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Abstract

In the paper Papadaki & Powell (2002) we introduced an adaptive dynamic programming algorithm

to estimate the monotone value functions for the problem of batch service of homogeneous customers

at a service station. The algorithm uses an updating scheme that takes advantage of the monotone

structure of the function by imposing a monotonicity-preserving step. In this paper we introduce an

algorithm (DOME) that uses this monotonicity-preserving step to approximate discrete monotone

functions. Our algorithm requires sampling a discrete function and using Monte Carlo estimates

to update the function. It is a known result that sampling a discrete function on each point of

its domain infinitely often converges to the correct function as long as standard requirements on

the stepsize are maintained. Imposing a monotonicity-preserving step raises anew the question of

convergence. We prove convergence of such an algorithm.
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Estimating discrete monotone functions arises in the study of batch service queues. When

modeling these problems as discrete dynamic programs it can be shown that the value functions

are discrete monotone functions. Estimation of the value functions is the key to estimating the

optimal decision policies. Backward dynamic programming techniques suffer from the curse of

dimensionality, so there has been considerable attention given recently to forward adaptive dynamic

programming methods (see, for example, Bertsekas & Tsitsiklis (1996)) which use Monte Carlo

methods to estimate the value of a function at each state. In our paper Papadaki & Powell (2002) we

introduced an adaptive dynamic programming algorithm to estimate the monotone value functions

for the problem of batch service of homogeneous customers at a service station. The algorithm

is based on a discrete representation of the value function and uses an updating scheme that

takes advantage of the monotone structure of the value function by imposing a monotonicity-

preserving step. In this scalar setting, we showed experimentally that when we maintain the

monotonicity of the function after each Monte Carlo update, the overall performance of the adaptive

dynamic programming algorithm improves dramatically. At 500 iterations the monotone-preserving

algorithm is 3% from optimal, whereas the classical algorithm is 30% from optimal. In this paper we

introduce and prove convergence of an algorithm (DOME) that uses this monotonicity-preserving

step to approximate discrete monotone functions when information about the function arrives in

an on-line fashion.

DOME deals with the problem of estimating the means of a finite number of random variables

{Wi}, i ∈ {1, ..., S}, whose means {µi}, i ∈ {1, ..., S}, follow a monotone structure and thus

constitute our monotone function f : f(i) = µi, f(i) > f(j) for i > j. For the rest of the paper

we refer to the points in the discrete domain {1, ..., S} as cells. The DOME algorithm consists of

two steps. In the first step a single cell i is picked with a positive probability and a realization of

the corresponding random variable Wi is observed. The value of the estimate at cell i is updated

with the new observation using an averaging technique. However, the monotonicity property might

be violated between the recently updated estimate of a cell and the estimates of the neighboring

cells. In the second step a projection method is used to recover monotonicity of the estimates by

projecting the value of the newly updated cell onto the value of violated neighboring cells. If we

were estimating general functions using solely the first step, the problem would separate in |S|
subproblems, each one converging according to the law of large numbers under the right averaging

technique. In that case, the algorithm converges to the desired function. This raises the question

of convergence when the monotonicity-preserving step is imposed. In this paper we prove almost

sure convergence of DOME under certain assumptions (see section 1).

Other work on estimating monotone functions has been done in the context of isotonic regres-

sion. Consider an off-line version of the problem described above, where we are given at once

all sample realizations of the random variables whose means we are estimating. Barlow & Brunk
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(1972) provide a simple example of the isotonic regression problem:

minµ̂1,...,µ̂n

n∑
k=1

(x̄i − µ̂i)2

subject to µ̂1 ≤ ... ≤ µ̂n

where µ̂i’s are our estimates and x̄i’s are the means of the sample realizations of the values we

are trying to estimate: {µi}, i ∈ {1, ..., n}. Barlow, Bartholomew, Bremner & Brunk (1972) give

an extensive description of isotonic regression and related algorithms. They describe an algorithm

called the ‘Pool Adjacent Violators Algorithm’ that was first proposed by Ayer, Brunk, Ewing,

Reid & Silverman (1955). Other algorithms have been used such as the Minimum Lower Sets

algorithm given in Brunk, Ewing & Utz (1957) and in Brunk (1955). Wright (1978) proposed a

method for estimating strictly increasing regression functions. Later, Mammen (1991) proposed a

two step algorithm for estimating smooth regression functions where the first step is a smoothing

step performed by a kernel estimator and the second step is an isotonisation step performed by the

pool adjacent violator algorithm. The isotonisation step is a projection of the estimate onto the

monotone functions. The second step of the DOME algorithm performs a similar projection step

to ensure monotonicity of the estimates at each iteration.

The DOME algorithm falls in the class of stochastic approximation algorithms. The pioneers of

these methods are Robbins & Monro (1951), who introduce an algorithm to find the solution x = θ

of the equation M(x) = α, where M(x) is the expected value at level x of the response of a certain

experiment. The experimenter does not know the value of M(x) but is allowed to perform the

experiment at different levels of x and observe sample realizations of the response of the experiment.

They prove convergence in mean square of their algorithm under certain assumptions. In the proof

of convergence of the DOME algorithm we encounter similar issues as the ones in the paper by

Robbins and Monro. The difference between the typical stochastic approximation algorithm and

our algorithm is that DOME constructs sequences that converge to the function values whereas the

stochastic approximation algorithms search for a value in the domain of the function (for example

a root or the point where the function attains its maximum). However, the first step of the DOME

algorithm, of updating the function value estimates using new observations, is very similar to the

updating scheme of the Robbins Monro process.

Wolfowitz (1952) generalizes the results by Robbins and Monro, and Kiefer & Wolfowitz (1952)

solve a similar problem in the case when M(x) has a maximum at x = θ. Blum (1954a) proves a

stronger form of convergence, namely convergence in probability, of a similar result under weaker

conditions than those imposed by Wolfowitz, Kiefer and Wolfowitz. Gladyshev (1965) uses martin-

gale convergence theorems to prove almost sure convergence of stochastic approximation methods.

Also, Blum (1954b) extends the problem to finding the maximum of a multidimensional regression

function and provides conditions for which the multidimensional stochastic approximation schemes
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converge almost surely. These results and other early research were unified and generalized by

Dvoretzky (1956). Reviews of stochastic approximation methods during the 1950’s and 1960’s can

be found in Wasan (1969).

Mukerjee (1981) uses isotonic regression for the stochastic approximation problem of estimating

the roots of a non-decreasing regression function. Dupac (1987) extends Mukerjee’s method by using

quasi-isotonic regression. Later, Hanson & Mukerjee (1990) alter the Robbins Monro process of

estimating a root θ of a regression function, by separating the estimator of θ at each iteration from

the design/control setting of the process at the next step. They use isotonic regression to define

a new estimator of θ at each iteration and they combine this isotonic estimator with the Robbins

Monro process.

In the second step of the DOME algorithm the current function estimate is projected onto

the feasible region, which in this case is the set of all monotone functions defined on the domain

{1, ..., S}. The constraint to preserve monotonicity of the estimates at each iteration classifies the

problem as a constrained optimization problem, where the objective is to minimize the expected

error between the estimates of the function and the random variables {Wi}.

Ermoliev (1988) describes methods for the solution of stochastic constrained optimization prob-

lems, called stochastic quasigradient methods. Stochastic quasigradient methods generalize stochas-

tic approximation methods for unconstrained optimization of the expectation of random functions,

to problems involving general constraints and nondifferentiable functions. Ermoliev (1968) studies

the stochastic analog of deterministic projection methods in the context of constrained stochastic

optimization and proves the convergence. The projection method, which is a method to minimize

convex functions, was proposed and studied by Ermoliev & Nekrylova (1967), Ermoliev & Shor

(1968), Ermoliev (1969). This method parallels the projection step of the DOME algorithm.

Furthermore, Andradottir (1995) provides methods for solving discrete stochastic optimization

problems where the objective function cannot be evaluated exactly but has to be estimated or

measured. In the proposed method, at each iteration the estimates of neighboring cells are compared

with the current cell and the one with the best observed function value becomes the current cell in

the next iteration.

The contribution of this paper is the proof of convergence of an on-line algorithm for estimating

discrete monotone functions that preserves monotonicity of the estimates at each iteration.

We start the paper with the definitions in section 1. In section 2 we provide the formal statement

of the algorithm. Section 3 provides the proof of convergence starting with some known results and

including a sketch of the proof. We conclude the paper in section 4.
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1 Definitions

In this section we define the parameters, variables and stochastic sequences needed to describe the

problem and the algorithm. A precise description of the algorithm is found in section 2.

Let {1, ..., S} be the discrete finite domain of the deterministic strictly increasing function f ,

where S is a constant positive integer. Then f is defined as follows: f(i) = µi ∈ R, where

{µ1, ..., µS} are the function values that we want to estimate. We receive information about these

values in the form of sample realizations of random variables whose means are in the set {µ1, ..., µS}.
This information arrives in an on-line fashion as we are estimating the µ’s. Let {W1, ...,WS} be

random variables of unknown distribution that take values in R and whose respective means are

{µ1, ..., µS}. At each iteration one of the indices {1, ..., S} gets picked at random, index i, and

then the random variable corresponding to that index, Wi, is sampled and the observation is

denoted by wi. We let Sk be the random variable that takes values in the index set {1, ..., S} and

determines which one of the random variables {W1, ...,WS} is going to be sampled at iteration k.

For notational purposes we assume that all random variables {W1, ...,WS} are sampled at each

iteration but Sk determines which one we observe. Thus we define the multidimensional stochastic

process {(W k
1 , ...,W k

S )}k≥1 whose realization at iteration k is (wk
1 , ..., wk

S) ∈ RS . We also define the

stochastic process {Sk}k≥1 whose realization at iteration k is sk ∈ {1, ..., S}. Now we define our

outcome space Ω to be the set of all ω ∈ Ω such that:

ω = ((s1, w1
1, ..., w

1
S), (s2, w2

1, ..., w
2
S), ...),

and so we have:

(W k
1 , ...,W k

S ) : Ω → RS

(W k
1 , ...,W k

S )(ω) = (wk
1 , ..., wk

S)

Sk : Ω → {1, ..., S}

Sk(ω) = sk

Thus the outcome space is completely defined by these two processes. For ease of notation, we

denote the probabilities associated with the random variables {Sk} as follows: pk
i = P (Sk = i).

We make the following assumptions on these processes:

Assumptions

1. The random variables {(W k
1 , ...,W k

S )}k≥1 are independent, identically distributed of unknown

distribution.

2. For all i ∈ {1, ..., S}, k ≥ 1, we have E[W k
i ] = µi, ‖µi‖ < ∞, V ar[W k

i ] = σ2
i < ∞ where all

means and variances are unknown and the means satisfy:

µ1 < µ2 < ... < µS (1)
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3. The processes {(W k
1 , ...,W k

S )}k≥1 and {Sk}k≥1 are independent.

4. For all i ∈ {1, ..., S} and k ≥ 1, there exists an ε > 0 such that P (Sk = i) = pk
i > ε.

We can now define a standard probability space (Ω,F ,P), where F is the σ-algebra defined

over Ω, and P is a probability measure defined over F . F is the set of all possible events, however

we go further and define Fk to be the set of events up to iteration k. Fk contains all the events

that are completely determined by the following observations:

((s1, w1
1, ..., w

1
S), ..., (sk, wk

1 , ..., wk
S)),

Since we have Fk ⊂ Fk+1, the process {Fk}k≥1 is a filtration.

In order to understand the above definitions we briefly describe their motivation. The problem

is of estimating a discrete monotone function defined on the set of discrete points {1, ..., S}, which

we call cells. At iteration k we receive information on the value of the function at one discrete point

in its domain: cell sk. The cell is picked according to the stochastic process {Sk}k≥1. The actual

value of the function at cell sk is µsk . The information we receive, however, is a sample realization

of a random variable that has mean µsk . The random variable sampled at iteration k is W k
sk . Thus

each cell i has a stochastic process {W k
i }k≥1 of i.i.d. random variables associated with it.

We proceed to define some other stochastic processes that depend on the two defined above.

Let {wk}k≥1 be a stochastic process defined as follows:

wk(ω) = wk
sk

and also define {wk
i }k≥1 as follows:

wk
i (ω) = wk

i

{wk}k≥1 is the process that contains at each iteration the observed value of the cell selected at that

iteration. The process {wk
i }k≥1 contains the observed values of cell i at each iteration.

To proceed we introduce our stepsize sequence {αk}k≥1 which has the following properties:

αk → 0 (2)∑
k≥1

αk = ∞ (3)

∑
k≥1

(αk)
2

< ∞ (4)

For each i ∈ {1, ..., S} and n ∈ {i, ..., S}, we are going to define two processes, which we refer to as
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the yk and xn,k processes. We define the stochastic process {yk
i }k≥0 recursively, for all i ∈ {1, ..., S}:

yk+1
i = αk+1wk+1

i + (1− αk+1)yk
i (5)

y0
i = w0

where the initial value w0 is a deterministic constant. If the DOME algorithm consisted only of

the first updating step, and did not require monotonicity of its estimates, then the estimates of

the DOME algorithm would be the same as the yk processes. As we see later (theorem 2) the yk
i

process converges to µi. This is a well known convergence result that we use in order to prove

convergence of DOME.

We define the xn,k process, for i ∈ {1, ..., n} and n ∈ {i, ..., S} as follows:

xn,k+1
i =


αk+1wk+1 + (1− αk+1)xn,k

i if Sk+1 = i

xn,k
i ∧

{
αk+1wk+1 + (1− αk+1)xn,k

j

}
if j = Sk+1, j ≤ n,j > i

xn,k
i ∨

{
αk+1wk+1 + (1− αk+1)xn,k

j

}
if j = Sk+1, j ≤ n,j < i

xn,k
i if j = Sk+1, j > n

(6)

where xn,0
i = w0 and for j, i ∈ {1, ..., n}. First, note that the processes {xn,k

i }, i = 1, ..., n are only

updating cells 1, ..., n while maintaining monotonicity of the estimates of these cells. Further, they

ignore iterations where Sk is greater than n, by keeping all estimates the same at such iterations.

In this paper, we refer to the problem of providing convergent monotone estimates of the first n

cells as the n-cell problem, and we show that these processes solve the n-cell problem. From the

definition of the {xn,k} processes we can see that they follow the two-step updating scheme of the

DOME algorithm (as we described it this far) for cells i, ..., n. Thus the estimates at each iteration

are monotone.

Let us investigate in more detail how these processes get updated. The four cases described

above are explained as follows: (1) If at iteration k + 1 the cell i is chosen then we update that cell

as usual (as in the case of the y sequence). (2) If cell j is chosen that is within the range {1, ..., n}
and j is greater than i then we update the value at cell i by taking the minimum of the value at i

at the previous iteration and the currently iteration value at j. This ensures that if the new value

at j was too small and has violated monotonicity, we correct by this by lowering the value at i.

(3) This is similar to case two only in the other direction. (4) In the case that j is outside of the

set {1, ..., n} we do not update any cells. This last case is characteristic of the xn sequences which

update only values at cells 1 through n.
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For convenience of notation we define the following random variables:

Un,k+1
ji (ω) =


1 if Sk+1(ω) = j, where i, j ∈ {1, ..., n} AND

either j > i, xn,k
i > αk+1wk+1 + (1− αk+1)xn,k

j

or j < i, xn,k
i < αk+1wk+1 + (1− αk+1)xn,k

j

0 otherwise

. (7)

Un,k
ji is the indicator for the event that cell j is sampled and updated using the sequence xn,k at

iteration k, and the new value at cell j violates monotonicity of the estimates of cell i in the n-cell

problem.

To summarize, at each iteration we receive a sample realization of the value of the function f

at the chosen cell. The processes {yk
i }k≥0 for i ∈ {1, ..., S} just average the new sample realization

with the old estimate of the function value at that cell. Since the stepsize sequence αk satisfies

properties (2), (3) and (4) we have from a well known result that the sequence {yk
i }k≥0 converges

to µi (see theorem 1). When αk = 1/k, then we have the same convergence result from the strong

law of large numbers. These processes treat each cell independently ignoring any violations of

monotonicity this new update might have on the estimates of neighboring cells. They all converge

to the function values but at each iteration there is no guarantee of monotonicity, since each cell is

treated independently.

Our aim is to produce an estimate of the entire monotone function f and thus we want to

preserve monotonicity at each iteration. That is why we introduce the processes {xn,k
i }k≥0, for

i ∈ {1, ..., S} and n ∈ {i, ..., S}, which are not independent of each other and monitor the monotone

structure of the estimates of the first n cells. Thus after updating the chosen cell i, they project the

value of that cell to neighboring cells whose last iteration estimates violate the monotone structure

of the cells {1, ..., n}. These processes with n = S are used by our algorithm to estimate the function

values while preserving monotonicity at each iteration. We later prove that these processes, for

n = S, converge to the values of the function f .

2 Algorithm for estimating monotone functions

This section describes the algorithm for estimating the discrete monotone function f , maintain-

ing monotone structure of the function estimate at each iteration. The formal statement of the

algorithm is as follows:

Discrete On-line Monotone Estimation (DOME) algorithm

Step 1 Set xS,0
i = w0, for all i ∈ {1, ..., S}. Pick an ω ∈ Ω and set k = 0.

Step 2 We pick cell sk+1 = Sk+1(ω). For each i ∈ {1, ..., S}, update the processes {xS,k
i }k≥0
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using:

xS,k+1
i =


αk+1wk+1 + (1− αk+1)xS,k

i if Sk+1 = i

xS,k
i ∧

{
αk+1wk+1 + (1− αk+1)xS,k

j

}
if j = Sk+1, j ≤ S,j > i

xS,k
i ∨

{
αk+1wk+1 + (1− αk+1)xS,k

j

}
if j = Sk+1, j ≤ S,j < i

xS,k
i if j = Sk+1, j > S

Step 3 If k > maximum number of iterations, then go to step 4. Otherwise set k := k +1 and

go to step 2.

Step 4 The monotone estimates of the function f values are: {xS,k
1 , ..., xS,k

S }.

We assume that w0 is a finite deterministic constant. Also, note that the sequence used in the

algorithm is equivalent to the sequence {xn,k
i }k≥0 defined in the previous section with n = S.

3 Convergence of the algorithm

This section describes the proof of convergence of the DOME algorithm. In section 3.1 we present

some technical results that are needed for the proof of convergence. One of our technical results

is a variation of a well known convergence result, where we use stochastic stepsize sequences. In

section 3.2 we provide a sketch of the proof of convergence and in section 3.3 we provide the proof.

3.1 Some technical results

In this section we state a well known convergence result, which is a generalization of the law of

large numbers (theorem 1), and we prove a variation of it. Theorem 1 establishes the convergence

of a sequence of random variables that is created by averaging another sequence of i.i.d. random

variables. Their averaging is done according to a stepsize sequence {αk} that satisfies properties

(2), (3) and (4). Our variation of the result comes from averaging a sequence of i.i.d. random

variables, where the averaging is done using a stochastic stepsize sequence {βk}k≥1 which satisfies

certain properties. This result is essential to the upcoming proof of the algorithm. We prove this

result using the supermartingale convergence theorem.

We state the well known convergence result (see Bertsekas & Tsitsiklis (1996), example 4.3,

p.143):

Theorem 1 Let {αk}k≥1 be a sequence such that αk < 1 for all k ≥ 1 and:

∞∑
k=1

αk = ∞
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∞∑
k=1

[αk]
2

< ∞

Also, let {ẑk}k≥0 be i.i.d. random variables with mean ‖µ‖ < ∞ and variance σ2 < ∞. Then the

sequence {zk}k≥0 defined by the recursion:

zk+1 = αk+1ẑk+1 + (1− αk+1)zk

with any deterministic initial value z0, converges to µ almost surely.

Before we proceed to the next theorem, we state a technical lemma from Bertsekas and Tsitsiklis

((Bertsekas & Tsitsiklis 1996) p.116).

Lemma 3.1 Suppose that et and δt are nonnegative sequences, δt ≤ 1 and c is a positive constant

such that

et+1 ≤ (1− δt)et + cδ2
t

for all t = 0, 1, ..., and

δt → 0,
∑∞

t=0 δt = ∞.

Then et → 0.

Using the above lemma we can introduce and prove the following theorem:

Theorem 2 Let {αk}k≥1 be a sequence such that αk < 1 for all k ≥ 1 and:

∞∑
k=1

αk = ∞

∞∑
k=1

[αk]
2

< ∞

For each i ∈ {1, ..., S}, we define {βk
i }k≥1 to be a stochastic sequence defined by:

βk
i (ω) =

{
αk if Sk(ω) = i
0 otherwise
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where {Sk}k≥0 is defined in section 1. Also, for each i ∈ {1, ..., S}, let {ẑk
i }k≥0 be i.i.d. random

variables with mean µi, ‖µi‖ < ∞, and variance σ2
i < ∞. Assume that the sequences {Sk}k≥0,

{ẑk
i }k≥0 are independent for all i ∈ {1, ..., S}. Then the sequences {zk

i }k≥0 defined by the recursion:

zk+1
i = βk+1

i ẑk+1
i + (1− βk+1

i )zk
i

with any finite deterministic initial value z0
i , converge to µi almost surely, for all i ∈ {1, ..., S}

Proof: We define Zk
i for all k ≥ 0 and all i ∈ {1, ..., S} as follows:

Zk
i ≡ (zk

i − µi)
2

Then we have:

E[Zk+1
i |Fk] = E[(zk+1

i − µi)2|Fk]

= E[(βk+1
i ẑk+1

i + (1− βk+1
i )zk

i − µi)2|Fk]

= E[[βk+1
i (ẑk+1

i − µi) + (1− βk+1
i )(zk

i − µi)]2|Fk]

= E[(βk+1
i )2(ẑk+1

i − µi)2|Fk] + (zk
i − µi)2E[(1− βk+1

i )2|Fk]

+2(zk
i − µi)E[βk+1

i (1− βk+1
i )(ẑk+1

i − µi)|Fk]

Since βk+1
i is completely determined by Sk+1, it is independent of ẑk+1

i and also of Fk. Thus we

can rewrite the above expression:

E[Zk+1
i |Fk] = E[(βk+1

i )2]E[(ẑk+1
i − µi)2|Fk] + (zk

i − µ)2E[(1− βk+1
i )2]] +

2(zk
i − µi)E[βk+1

i (1− βk+1
i )]E[(ẑk+1

i − µi)|Fk] (8)

By definition, pk
i = P (Sk = i) and so we have:

E[ẑk+1
i − µi|Fk] = E[ẑk+1

i − µi] = E[ẑk+1
i ]− µi = 0

E[(ẑk+1
i − µi)2|Fk] = E[(ẑk+1

i − µi)2] = σ2
i

E[(βk+1
i )2] = (αk+1)2pk+1

i + 0(1− pk+1
i ) = (αk+1)2pk+1

i

E[(1− βk+1
i )2] = (1− αk

i )
2pk+1

i + (1− pk+1
i )

Hence we can write (8) as:

E[Zk+1
i |Fk] = (αk+1)2pk+1

i σ2
i +

[
(1− αk+1)2pk+1

i + (1− pk+1
i )

]
Zk

i (9)

≤ (αk+1)2σ2
i + Zk

i (10)
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Let Mk
i ≡ Zk

i + σ2
i

∑∞
j=k+1(α

j)2, then we have:

E[Mk+1
i |Fk] = E[Zk+1

i |Fk] + σ2
i

∞∑
j=k+2

(αj)2

≤ (αk+1)2σ2
i + Zk

i + σ2
i

∞∑
j=k+2

(αj)2

= Mk
i (11)

Since Mk
i is Fk measurable and it satisfies (11) it only remains to show that E[|Mk

i |] < ∞ in order

to prove that {Mk
i } is a supermartingale. From equation (9) we have:

E[|Zk+1
i |] = E[Zk+1

i ] = E[E[Zk+1
i |Fk]]

= E
[
(αk+1)2pk+1

i σ2
i +

(
(1− αk+1)2pk+1

i + (1− pk+1
i )

)
Zk

i

]
= (αk+1)2pk+1

i σ2
i +

(
(1− αk+1)2pk+1

i + (1− pk+1
i )

)
E[Zk

i ]

Thus if E[Zk
i ] < ∞ then E[Zk+1

i ] < ∞ for all k ≥ 0, since σ2
i < ∞. We also have:

E[Z0
i ] = E[(z0

i − µi)2] = (z0
i − µi)2 < ∞

since µi < ∞ and the initial value z0
i is finite. Therefore, we can conclude that E|Zk

i | < ∞ for all

k ≥ 0. By assumption we have that
∑∞

j=k+1(α
j)2 < ∞. So by the following inequality:

E|Mk
i | ≤ E|Zk

i |+ σ2
i

∞∑
j=k+1

(αj)2 < ∞

we have E[|Mk
i |] < ∞ and thus {Mk

i } is a supermartingale. Also note that {Mk
i } is a nonnega-

tive supermartingale. By the supermartingale convergence theorem we have that {Mk
i } converges

almost surely to a nonnegative random variable M∗
i . From the definition of Mk

i and from the fact

that
∑∞

j=k+1(α
j)2 → 0 when k →∞ we conclude that {Zk

i } converges to Z∗i ≡ M∗
i almost surely.

Now, we show that Z∗i = 0. If we let mk
i = E[Zk

i ] and take expectations of (9) we get:

mk+1
i = (αk+1)2pk+1

i σ2
i +

(
(1− αk+1)2pk+1

i + (1− pk+1
i )

)
mk

i (12)

= (αk+1)2pk+1
i σ2

i +
(
1− pk+1

i αk+1(2− αk+1)
)

mk
i (13)

≤ (αk+1)2pk+1
i σ2

i +
(
1− pk+1

i αk+1
)

mk
i (14)

≤ ε(αk+1)2(σ2
i /ε) +

(
1− εαk+1

)
mk

i (15)

Inequality (15) comes from assumption 4: ε < pk
i < 1 for all i and k. With the above inequalities

we satisfy all the conditions of lemma 3.1. Thus, we have mk
i → m∗

i = 0 as k → ∞. By Fatou’s
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lemma we have the inequality:

E[Z∗i ] = E[ lim
k→∞

Zk
i ] ≤ lim

k→∞
E[Zk

i ] = lim
k→∞

mk
i = 0

Since Z∗i is a nonnegative random variable with E[Z∗i ] ≤ 0, then we must have Z∗i = 0. Thus,

{Zk
i }k≥0 converges to zero almost surely. So, {zk

i }k≥0 converges to µi almost surely for all i ∈
{1, ..., S}. Q.E.D.

3.2 Sketch of the convergence proof

In section 3.3 we provide the proof of convergence of the DOME algorithm. The sketch of the proof

is described below:

Sketch of the proof:

Step 1 We establish the following inequalities amongst the sequences {xn,k
i }k≥0, {x

n+1,k
i }k≥0

and {yk
i }k≥0 (see equations (6) and (5)) in proposition 1:

xn+1,k
i ≤ xn,k

i for i < n + 1

xn+1,k
n+1 ≥ yk

n+1

for all n ≥ 1, all k ≥ 0.

Step 2 In proposition 2 we prove that if
∑∞

k=0 Un,k
i,j < ∞ almost surely for i, j ∈ {1, ..., n}

and for all n ≥ 1, then the sequence {xn,k
i }k≥0 converges to µi almost surely for all

i ∈ {1, ..., n} and for all n ≥ 1. To prove this result we use theorem 2 which is a

variation of a well known Robbins-Monro type of convergence result (which we state

in theorem 1).

Step 3 We use the inequalities of step 1 to prove that
∑∞

k=0 Un,k
i,j < ∞ almost surely for

i, j ∈ {1, ..., n} and for all n ≥ 1. This means that updates to neighboring cells occur

a finite number of times. We prove this by induction on n, the number of cells: (a) In

lemma 3.2 we prove the result for n = 2. (b) In proposition 3 we use lemma 3.2 as the

initial step of the induction. We make the induction hypothesis that
∑∞

k=0 Un,k
i,j < ∞

almost surely for i, j ∈ {1, ..., n} and using lemmas 3.3, 3.4 and 3.5 we prove that∑∞
k=0 Un+1,k

i,j < ∞ almost surely for i, j ∈ {1, ..., n + 1}.

Step 4 By propositions 1, 2 and 3 we get the result that the sequences {xn,k
i }k≥0 converge to

µi almost surely for all i ∈ {1, ..., n}, and n ∈ {1, ..., S}. From step 2 of the DOME

algorithm we can observe that the algorithm reaches its estimates by following the

sequences {xS,k
i }k≥0. And thus we establish convergence of the algorithm.



Papadaki and Powell 13

3.3 Our proof of convergence

We start by proving some inequalities between the sequences that we described in section 1.

Proposition 1 For any n ≥ 1 and all k ≥ 0 we have:

xn+1,k
i ≤ xn,k

i for i < n + 1 (16)

xn+1,k
n+1 ≥ yk

n+1 (17)

almost surely.

We first consider the simple case of proposition 1 where the random variable Sk takes values in

the domain {1, 2}, that is when n = 1. Then we proceed to prove these inequalities for the general

case where Sk takes values in {1, ..., n}.

Proof of case n = 1:

The inequalities (16) and (17) become:

x2,k
1 ≤ x1,k

1 (18)

x2,k
2 ≥ yk

2 (19)

for all k ≥ 0. Note that in equation (18) x1,k
1 is equal to yk

1 , since for n = 1 the sequences {xn,k
i }

become the same as the sequences {yk
i }. This is because in the one cell case there are no updates

from neighboring cells. Thus (18) and (19) can be written as:

x2,k
1 ≤ yk

1 (20)

x2,k
2 ≥ yk

2 (21)

The above inequalities are for the 2-cell problem and we prove each of them using induction on k.

We start with (20):

Initially we have x2,0
1 = y0

1 = x0 which means that (20) is satisfied for k = 0. Now we assume

that (20) holds for k iterations and we prove that it holds for k + 1 iterations. At iteration k + 1,

if cell 1 is picked at iteration k + 1 then by the induction hypothesis we get:

(1− αk+1)x2,k
1 ≤ (1− αk+1)yk

1 .

Adding αk+1wk+1
1 to both sides:

αk+1wk+1
1 + (1− αk+1)x2,k

1 ≤ αk+1wk+1
1 + (1− αk+1)yk

1
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gives us:

x2,k+1
1 ≤ yk+1

1 .

Now, suppose that cell 2 is picked at iteration k +1; then we have yk+1
1 = yk

1 and the following two

cases:

Case (a): x2,k+1
2 > x2,k

1 , which means that cell 1 is not updated, and by the induction hypothesis

we have:

x2,k+1
1 = x2,k

1 ≤ yk
1 = yk+1

1 .

Case (b): x2,k+1
2 ≤ x2,k

1 , which means that cell 1 is updated to x2,k+1
2 , and we have:

x2,k+1
1 = x2,k+1

2 ≤ x2,k
1 ≤ yk

1 = yk+1
1

Thus, (20) holds for k + 1 iterations, which means that it holds for all k.

The proof of (21) closely mirrors that of (20) and thus we omit it. Q.E.D.

Now we prove proposition 1 for the general case where Sk takes values in the domain {1, ..., n}.

Proof of case n ≥ 2:

We first prove (16) by induction on k. Initially we have xn,0
i = xn+1,0

i , which proves (16) for

k = 0. Now, we assume (16) holds for k iterations and we prove it holds for k + 1.

At iteration k + 1, if cell i is picked then both estimates xn,k
i and xn+1,k

i are updated by the

same value wk+1
i and thus the inequality (16) still holds.

Now, suppose that cell n + 1 is picked at iteration k + 1. Then we have xn,k+1
i = xn,k

i and the

following two cases:

Case (a): xn+1,k
i < xn+1,k+1

n+1 , which means that cell i is not updated. Thus, by the induction

hypothesis:

xn+1,k+1
i = xn+1,k

i ≤ xn,k
i = xn,k+1

i

Case (b): xn+1,k
i ≥ xn+1,k+1

n+1 , which means that cell i is updated. So, we have:

xn,k+1
i = xn,k

i ≥ xn+1,k
i ≥ xn+1,k+1

n+1 = xn+1,k+1
i

So, if cell n + 1 was picked at iteration k + 1 the inequality (16) holds for k + 1.
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Finally, suppose that cell j was picked at iteration k + 1, where j < i and j 6= n + 1. Then we

have the following four cases:

Case (a): xn,k+1
j < xn,k

i and xn+1,k+1
j < xn+1,k

i , which means that both estimates xn,k
i and xn+1,k

i

are not updated. Since the estimates remain the same at iteration k + 1 the inequality (16) is

satisfied for k + 1.

Case (b): xn,k+1
j ≥ xn,k

i and xn+1,k+1
j ≥ xn+1,k

i , which means that both estimates xn,k
i and xn+1,k

i

are updated to xn,k+1
j and xn+1,k+1

j respectively. By the induction hypothesis we have:

xn,k
j ≥ xn+1,k

j

and since the estimates xn,k
j , xn+1,k

j are both updated by the same value we have at iteration k +1:

xn,k+1
j ≥ xn+1,k+1

j

and thus:

xn+1,k+1
i = xn+1,k+1

j ≤ xn,k+1
j = xn,k

i

Case (c): xn,k+1
j ≥ xn,k

i and xn+1,k+1
j < xn+1,k

i , which means that xn,k
i is updated to xn,k+1

j and

xn+1,k
i is not updated. So we have:

xn,k+1
i = xn,k+1

j ≥ xn,k
i ≥ xn+1,k

i = xn+1,k+1
i

Case (d): xn,k+1
j < xn,k

i and xn+1,k+1
j ≥ xn+1,k

i , which means that xn,k
i is not updated and xn+1,k

i

is updated to xn+1,k+1
j . So we have:

xn,k+1
i = xn,k

i > xn,k+1
j ≥ xn+1,k+1

j = xn+1,k+1
i

Thus (16) holds for k + 1 iterations in the case that cell j is picked, where j < i.

The argument for the case that cell j is picked and i < j < n + 1 is exactly symmetric to the

case j < i that we proved above. Therefore, we proved (16) by induction on k for all n ≥ 2.

The proof of (17) closely mirrors that of (21) and thus we omit it. Q.E.D.

Proposition 2 If
∑∞

k=0 Un,k
i,j < ∞ almost surely for all i, j ∈ {1, 2, ..., n} and all n ≤ S, then the

sequence of estimates {xn,k
i }k≥0 converges to µi for all i ∈ {1, 2, ..., n} and all 1 ≤ n ≤ S.
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Proof: Let i ∈ {1, 2, ..., n}, then for almost every ω there exists Nn
i (ω) < ∞ such that for k ≥ Nn

i

no more updates occur in cell i from neighboring cells (in the n cell problem). Thus we have for

k ≥ Nn
i :

xn,k+1
i =

{
αk+1wk+1

i + (1− αk+1)xn,k
i if Sk+1 = i

xn,k
i otherwise

In the iterations greater than Nn
i that cell i is not chosen, cell i gets updated using a stepsize zero.

So, we can replace the sequence of stepsizes {αk} by the stochastic stepsize sequence {βk
i } which

at iteration k is completely determined by the random variable Sk:

βk
i (ω) =

{
αk if Sk = i
0 otherwise

Then we can write xk+1
i explicitly:

xk+1
i = βk+1

i wk+1
i + (1− βk+1

i )xk
i (22)

for all k > Nn
i . Now we use theorem 2 to prove convergence of the sequence {xn,k

i }k≥Ni
. By the

definition of the stepsize sequences {βk
i }, the properties of the stepsize sequence {αk} (see equations

(2), (3), (4)), equation (22) and assumption 3 of independence of {(W k
1 , ...,W k

S )}k≥1 and {Sk}k≥1,

all conditions of theorem 2 are satisfied. Thus {xn,k
i }k≥Nn

i
converges to µi almost surely for all

i ∈ {1, ..., n}. And thus we have the desired result. Q.E.D.

The next step is to prove that the events described by the indicator variables {Un,k
ij }

k≥0
occur

finitely often:
∑∞

k=0 Un,k
ij < ∞ almost surely. This means that the updates from neighboring cells

occur finitely many times. We prove this by induction on the number of cells. We start with the

case of n = 2 as the initial induction step in lemma 3.2, and then we proceed to the general case

in proposition 3.

Lemma 3.2
∑∞

k=0 Un,k
ij < ∞ almost surely, for i, j = 1, 2 and i 6= j.

Proof:

We prove the case where i = 1, j = 2 and the other case is symmetric.

{U2,k+1
12 = 1} = {ω : x2,k+1

1 (ω) ≥ x2,k
2 (ω)} (23)

= {ω : αk+1wk+1
1 (ω) + (1− αk+1)x2,k

1 (ω) ≥ x2,k
2 (ω)}

= {ω : αk+1wk+1
1 (ω) ≥ x2,k

2 (ω)− (1− αk+1)x2,k
1 (ω)}

⊂ {ω : αk+1wk+1
1 (ω) ≥ yk

2 (ω)− (1− αk+1)yk
1 (ω)} (24)

= {ω : αk+1wk+1
1 (ω) + (1− αk+1)yk

1 (ω) ≥ yk
2 (ω)}

= {ω : yk+1
1 (ω) ≥ yk

2 (ω)}
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The equality (23) comes directly from the definition of the indicator variables Un,k
ij (equation (7)),

and (24) follows from proposition 1. The above set of calculations imply:

{U2,k+1
12 = 1} ⊂ {ω : yk+1

1 (ω) ≥ yk
2 (ω)} (25)

By theorem 1, we have that {yk
i }k≥0 converges to µi almost surely, for i = 1, 2. Thus,

yk
2 − yk+1

1 → µ2 − µ1 a.s.

From the definition of almost sure convergence and µ2 − µ1 > 0, we have:

∞∑
k=0

1(µ2−µ1,∞)|(yk
2 − yk+1

1 )− (µ2 − µ1)| < ∞ a.s. (26)

We still maintain boundedness even if we remove the absolute values from (26):

∞∑
k=0

1(µ2−µ1,∞)

{
(µ2 − µ1)− (yk

2 − yk+1
1 )

}
< ∞ a.s.,

which is equivalent to:

∞∑
k=0

1{ω:yk+1
1 (ω)≥yk

2 (ω)} < ∞ a.s..

Using (25), the above inequality becomes:

∞∑
k=0

1{U2,k+1
12 =1} < ∞ a.s.

which is equivalent to:

∞∑
k=0

U2,k+1
12 < ∞ a.s.

Q.E.D.

The following three technical lemmas are important to prove the nth case of lemma 3.2.

Lemma 3.3 Suppose the following:

∞∑
k=0

Un,k
ij < ∞ almost surely for all i, j ∈ {1, ..., n}. (27)

Then
∑∞

k=0 Un+1,k
i,n+1 < ∞ almost surely for all i < n + 1.
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Proof:

We start with the following set relationships:

{Un+1,k+1
i,n+1 = 1} = {ω : xn+1,k+1

i (ω) ≥ xn+1,k
n+1 (ω)} (28)

= {ω : αk+1wk+1
i (ω) ≥ xn+1,k

n+1 (ω)− (1− αk+1)xn+1,k
i (ω)}

⊂ {ω : αk+1wk+1
i (ω) ≥ yk

n+1(ω)− (1− αk+1)xn,k
i (ω)} (29)

= {ω : xn,k+1
i (ω) ≥ yk

n+1(ω)}

The equality (28) comes directly from the definition of the indicator variables Un,k
ij , and (29) follows

from proposition 1. The above set of calculations imply:

{Un+1,k+1
i,n+1 = 1} ⊂ {ω : xn,k+1

i (ω) ≥ yk
n+1(ω)} (30)

From assumption (27) and proposition 2 we have that {xn,k
i }k≥0 converges to µi almost surely.

Also, by theorem 1, we have that {yk
n+1}k≥0

converges to µn+1 almost surely. Thus,

yk
n+1 − xn,k+1

i → µn+1 − µi a.s.

From the definition of almost sure convergence, the fact that µn+1 − µi > 0 and using a similar

argument as in the proof of lemma 3.2 we get:

∞∑
k=0

1{ω:xn,k+1
i (ω)≥yk

n+1(ω)} < ∞ a.s.

Using (30), the above inequality becomes:

∞∑
k=0

Un+1,k+1
i,n+1 < ∞ a.s.

Q.E.D.

Lemma 3.4 Suppose the following:

∞∑
k=0

Un,k
ij < ∞ almost surely for all i, j ∈ {1, ..., n}. (31)

Then
∑∞

k=0 Un+1,k
n+1,j < ∞ almost surely for all j < n + 1.
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Proof:

The line of proof is very similar to the proof of lemma 3.3, so we provide a brief version of the

proof:

{Un+1,k+1
n+1,j = 1} = {ω : xn+1,k+1

n+1 (ω) ≤ xn+1,k
j (ω)}

= {ω : αk+1wk+1
n+1(ω) ≤ xn+1,k

j (ω)− (1− αk+1)xn+1,k
n+1 (ω)}

⊂ {ω : αk+1wk+1
n+1(ω) ≤ xn,k

j (ω)− (1− αk+1)yk
n+1(ω)} (32)

= {ω : yk+1
n+1(ω) ≤ xn,k

j (ω)}

where (32) follows from proposition 1. Thus, we have:

{Un+1,k+1
n+1,j = 1} ⊂ {ω : yk+1

n+1(ω) ≤ xn,k
j (ω)} (33)

From assumption (31) and theorem 1 we have that:

yk+1
n+1 − xn,k

j → µn+1 − µi as k →∞ a.s.

which implies

∞∑
k=0

1{ω:yk+1
n+1(ω)≤xn,k

j (ω)} < ∞ a.s.

From (33) we have:

∞∑
k=0

Un+1,k
n+1,j < ∞ a.s. (34)

Q.E.D.

Lemma 3.5 Suppose the following:

∞∑
k=0

Un,k
ij < ∞ almost surely for all i, j ∈ {1, ..., n}. (35)

Then
∑∞

k=0 Un+1,k
ij < ∞ almost surely for all i, j ∈ {1, ..., n}.

Proof:

In lemma 3.4, specifically equation (34), we proved that, given (35), then, for almost every ω, out

of infinitely many times that cell n + 1 is sampled, only finitely many times result in updates of
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cell j when j < n + 1. So, for almost every ω there exists an Nn+1
j < ∞ such that for k > Nn+1

j

cell j, in the n + 1 cell problem, receives no more updates from cell n + 1.

Then, for almost every ω there exists Nn+1 = maxj=1,...,n Nn+1
j such that for k ≥ Nn+1(ω) no

more updates occur in cells 1, ..., n from cell n + 1.

If we start the algorithm for the n + 1 problem at iteration Nn+1, then the updating scheme of

the sequences {xn+1,k
i } for cells i ∈ {1, .., n} is the exactly the same as the updating scheme of the

sequences {xn,k
i } for cells i ∈ {1, .., n}, since no more updates occur on cells {1, .., n} from cell n+1.

The only difference between the {xn+1,k
i }k>Nn+1 sequence and the {xn,k

i }k>Nn+1 sequence is that

they have different initial values. Thus we conclude that the random variables {Un,k
i,j }k>Nn+1 have

the same distribution as the variables {Un+1,k
i,j }

k>Nn+1 for i, j ∈ {1, ..., n} since their distribution

depends only on the random variables {Sk} and the updating scheme of the sequences {xn,k},
{xn+1,k}.

Since assumption (35) gives us that
∑∞

k=Nn+1 Un,k
i,j < ∞ almost surely for all i, j < n + 1, we

also have that
∑∞

k=Nn+1 Un+1,k
i,j < ∞ almost surely for all i, j < n + 1. Q.E.D.

In the following proposition we use lemma 3.2 as an initial step to prove inductively that there

are finitely many updates to neighboring cells when updating the estimates according to the process

xn,k, for all n ∈ {1, ..., S}. In order to complete the proof we use lemmas 3.3, 3.4 and 3.5.

Proposition 3
∑∞

k=0 Un,k
ij < ∞ almost surely for all n > 1, and 1 ≤ i, j ≤ n, i 6= j.

Proof:

We prove this by induction on n. From lemma 3.2 we have the case for n = 2. We assume that

the proposition holds for the problem with n cells and then we prove that it holds for n + 1 cells.

Now have three cases: 1) j = n + 1, 2) i = n + 1, and 3) i, j < n + 1. Cases 1,2 and 3 follow by the

induction hypothesis and lemmas 3.3, 3.4, 3.5 respectively.

Q.E.D.

We use the result of proposition 3 along with the result of proposition 2 to prove the convergence

of the sequences {xn,k
i }k≥0 in the theorem that follows.

Theorem 3 The sequences {xS,k
i }k≥0 converge to µi almost surely for all i ∈ {1, ..., S}.

Proof: By proposition 3 and proposition 2 we have that for all n ∈ {1, ..., S} the sequences xn,k
i

converge almost surely to the respective mean values, µi. Thus, by letting n = S we get that:

xS,k
i → µi, as k →∞ a.s.
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Q.E.D.

The above theorem proves the almost sure convergence of the DOME algorithm since the

algorithm estimates the mean values of the discrete monotone function f using the convergent

sequences xS,k.

4 Conclusions

In this paper we have presented an algorithm for the on-line estimation of monotone functions. The

algorithm falls in the class of stochastic approximation algorithms, which were pioneered by Robbins

and Monro DOME has the useful property that the estimates of the function are monotone at each

iteration. The monotonicity of the estimates is preserved by a projection step at each iteration.

The DOME algorithm is convergent but can also be used as a method for approximating mono-

tone functions at a small number of iterations. Relaxing some of our assumptions, such as having a

strictly positive probability of visiting each state, could also result in an approximation algorithm

for estimating monotone functions.
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