Series A) from

Box and Jenkins (1976), which are also among the series to which Robinson (1994b) applied his
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Table 11: Standard deviation of b�1 and b�2 for Bloom�eld FEXP(2) Models

n = 512 n = 200

d -.4 .4 .6 .9 1.1 1.4 -.4 .4 .6 .9 1.1 1.4

No taper, p = 1b�1 W-p (.166) .462 .994 1.889 .583 .444 .025 (.372) .613 .722 .771 .973 2.064 2.297

W-2S (.166) .551 .472 .477 .520 .763 1.260 (.266) .664 .748 .726 .990 .941 1.685b�2 W-p (.113) .456 .549 .501 .233 .217 .016 (.253) .555 .598 .597 .552 1.306 1.547

W-2S (.113) .556 .526 .528 .533 .514 .490 (.181) .627 .635 .605 .791 .714 .812

Taper, p = 2b�1 W-p (.249) .261 .255 .251 .258 .290 .425 (.372) .534 .504 .524 .514 .569 .731

W-2S (.166) 1.186 .604 .681 .776 .984 .408 (.266) 1.258 1.006 1.038 1.249 1.266 .568b�2 W-p (.170) .166 .169 .169 .170 .214 .527 (.253) .311 .306 .304 .316 .412 .687

W-2S (.113) .718 .521 .549 .565 .611 .471 (.181) .731 .692 .691 .712 .646 .588

Table 12: CHEMICAL SERIES-C. ARFIMA(1; d; 0)

p = 1 p = 2 cos

G-SEM W-p W-2S G-SEM W-p W-2S G-SEM W-p W-2Sbd .9928 1.0400 .9788 1.4410 .8676 1.0130 1.6370 .9686 .9930

(.100) (.091) - (.150) (.137) - (.140) (.128) -b�1 - .1157 .8237 - .8389 .7973 - .8263 .8128

- (.116) - - (.141) - - (.143) -b�2 - .3171 .0186 - .0162 .0189 - .0150 .0187

score tests against fractional alternatives. We use the same estimates as in the simulations (m =

25) and Zhurbenko's (p = 2) and cosine tapers. Both data tapers can deal with nonstationary

series with � = 0, but only tapering of order p = 2 allows series with linear drift.

The conclusions are in line with Robinson's (1994b) and Beran's (1995) �ndings, and they

contradict Box and Jenkins' (1976) �nding of bd = 1 in series A and cast serious doubts about

their bd = 1 in series C, these values obtained by considering only integer degrees of di�erencing.

For series C, all procedures in Table 12 for an ARFIMA(1,d,0) model found values of d in-

distinguishable from 1 (except both tapered Gaussian semiparametric estimates) and a highly

signi�cant �rst order autoregressive parameter of about 0.82 (in close agreement with Beran,

1995), which may explain why the tapered semiparametric estimates gave larger estimates of d

(clearly above 1) than the corresponding parametric methods. However, Whittle and semipara-

metric estimates without tapering (p = 1) may be inconsistent for this level of memory as is

con�rmed by the value of b�2 (though the two-step estimate of d is very close to the one with
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Table 13: CHEMICAL SERIES-C. Robinson's (1994) Tests of Nonstationarity

do 0 .25 .5 .75 1 1.25 1.5 1.75 2

q = 0 28.3448 3.0751 29.4260 26.2129 20.0105 11.7572 4.5624 -.0429 -2.7152

q = 1 13.1330 14.4261 12.6705 1.0989 6.5726 2.8689 1.3251 -1.3023 -2.8529

q = 2 7.2360 8.0680 7.4209 5.7350 3.5236 1.2513 -.6660 -2.0282 -2.9065

q = 3 4.1008 4.8137 4.4391 3.3034 1.8890 .3854 -.9920 -2.0581 -2.7742

original data).

We also estimated FEXP(q) models of orders q = 0, 1, 2 and 3 (Table 14), the best �t

produced by q = 2. Estimates of d decrease with the order q, from about 1.75 (q = 0) to 1.2

(q = 3). As for ARIMA models, Whittle estimates with the raw series are then likely to be

inconsistent. We also used Robinson's (1994b) score test in Table 13 (using the same Bloom�eld

exponential models to explain high frequency behaviour), completing his results for an extended

set of null values of d. The values reported are one-sided test statistics, with standard normal

asymptotic distribution. The score tests always reject the hypothesis d = 2, against d < 2, and

the hypothesis d = 1, against d > 1, but often do not reject d = 1:75; 1.5 and 1.25. The tests

show a similar pattern to FEXP Whittle estimates, which contrasts with the ARIMA modelling

in Table 12, but agrees with the semiparametric tapered estimates.

Table 14: CHEMICAL SERIES-C. Memory estimates bd, FEXP(q)

p = 1 p = 2 cos

W-p W-2S W-p W-2S W-p W-2S

q = 0 1.1300 1.7522 1.7032 1.7509 1.7966 1.7510

(.052) (.052) (.075) (.052) (.073) (.052)

q = 1 1.0688 1.5231 1.5110 1.6136 1.5685 1.6183

(.083) (.083) (.120) (.083) (.116) (.083)

q = 2 .9299 1.3703 1.2225 1.4082 1.2653 1.4125

(.106) (.106) (.154) (.106) (.147) (.106)

q = 3 .7529 1.2126 1.1313 1.3162 1.1964 1.3286

(.125) (.125) (.181) (.125) (.174) (.125)

For series A the results were much more uniform. In this case the memory is noticeably

smaller, about 0.45 as estimated for an ARFIMA(0,d,1) model (Table 15) and now all estimates

are expected to be consistent (Beran, 1995, reported bd = 0:445). The tapered Whittle (p = 2) and

the semiparametric (cosine bell) estimates reported slightly larger values than other procedures.

Here the MA(1)  1 parameter seems insigni�cant (except perhaps for the Whittle estimate with

p = 2, which is the method with a highest estimate of d and largest trade-o� between d and the
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Table 15: CHEMICAL SERIES-A. ARFIMA(0; d; 1)

p = 1 p = 2 cos

G-SEM W-p W-2S G-SEM W-p W-2S G-SEM W-p W-2Sbd .4237 .4408 .4572 .4674 .5502 .4592 .5178 .4515 .4578

(.100) (.067) - (.150) (.104) - (.140) (.096) -b 1 - .0183 .0570 - .1839 .0500 - .1116 .0577

- (.061) - - (.093) - - (.086) -b�2 - .0994 .0972 - .0819 .0974 - .0868 .0971

Table 16: CHEMICAL SERIES-A. Robinson's (1994) Tests of Nonstationarity

do 0 .25 .5 .75 1 1.25 1.5 1.75 2

q = 0 16.0836 4.5696 -1.5296 -4.0191 -5.1917 -5.8752 -6.3249 -6.6391 -6.8677

q = 1 8.0214 2.9196 -.5299 -2.5009 -3.4693 -4.0131 -3.4103 -4.0675 -4.3663

q = 2 4.8408 1.7333 -.9173 -2.6523 -3.6170 -4.1686 -4.5341 -4.7653 -4.7765

q = 3 2.8842 1.1621 -.6467 -2.0962 -3.0060 -3.5145 -3.8202 -3.9798 -3.7932

short memory part of the model). If we eliminate the parameter  1 in a reduced ARIMA(0,d,0)

model (see Table 17), the estimates of d now drop to about 0.41, also with reduced standard

deviations.

Table 17: CHEMICAL SERIES-A. ARFIMA(0; d; 0)

p = 1 p = 2 cos

W-p W-2S W-p W-2S W-p W-2Sbd .4286 .4217 .4171 .4179 .3692 .4207

(.056) - (.083) - (.078) -b�2 .0994 .0973 .0829 .0983 .0872 .0973

Robinson's (1994b) tests always reject d = 1 and d = 0:75 and �nd some evidence in support

of d = 0:5 and 0:25 for Series A (see Table 16), con�rming the results for Whittle estimates of

the FEXP model (Table 18), which, except in two cases, always give values between 0.34 and

0.47.

6 Appendix A: Technical assumptions and results

In the following regularity conditions, statements concerning vector or matrix derivatives of

k(�; �) with respect to � should be understood elementwise. They are similar to those in Condi-

tions A of Fox and Taqqu (1986) or in Dahlhaus (1989) for parametric estimates or in Robinson
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Table 18: CHEMICAL SERIES-A. Memory estimates bd, FEXP(q)

p = 1 p = 2 cos

W-p W-2S W-p W-2S W-p W-2S

q = 0 .4286 .4217 .4171 .4179 .3692 .4207

(.056) (.056) (.081) (.056) (.078) (.056)

q = 1 .4421 .4571 .5645 .4554 .4623 .4582

(.089) (.089) (.129) (.089) (.124) (.089)

q = 2 .3771 .4323 .4198 .4208 .3206 .4255

(.113) (.113) (.165) (.114) (.158) (.113)

q = 3 .3483 .4470 .4397 .4469 .2704 .4301

(.134) (.134) (.194) (.134) (.187) (.134)

(1995a, b) for semiparametric estimation of d, all holding for standard models such as frac-

tional ARIMA's, fractional Gaussian noise or fractional exponential models (see e.g. Robinson,

1994a, and Beran, 1994). Denote a�(�; �) =
@
@�
a(�; �), a��(�; �) =

@
@�@�

a(�; �) and so on for any

function a.

Assumption 1 (i) �o is an interior point of �.

(ii) k(�; �) � G�j�j�2d as �! 0, 0 < G�< 1, and is continuous and positive at all � 6= 0 and

�2�:

(iii) �1 6= �2 implies that k(�; �1) 6= k(�; �2) on a set of positive Lebesgue measure.

Assumption 2 k(�; �) is di�erentiable in �; with k�(�; �) continuous at all (�; �); � 6= 0; and

k�(�; �) = O(j�j�2d�1) as �! 0:

Assumption 3 For each Æ > 0, k(�; �) is continuously di�erentiable in � at all (�; �), � 6= 0,

with k�1� (�; �) = O(j�j2d�Æ) as �! 0; and these derivatives are continuously di�erentiable in �

at all (�; �), � 6= 0, with k�1�� (�; �) = O(j�j2d�1�Æ) as �! 0:

The di�erentiability with respect to � is required to approximate discrete sums by integrals,

even when f(�) has a singularity at the origin. To describe the stationary di�erenced series we

introduce the following linear process assumption which is taken from Robinson (1995b), and is

restrictive in the linearity it imposes, but not otherwise.

Assumption 4 We assume that

U
(s)
t = �+

1X
`=0

�`�t�`;
1X
`=0

�2` <1;

with �` = �`(�), � 2 �, where E[�tjFt�1] = 0; E[�2t jFt�1] = 1, a.s., t = 0;�1; : : :, and Ft is the

�-�eld of events generated by �t, s � t, and there exists a random variable �, such that E�2 <1

and for all � > 0 and some C > 0, P (j�tj > �) � CP (j�j > �).
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The following technical assumptions will be used to derive the asymptotic distribution of

periodogram averages and parameter estimates. First we consider two smoothness conditions

on f . When no taper is applied we will impose:

Assumption 5 �(�) =
P
1

`=0 �`e
i`�

is di�erentiable in � at all (�; �), � 6= 0 and
d
d��(�) =

O
�
j�(�)jj�j�1

�
as �! 0:

Assumption 5 implies the di�erentiability of f(�) as stated in Assumption 2. This condition

was imposed by Robinson (1995b) in a semiparametric context, with the observation that it

applies to such parametric models as fractional ARIMAs. To use the tapering bias-reduction

properties we assume stronger smoothness conditions.

Assumption 6 k�(�; �) is Lipschitz(� � 1) in �, for some 1 < � � 2 and for all (�; �), � 6= 0

and for some 0 < G�; E� <1, k(�; �) = G�j�j�2d +E�j�j�2d+� + o(j�j�2d+�) as �! 0:

In particular, with � > 1, Assumption 6 implies that, for j�j < �j=2, 0 < j < n=2,

f(�j � �) = f(�j)� �
d

d�
f(�j) +O(�

���2d
j j�j�); (10)

as �! 0, which is the basis for the tapering bias reduction. For the asymptotic distribution of the

estimates and related quadratic forms we need also an extra condition about the fourth moments

of the linear innovations, again taken from Robinson (1995b), and two additional conditions to

approximate the asymptotic covariance matrix of b�.
Assumption 7 Assumption 4 holds and for �nite constants �3 and �4, E[�

3
t jFt�1] = �3,

E[�4t jFt�1] = �4; a.s., t = 0;�1; : : :

Assumption 8 k(�; �) has two continuous derivatives in � at all (�; �), � 6= 0, with k�1��0(�; �) =

O(j�j2d�Æ) as �! 0 for each Æ > 0, and these derivatives are continuously di�erentiable in � at

all (�; �), � 6= 0, with k�1���0(�; �) = O(j�j2d�1�Æ) as �! 0:

Assumption 9
R �
��fk

�1(�; �)+ log k(�; �)gd� can be continuously di�erentiated twice (with re-

spect to �) under the integral sign and ��1o exists.

We review now some results obtained by Robinson (1995a) and Velasco (1999a) for the

(tapered) DFT of possibly nonstationary time series. The following conditions on fU(s) , which

hold under Assumptions 1 and 2, were assumed in these papers.

Assumption 10 For some 0 < G < 1, d > �1
2
, s = bd + 1

2
c, fU(s)(�) = Gj�j�2(d�s) +

o(j�j�2(d�s)) as �! 0:
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Assumption 11 fU(s)(�) has bounded derivative at all � 6= 0, and d > �1
2
, s = bd + 1

2
c,

d
d�
fU(s)(�) = O(j�j�2(d�s)�1) as �! 0:

First we analyze the covariance matrix of the raw DFT w(�j), for frequencies �j ! 0 and

�j ! � 2 (0; �] as n!1. De�ne v(�) = w(�)=f(�)1=2.

Theorem 3 [p = 1] Under Assumptions 10 and 11, d 2 (�1
2
; 1) (� = 0 if d � 1

2
), for any

sequences of positive integers j = j(n) and k = k(n) such that 1 � k < j � n=2, de�ning


j;k � (jk)d�1 log(k + 1), as n!1,

(a) E[v(�j)v(�j)] = 1 +O
�
j�1 log(j + 1) + 
j;j

�
,

(b) E[v(�j)v(�j)] = O
�
j�1 log(j + 1) + 
j;j

�
,

(c) E[v(�j)v(�k)], E[v(�j)v(�k)] = O
�
k�1log j + 
j;k

�
.

For values d � 1 the periodogram is not asymptotically unbiased for f as j increases. Tapering

allows a reduction in the order of magnitude of the bounds in Theorem 3, making possible the

approximation of psd with larger d. Thus, with the cosine bell taper similar results go through

for any d < 3
2
. Other tapers reduce even more the bias and allow consideration of values d � 3

2
.

However, the full advantage of the tapers only shows up when we assume further smoothness

conditions on f :

Assumption 12 f(�) satis�es a Lipschitz condition of degree � � 1 for all � 6= 0, or f(�) is

di�erentiable and
d
d�
f(�) satis�es a Lipschitz condition of degree � 2 (1; 2] for all � 6= 0, and for

some 0 < G;E� <1, d > �1
2
, s = bd+ 1

2
c, as �! 0, fU(s)(�) = Gj�j�2(d�s)+E�j�j�2(d�s)+�+

o(j�j�2(d�s)+�):

This condition holds under Assumption 6 for � > 1 (see also (10)). We consider now the full

cosine bell taper (4) and de�ne the normalized cosine-tapered DFT vcos(�) = w(�)=f(�)1=2.

Theorem 4 [Cosine bell] Under Assumptions 11 and 12, d 2 (�1
2
; 3
2
) (and � = 0 if d � 1

2
),

for any sequences of positive integers j = j(n) and k = k(n), 3 < k + 2 < j � n=2, de�ning


j;k � (jk)d�3 log(k + 1); as n!1,

(a) E[vcos�j)vcos(�j)] = 1 +O
�
minfj�� ; j�1g+ 
j;j

�
,

(b) E[vcos(�j)vcos(�j)] = O
�
j�4 + 
j;j

�
,

(c) E[vcos(�j)vcos(�k)], E[vcos(�j)vcos(�k)] = O(k�1jj � kj�2 +
j;k),

and when k = j + 1 and k = j + 2 all the previous statements are true with

(c') E[vcos(�j)vcos(�j+1)] = �2
3
+O

�
j�1 + 
j;j

�
,

(c") E[vcos(�j)vcos(�j+2)] =
1
6
+O

�
j�1 + 
j;j

�
.

We now analyze the covariance matrix of the (normalized) tapered DFT with tapers of order

p > 1; vp(�). The periodogram is now asymptotically unbiased for any p > d at frequencies
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�jp, j integer, but tapering destroys the orthogonality of the sine and cosine transforms at close

frequencies.

Theorem 5 [p � 2] Under Assumptions 11 and 12, d > �1
2
, for fU(s), a data taper of order

p = 2; 3; : : :, with p > d [p � s+ 1 if � 6= 0], for any sequences of positive integers k = k(n) and

j = j(n), 1 � k < j � n=(2p), de�ning 
j;k � (jk)d�p log(k + 1), as n!1,

(a) E[vp(�jp)vp(�jp)] = 1 +O
�
minfj�� ; j�1g+ 
j;j

�
,

(b) E[vp(�jp)vp(�jp)] = O
�
j�p + j�1�p log(j + 1) + 
j;j

�
,

(c) E[vp(�jp)vp(�kp)], E[vp(�jp)vp(�kp)] = O(k�1jj � kj1�p +k�1jj � kj�p logn+ jj � kj�p+


j;k).

In (c) the term logn only appears if p = 2. Theorem 4's bounds are similar to Theorem 5's

for p = 3, at all Fourier frequencies but only for d < 3
2
, so the cosine bell taper shares some

properties with tapers of order p = 3, though it cannot �lter out polynomial trends.

We now present two lemmas for the consistency and uniform consistency in probability of

discrete averages of periodogram ordinates of possibly nonstationary (and tapered) observations,

which can be seen as speci�c quadratic forms of Xt; t = 1; : : : ; n. All functions are assumed to

be periodic of period 2�. Proofs are collected in Appendix B.

Lemma 6 For an even function  (�), di�erentiable at all � 6= 0, let  (�) = O(f�1(�)j�j�Æ)

and
d
d�
 (�) = O(f�1(�)j�j�1�Æ) as �! 0, Æ 2 (0; 1), let H =

R �
��  (�)f(�)d� <1; and Hn =

(2�p=n)
P

j(p)  (�j)I
p(�j); for p = 1; 2; : : :. Then, under Assumptions 1, 2 and 4, Hn !p H as

n!1 if p � bdo + 1
2
c+ 1; [only p > do if � = 0 or do <

1
2
].

Lemma 7 For an even function  (�; �); let  (�; �) = O(f�1(�)j�j�Æ) as � ! 0 be con-

tinuously di�erentiable in � and � at all (�; �), � 6= 0, � 2 �1 compact, with  �(�; �) =

O(f�1(�)j�j�1�Æ) and  �(�; �) = O(f�1(�)j�j�Æ), Æ = Æ(�) 2 (0; 1) for all � 2 �1, and let

H(�) =
R �
��  (�; �)f(�)d� < 1; and, for p = 1; 2; : : :, Hn(�) = (2�p=n)

P
j(p)  (�j ; �)I

p(�j):

Then, under Assumptions 1, 2 and 4, sup�2�1
jHn(�)�H(�)j !p 0 as n!1 if p � bdo+ 1

2
c+1;

[only p > do if � = 0 or do <
1
2
].

The condition on Æ(�) in Lemma 2 restricts the permitted values of � in the compact set �1.

The next lemma analyzes the asymptotic distribution of the periodogram averages.

Lemma 8 In addition to the Assumptions of Lemma 1 on  , where now Æ > 0 is arbitrarily

small, under Assumptions 1, 2, 4 and 7, assumptions (i) and (ii) of Theorem 2 and H = 0, as

n ! 1,
p
nHn !d N

�
0; 4� p�p

R �
��  (�) 

0(�)f2(�)d�
�
; where  0(�) stands for the transpose

of  (�).

Lemma 9 Under the conditions of Theorem 1, for 0 < " < 1
2
, (2�p=n)

P
j(p) fIp(�j)� f(�j)g

�j�jj2(do+"�1=2) !p 0 as n!1.
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Lemma 10 For a function g, even and periodic (of period 2�), satisfying g(�) = O(j�j�Æ) as

� ! 0, 0 < Æ < 1, and a Lipschitz condition of degree � 2 (0; 1] with constant O(j�j�1�Æ),

i.e., for ! > 0; jg(�+ !)� g(�)j = O(j�j�1�Æ!�) as � ! 0; p = 1; 2; : : : ; then as n ! 1,R 2�
0 g(�)d�� (2�p=n)

P
j(p) g(�j) = O(nÆ��):

Lemma 11 Under the Assumptions of Lemma 3, for g =  f , limn!1Vn = �p4�
R �
�� g

2(�)d�

where

Vn = 4

n�1X
t=1

h2t

n�tX
s=1

h2s+t(4�)
2

 
nX
1

h2t

!�2

�
p

n

n�X
j=1

n�X
k=1

g(�jp) cos s�jpg(�kp) cos s�kp:

Lemma 12 Under Assumptions 1 through 4, 8 and 9, with p � bdo + 1
2
c + 1 [only p > do if

� = 0 or do <
1
2
], as n ! 1, b� = �o + (2�p=n)

P
j(p) �o(�j) [I

p(�j)� f(�j)] + op(n
�1=2); where

�o(�) = ��1o k�1� (�; �o); and �o = �2o�o=(2�):

Lemma 13 If the sequence fhtg is a data taper of order p, for 0<j<n=2; as n!1, h(�j) =

O(j�p).

Lemma 14 If the sequence fhtg is a data taper of order p, for 0< j<n, as n!1,Pn�1
t=1 h

2
t

Pn�t
s=1 h

2
s+t cos s�j =

1
2

�Pn
t=1 h

2
t cos t�j

�2
+O(n):

7 Appendix B: Proofs

Proof of Theorem 1. We follow the proof in two steps of Theorem 1 in Robinson (1995b).

First step. Denote �(1) = d and �1 = fd : r1 � d � r2g��(�1); if r1 > do� 1
2
, or otherwise

�1 = fd : do� 1
2
+ " � d � r2g��(�1); for some 0 < " < 1

2
. De�ne b�1 = argmin�2�1 Qn(�) and

Q(�) =
R �
�� f(�)k

�1(�; �)d�.b�1 !p �o follows by a standard argument for consistency of implicitly-de�ned extremum

estimates if we can write Qn(�) � Qn(�0) = S(�) � U(�); where S(�) is nonstochastic and

constant over n; such that for all " > 0 there exists � > 0 such that infk���ok�" S(�) � �; and also

sup�2�1
jU(�)j !p 0: Since there is a unique minimum of Q(�) at � = �o from the identi�ability

conditions in Assumption 1, setting S(�) = Q(�) � Q(�o) the condition on S follows from the

uniform continuity of Q(�) on �1. The condition on U(�) = Qn(�) � Qn(�o) � Q(�) + Q(�o)

follows because sup�2�1
jQn(�)�Q(�)j !p 0 using Lemmas 2 [ (�; �) = k�1(�; �)] and 5 [g(�) =

 (�; �) f(�)] to approximate uniformly in �1 integrals with sums, and using this last lemma we

get that sup�2�1
jQn(�o)�Q(�o)j ! 0 as n!1.

Second step. Recall that �1 = fd : r � d � r2g ��(�1); where r = r1 when do <
1
2
+r1

and do � 1
2
< r � do otherwise. When do � 1

2
+r1; de�ne �2 = fd : r1 � d < rg ��(�1), or
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setting " = r� (do � 1
2
) with " = "(�o) > 0, (to be chosen later, in (0; 1

2
), �2 = fd : r1 � d <

do � 1
2
+ "g ��(�1).

Then b�1 !p �o if �1 = � and the theorem is proved. Consider now the situation where �2

is not empty. We want to show that b� � b�1 !p 0. For any Æ > 0

P
�


b� � b�1


 � Æ

�
� P

�
inf
�2�2

Qn(�) � min
�2�1

Qn(�)

�
� P

�
inf
�2�2

Qn(�)�Q(�o) � Æ0
�

+ P
����Qn(b�1)�Q(�o)

��� � Æ0
�
; (11)

for any Æ0 > 0. Since b�1 !p �o (for any " > 0 in the de�nition of �1) the second probability

tends to zero as n ! 1, for any Æ0 > 0. Write k�(�; �) = j�j2�(1)k(�; �) so f(�;�2; �) =

�2

2�
j�j�2�(1)k�(�; �); 0 < c1 < k�(�; �) < c2 < 1; say, for all �; �, under Assumption 1. To show

that the �rst probability in (11) is negligible, note that

inf
�2�2

Qn(�) = inf
�2�2

2�p

n

X
j(p)

Ip(�j)k
�1(�j ; �)

�
2�p

nc2

X
j(p)

Ip(�j)j�j j2(do+"�1=2):

The last sum converges in probability (see Lemmas 4 and 5 again) to

2�p

nc2

X
j(p)

f(�j)j�j j2(do+"�1=2) =
�2

2�

2�p

nc2

X
j(p)

k�(�j)j�j j2"�1

�
�2

2�c2

Z �

��
k�(�)j�j2"�1d�

�
�2

2�

c1

c2

Z �

��
j�j2"�1d� =

�2

2�

c1

c2

�2"

"
= C(") > 0; say,

and C(") can be made as large as desired for any f and �o, by choice of ". Fix Æ0 > 0 and then

pick " > 0 such that C(") > Q(�o) + 2Æ0, de�ne �1 and b�1 !p �o so the �rst term in (11) tends

to zero as n!1; and thus b� !p
b�1. The consistency of b�2 follows from that of b� and Lemma 2.

2

Proof of Theorem 2. De�ne  o(�) = k�1� (�; �o), and then use Theorem 1 and Lemmas 3

and 7 and that ��1o
R �
��  o(�) 

0
o(�)k

2(�; �o)d��
�1
o = ��1o . 2

Proof of Lemma 1. We prove the lemma by approximating the periodogram of the (possi-

bly tapered) observed series by that of the (possibly tapered) linear innovations, Ip;�(�j); times

the transfer function, including the unit root �lters. De�ne, p = 1; 2; : : : ; H�
n = (2�)2(p=n)

�
P

j(p)  (�j)f(�j)I
p;�(�j); so using Theorems 3 and 5 in Appendix A, and evenness of all func-

tions,

Hn �H�
n =

4�

n

n?X
j=1

 (�jp) [I
p(�jp)� 2�f(�jp)I

p;�(�jp)] + op(1); (12)
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where n? = b[(n=p)� 1]=2c. We now distinguish the cases with and without tapering.

No tapering [p = 1]. Consider the case with do < 1, � = 0; or do <
1
2
, for any �; and s = 1

or 0. Using the same arguments to those used in the proof of Theorem 2 of Velasco (1999b)

(see also the proof of Theorem 1 of Robinson, 1995b), 0 < j � n=2; do 2
�
�1

2
; 1
�
, f(�j) =

(2�)�1j1� e�i�j j�2sj�(�j)j2; to show that EjI(�j)� 2�f(�j)I
�(�j)j = O(f(�j)[j

�1=2(log j)1=2 +

jdo�1(log j)1=2]); we �nd from (12) that, using  (�j) = O(f�1(�j)j�j j�Æ), 0 < Æ < 1;

Hn �H�
n = Op

�
n�1=2(log n)1=2 + nÆ�1(logn)3=2

�
+ Op

�
ndo�1(logn)1=2

�
+ op(1);

which is op(1) if do < 1. The expectation of H�
n is with Lemma 5, using the continuity of f(�) and

 (�), and the integrability of f(�) (�), E[H�
n] = (2�=n)

Pn�1
j=1  (�j)f(�j) �

R �
��  (�)f(�)d� <

1, as n!1: Now, by summation by parts, for a positive constant C,�����4�n
n?X
1

f(�j) (�j) f2�I�(�j)� 1g
�����

�
C

n

n?X
r=1

jf(�r) (�r)� f(�r+1) (�r+1)j

������
rX

j=1

f2�I�(�j)� 1g

������
+

C

n

�����
n?X
1

f2�I�(�j)� 1g
����� ���f(�n=2) (�n=2)��� : (13)

Following the discussion in Robinson (1995b, pp. 1637-8), we obtain that, for 1 � r � n=2,�����
rX
1

f2�I�(�j)� 1g
����� = op(r) +Op(r

1=2); (14)

and using the properties of f(�) and  (�) and the mean value theorem, (13) is

op
�
n�1

Pn
r=1 �

�1�Æ
r n�1r + 1

�
= op(1).

Tapering [p > 1]. We obtained in the proof of Theorem 5 in Velasco (1999b), that under the

conditions of this lemma, EjIp(�jp)� 2�Ip;�(�jp)j = O(f(�jp)[j
�1=2 + jdo�p(log j)1=2]); 0 < j <

n=(2p), so Hn �H�
n = Op

�
nÆ�1 log n+ n�1=2 + ndo�p(log n)1=2

�
; which is op(1) if p > do. The

expectation of H�
n for p > 1 is calculated as for p = 1: Now we can write

2�Ip;�(�jp)� 1 =
1P
h2t

nX
t=1

h2t (�
2
t � 1) (15)

+
1P
h2t

X
t

X
s 6=t

hths�t�s cos(s� t)�jp: (16)

With 
h = limn!1

P
h2t =n; 0 < 
h <1, the right hand side of (15) is

1P
h2t

(
1

n

nX
t=1

(h2t �
2
t � 
h) + 
h �

P
h2t
n

)
;
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which is op(1) because
1
n

Pn
t=1 h

2
t �

2
t � 
h !p 0 from Theorem 1 of Heyde and Seneta (1972) (cf.

the proof of Theorem 1 in Robinson, 1995b), since the triangular array ht�t satis�es the same

regularity conditions as �t because jhtj � 1 and 
h = limn!1
1
n

Pn
t=1E[h

2
t �

2
t jFt�1] > 0 a.s.

Next, we consider the contribution of (16). For 0 < r < n=(2p) and h(j; k) =
Pn

t=1

Pn
s=1 h

2
th

2
s

� cos(s� t)�jp cos(s� t)�kp,

E

0@X
t

X
s6=t

hths�t�s

rX
j=1

cos(s� t)�jp

1A2 = 2
X
t

X
s6=t

h2th
2
s

0@ rX
j=1

cos(s� t)�jp

1A2

= 2

rX
j=1

rX
k=1

 
h(j; k) �

X
t

h4t

!
: (17)

Then, changing variables and using trigonometric identities (see also Lemma 7 of Velasco, 1999b),

h(j; k) =

nX
t=1

n�tX
s=1�t

h2th
2
s+t cos s�jp cos s�kp

=
1

2

nX
t=1

n�tX
s=1�t

h2th
2
s+t

�
cos s�(j+k)p + cos s�(j�k)p

�

=

nX
t=1

n�tX
s=1

h2th
2
s+t

�
cos s�(j+k)p + cos s�(j�k)p

�
:

Using Lemmas 8 and 9, this is

1

2

0@" nX
1

h2t cos t�(j+k)p

#2
+

"
nX
1

h2t cos t�(j�k)p

#2
+O(n)

1A
= O

�
n2
h
jj + kj�2p + jj � kj�2p

i
+ n

�
;

so (17) is O
�
n2r + r2n

�
, 1 � r � n=(2p). Therefore (14) holds for p > 1 and the Lemma follows

now as when p = 1 using (13). 2

Proof of Lemma 2. Follows from the pointwise convergence in Lemma 1 and an equicontinuity

argument using the compactness of �1; and the di�erentiability of  (�; �) with respect to � (cf.

Hannan, 1973). 2

Proof of Lemma 3. We consider only the scalar case, the argument for the vector case being

identical but notationally more complex, since the stochastic argument, Ip(�j); is scalar. We

follow the same procedure as in the proof of Lemma 1.

No tapering [p = 1]. Using the second moments of the periodogram and Robinson's (1995b)

pp. 1648-51 procedure, in Lemma 1 in Velasco (1999b), 1 � r � n=2; d 2
�
�1

2
; 1
�
we �nd that

rX
j=1

(
I(�j)

f(�j)
� 2�I�(�j)

)

= Op

�
r1=3(logn)2=3 + r1=2n�1=4 + r1=(5�4do)(logr)2=(5�4do)
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+r2do�1 logr + n�1=2r(1+do)=2(logn)5=4 + n�1=4rdo(logr)1=2
�
:

Now, using the same arguments and  (�) = O
�
f�1(�)j�j�Æ

�
as �! 0; Hn �H�

n is

Op

�
nÆ�1

h
n1=3(logn)1=3 + n1=4 + n1=(5�4do)(logn)2=(5�4do)

+n2do�1 logn+ ndo=2(logn)5=4 + ndo�1=4(logn)1=2
i�
;

which is op(n
�1=2) if do < 3=4.

Tapering [p > 1]. In Velasco (1999b) it is obtained that, � > 1, 1� r < n=(2p);

rX
j=1

 
Ip(�jp)

f(�jp)
� 2�Ip;�(�jp)

!

= Op

�
r1��=2 + log r + rdo�p+1(log n)1=2

�
;

so adapting the proof, Hn �H�
n = Op

�
nÆ�1[log n+ n1��=2 +ndo�p+1(log n)1=2]

�
= op(n

�1=2) if

� > 1, p > do + 1=2.

We now consider simultaneously the situations p = 1 and p > 1, but stressing the tapering

situation, the untapered case being simpler since many bounds are exactly zero due to the exact

orthogonality of the sine and cosine functions. We have for g = f ; that
R �
�� g(�)d� = 0; so

(2�p=n)
P

j(p) g(�j) = O(nÆ�1) = o(n�1=2), from Lemma 5, and H�
n = H?

n + op(n
�1=2); with

H?
n =

4�p

n

n�X
j=1

g(�jp) f2�Ip;�(�jp)� 1g :

Then E[H?
n] = 0 and

p
n=pH?

n =
Pn

t=1 zt; where zt = ht�t
Pt�1

s=1 hs�sct�s is a martingale dif-

ference sequence and cs = 4�
�P

h2t
��1p

p=n
Pn�

j=1 g(�jp) cos(s�jp): Now we follow the same

method of proof as in Robinson (1995b), Theorem 2, to show the asymptotic normality of H�
n:

First we need to show that

nX
1

E
h
z2t jFt�1

i
!p �p4�

Z �

��
g2(�)d�: (18)

The left hand side is

nX
t=2

h2t

t�1X
s=1

h2s�
2
sc

2
t�s +

nX
t=1

h2t

t�1X
s=1

t�1X
r 6=s

hs�shr�rct�sct�r: (19)

The �rst term in (19) is

n�1X
t=1

h2t (�
2
t � 1)

n�tX
s=1

h2s+tc
2
s +

n�1X
t=1

h2t

n�tX
s=1

h2s+tc
2
s = B1 +B2;

say. B1 is op(1), since it has zero mean and variance O

�Pn�1
1

�Pn�t
s=1 c

2
s

�2�
, and from Robinson

(1995b) (top of p. 1646), we obtain using summation by parts, for any Æ > 0; cs = cn�s, and

jcsj � C

������n�3=2
n�X
j=1

�
g(�jp)� g(�(j+1)p)

� jX
`=1

cos s�`p
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+n�3=2g(�pn�)

n�X
j=1

cos s�jp

������
� Cn�1=2s�1

8<:nÆ
n��1X
j=1

j�1�Æ + 1

9=; = O(nÆ�1=2s�1);

for 1 � s � n=2; so
Pn

s=1 c
2
s = O(n2Æ�1). By Lemma 6 B2 = Vn � �p4�

R �
�� g

2(�)d�.

The second term in (19) can be shown to be op(1); using the same argument (see also Velasco,

1999b, Lemma 6), because it has zero mean and variance

2
nX

t=2

h2t

nX
u=2

h2u

minft�1;u�1gX
s

X
r 6=s

h2sh
2
rct�rct�scu�rcu�s

= 2
nX

t=2

h4t
X
s

X
r 6= s

h2sh
2
rc

2
t�rc

2
t�s + 4

nX
t=3

h2t

t�1X
u=2

h2u

u�1X
s

u�1X
r 6=s

h2sh
2
rct�rct�scu�rcu�s;

because the weights fhtg are symmetric around bn=2c. Using the bounds for cs and
Pn

1 c
2
s; and

since supt jhtj � 1; the �rst term is O(n2Æ�1) = o(1) and the second has absolute value bounded

by

4

nX
t=3

t�1X
u=2

0@u�1X
s

c2t�r

u�1X
r 6=s

c2u�r

1A
� 4

 
nX
1

c2t

!0@ nX
t=3

t�1X
u=2

t�1X
r=t�u+1

c2r

1A
� 4

 
nX
1

c2t

!0@2n n�X
j=1

jc2j

1A ;
and this is O(n4Æ�1 log n) = o(1): Thus (18) is proved.

Finally we need to show that
Pn

1 E[z
2
t I(jztj > �)] ! 0 for all � > 0; for which we can check

the suÆcient condition
Pn

1 E[z
4
t ] ! 0: Following Robinson (1995b),

Pn
1 E[z

4
t ] � Cn

�Pn
1 c

2
s

�2
=

O(n2Æ�1) = o(1) and the central limit theorem follows. 2

Proof of Lemma 4. For " > 0;  (�) = j�j2(do+"�1=2) = O(f�1(�)j�j2"�1) satis�es the condi-

tions of Lemma 1, with Æ = 2"� 1, 0 < Æ < 1. 2

Proof of Lemma 5. This follows from the discussion in Robinson (1994a), p. 75. 2

Proof of Lemma 6. First, using trigonometric identities we have that Vn is

4(4�)2
p

n

n�X
j=1

n�X
k=1

g(�jp)g(�kp)
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o
and using Lemma 9 and h(�j) =

�Pn
1 h

2
t

��1Pn
1 h

2
t cos t�j ; this is

(4�)2p

n

n�X
j=1

n�X
k=1

g(�jp)g(�kp)
n
h2(�(j+k)p) +h

2(�(j�k)p)
o
; (20)
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plus a term of smaller order of magnitude which is O
�
n�3

P
j

P
k g(�jp)g(�kp)

�
= o(1). From

Lemma 8, h(�j) = O(jjj�p); and with g(�) = O(j�j�Æ) for any Æ > 0; the term in h2(�(j+k)p) of

(20) is

O

0@n2Æ�1 nX
j=1

nX
k=1

(j + k)�2p

1A = O

0@n2Æ�1 nX
j=1

nX
k=1

j�pk�p

1A ;
which is O

�
n2Æ�1

�
= o(1), and can be ignored. The other term with h2(�(j�k)p) in (20) is,

0 � � � n=2,

(4�)2
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by Lemma 8. This is, using that supjj�kj�� jg(�jp) � g(�kp)j = O
�
jg(�kp)jj�kj�1j�k � �jj

+jg(�jp)jj�j j�1j�k � �jj
�
,
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n
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�
nÆ�1�2p

�
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�
;

all the error terms being o(1) on choosing, e.g., � �
p
n, with p > 1. 2

Proof of Lemma 7. By the de�nition of �o and b�; R k�1� (�; �o)f(�)d� = (2�p=n)
P
k�1� (�j ; b�)Ip(�j)

= 0: It follows by the mean value theorem that b���o = e��1n (bn��), where � = (2�p=n)
P
k�1� (�j ; �o)

[Ip(�j)� f(�j)] = Op(n
�1=2) from Lemma 3, bn = (2�p=n)

P
k�1� (�j ; �o)I

p(�j)�
R
k�1� (�; �o)f(�)d�;

and the `th row of e�n is the `th row of the matrix �n(�) = (2�p=n)
P
k�1��0(�j; �)I

p(�j) evaluated

at e�`; which is in the line segment between �o and b�: Thus b�� �o = ���1o � � an� + e��1n bn; with

an = e��1n � ��1o . The lemma follows if an = op(1); ke��1n k = Op(1) and bn = op(n
�1=2):
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First we bound an : kank � ke��1n kk��1o kk�o � e�nk: From Assumption 9 k��1o k < 1 and

under the conditions of the lemma e�` !p �o; so using the continuity of the elements of ��1n (�)

with respect to � (to substitute e�` by �), the di�erentiability in � of the second derivatives of

k�1 for Lemma 1 (to substitute f for Ip), and approximating sums by integrals with Lemma 5,

we can show the elementwise convergence in probability to 0 of �o � e�n; and we obtain for n

large enough that ke�nk <1 with probability approaching 1 and thus an = op(1).

The bound for bn follows by the previous argument, using Lemmas 1 and 5 to approximate

Ip by f and sums by integrals, using the di�erentiability in � of k(�; �) and k�1� (�; �); whose

derivatives are O(j�j�2d�1) and O(j�j2d�1�Æ) as �! 0; respectively, for some Æ > 0: 2

Proof of Lemma 8. Follows using the properties of a taper of order p, as in Lemma 1 of

Velasco (1999b), and that
Pn

t=1 h
2
t cos t�j =

R �
��Dh(�j � �)Dh(�)d�: 2

Proof of Lemma 9. This is part (B) of Lemma 7 in Velasco (1999b). 2
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