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Abstract 
 
 
When solving Data Envelopment Analysis (DEA) models it is usual to solve a Linear 
Programme (LP) many times, with different right-hand-side (RHS) vectors: once for 
each Decision Making Unit (DMU) in the organisation being evaluated. Besides 
being tedious and involving repeated computation this iterative approach gives little 
insight into the overall structure of the model for the organisation. Instead, by 
projecting out all the variables of the LP which are common to all LP runs, we obtain 
a formula into which we can substitute the inputs and outputs of each DMU in turn in 
order to obtain its efficiency number and efficient comparators. In addition we also 
obtain the best weightings which the DMU would choose to put on its inputs and 
outputs. The method of projection, which we use, is Fourier-Motzkin Elimination. 
This provides us with a finite number of extreme rays of the elimination cone. These 
rays give the dual multipliers which can be interpreted as weights which will apply to 
the inputs and outputs for particular DMUs. As the approach provides all the extreme 
rays of the cone, multiple sets of weights, when they exist, are explicitly provided. 
The method also demonstrates that the same weightings will apply to all DMUs 
having the same comparators. In addition it is possible to construct the skeleton of the 
efficient frontier of efficient DMUs.    
 
Keywords:  Data Envelopment Analysis, Efficiency Evaluation, Performance 
Evaluation, Linear Programming, Fourier-Motzkin elimination. 
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1.  INTRODUCTION 

Data Envelopment Analysis (DEA) is an established method of comparing the 
performance of a number of similar units (eg shops, hospitals, schools, garages etc). 
Many case studies have been published (see eg Seiford (1995), Cooper et al (1999)) 
 
The individual units are known as Decision Making Units (DMUs). Each DMU has a 
number of inputs used to produce different outputs. In the standard model it is assumed 
that there are constant returns to scale (eg doubling all inputs will result in the doubling 
of all outputs). This implies infinite divisibility (ie fractional amounts of the inputs can be 
used). In addition additivity is also assumed, enabling one to make up fictional DMUs by 
combining DMUs in any multiples. All these assumptions can be altered to produce non-
standard models. A full description of DEA can be found in many texts (eg Cooper et al 
(1999)). For the purposes of this paper we will use the standard model, known in the 
literature as the CCR model, first introduced in the pioneering work of Charnes et al 
(1978).  
 
In section 2 we formulate the standard model as a Linear Programme (LP) and show how 
it is possible to project out all but one of the variables to give us weightings for the inputs 
and outputs resulting in a formula which gives us the efficiency number and comparators 
for each DMU. It also enables us to construct the skeleton of the efficiency frontier. This 
is illustrated, in section 3, by a numerical example. In section 4 we take a larger case 
study from the literature and apply the analysis to that problem. Finally, in section 5, we 
suggest how this approach may be extended to non-standard models.  
 
2.  PROJECTION OF THE STANDARD MODEL 

We consider a problem with n DMUs indexed by j  in  {1,2,…,n}. Each DMU has p 
inputs and q outputs. DMUj has inputs a1j, a2j,…,apj  and outputs c1j, c2j,…,cqj. 
 
In the Primal model we introduce the following variables: 
 
 xj   = Amount of DMUj used.  
 w  =  The proportion of the input bundle of DMUk needed to produce its own output 
bundle. 
 
In order to evaluate DMUk we have the model: 
 
Minimise       w 
subject to:    - a11 x1 - a12 x2 - … - a1n xn + a1k w  ≥ 0 
                    - a21 x1 - a22 x2 - … - a2n xn + a2k w   ≥ 0 
 
                     - ap1 x1 - ap2 x2 - … - apn xn + apk w  ≥ 0 
                       c11 x1 + c12 x2 + … +c1n xn             ≥ c1k

  c21 x1 + c22 x2 + … +c2n xn            ≥ c2k 
                           .                  .               .             . 
                        cq1 x1 + cq2 x2 + … +cqn xn            ≥ cqk

                                  xj  ≥ 0  j = 1,2,…,n 
Here aij is the amount of input i used by DMUj  for i = 1, … , p and 
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ctj is the amount of output t produced by DMUj for t = 1, … , q.  
 
Its interpretation is as follows: 
 
Choose a mixture of DMUs to produce at least the outputs of DMUk using the smallest 
possible multiple of the inputs of DMUk. If DMUk is efficient, its outputs will be best 
produced using all of its own inputs. In this case   xk = 1, xj = 0 for all j ≠ k   and w  =1 
(w is its efficiency number). On the other hand, if DMUk is inefficient, its outputs will be 
best produced by a mixture of other DMUs using a fraction w of all its inputs. In this case 
w, its efficiency number, is such that 0 < w < 1.  
 
If we project out variables x1, x2, … , xn  using Fourier- Motzkin elimination (see 
Williams (1986)) this results in the model taking the form: 
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w*  gives DMUk’s efficiency number and λim, μtm are the weightings which it should use, 
for its inputs and outputs, in order to maximise its ratio of weighted outputs to inputs.  
 
It is convenient to consider the inputs and outputs as a matrix. 
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In order to eliminate the variables  x1, x2,…,xn  we consider the cone By ≤ 0 defined by 
the matrix  B such that BA ≤ 0.  
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It is only necessary to consider the (finite number of) extreme rays of this cone, giving 
rise to the rows of B.  These are delivered by restricted Fourier-Motzkin elimination. 
Each extreme ray consists of a set of multipliers (also called weights) for the inputs and 
outputs. For a particular DMU the  ‘best’ extreme ray(s) provide the maximum possible 
ratio of outputs to inputs as well as its efficiency number. 
 
The ‘best’ extreme ray will also give an efficiency number of 1 for certain (efficient) 
DMUs. These will be the comparator DMUs which we can associate with each extreme 
ray. From the Duality theorem of LP (see eg. Dantzig(1963)), the variables for these 
comparator DMUs , in the corresponding  Primal model, will be the only ones which are 
active.  
 
In order to find the multiples of the comparator DMUs which show the current DMU to 
be inefficient, we solve the binding constraints as equations for the variables representing 
the comparator DMUs. 
 
A particular set of comparator DMUs represent the vertices of a region of the efficient 
frontier. For a model with p inputs and q outputs this frontier will normally have 
dimension p + q - 2.  The ray from the origin to the point representing the DMU under 
consideration must pass through one such region, the vertices of which represent its 
comparators. This is illustrated in the next section with a numerical example. 
 
3. A NUMERICAL EXAMPLE (A) 
 
We consider an example, taken from Cooper et al (1999), with 12 DMUs, each of 
which has 2 inputs and 2 outputs. These are given in Table 1 below. 
 

DMU 1 2 3 4 5 6 7 8 9 10 11 12 
Inputs 20 19 25 27 22 55 33 31 30 50 53 38 

 151 131 160 168 158 255 235 206 244 268 306 284 
Outputs 100 150 160 180 94 230 220 152 190 250 260 250 

 90 50 55 72 66 90 88 80 100 100 147 120 
Table 1 

 
The Primal model is: 
 
Minimise    w 
 
subject to:  -20x1 -    19x2  - . . .  - 38x12 + a1kw    ≥ 0 
                 -151x1 -  131x2  - . . .- 284x12 + a2kw    ≥ 0 
                   100x1 + 150x2 + . . .+250x12               ≥ c1k

                     90x1 +   50x2 + . . . +120x12              ≥ c2k
 
                       x1,x2,. . . .,x12  ≥ 0 

The relevant extreme rays of the cone associated with the corresponding matrix B, 
together with the (efficient) comparators, are given in table 2 below. 
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Ray Extreme Rays 

(Weights for Inputs and 
Outputs) 

Comparator DMUs 

1 (0.808, 0.797,  0.465,  1) 1, 2, 4 
2 (      0,  1.111,  0.637,  1) 2, 4 
3 (      0,  0.867,  0.409,  1) 1,4 
4 (7.727,         0,  0.645,  1) 1, 2 
5 (       0,  0.596,       0,  1) 1 
6 (   4.5,         0,       0,  1) 1 
7 (     0,    1.145,       1,  0) 2 
8 (7.899,         0,       1,   0) 2 

Table 2 
 
 N.B. Since these vectors represent rays, they can be scaled by any positive multiplier 
and still represent the same ray. For convenience we have scaled the multiplier for 
the second output to be 1, where non-zero, and otherwise scaled the first output 
multiplier to be 1. 
 
The Efficiency Number of DMUk with inputs a1k, a2k and outputs c1k, c2k  is given 
by: 
             
Max [0.465c1k+c2k / 0.808a1k+0.797a2k; 0.637c1k+c2k / 1.111a2k;  . . . ; c1k / 7.899a1k]             (2)  
 
Clearly the multipliers in (2) are the coefficients from the extreme rays above. (Note 
that the coefficients in the numerator and denominator of any of the ratios in 
(2) can be scaled by equal amounts). 
 
Table 3 gives all the ratios in (2) for all 12 DMUs. 
 
   RAY 
DMU 

1 2 3 4 5 6 7 8 MAX 

1 1 0.9161 1.0000 1.0000 1.0000 1.0000 0.5784 0.6333 1 

2 1 1 0.9807 1.0000 0.6404 0.5848 1 1 1 

3 0.8761 0.8827 0.8685 0.8193 0.5767 0.4889 0.8733 0.8107 0.8827 

4 1 1 1 0.9020 0.7190 0.5926 0.9357 0.8444 1 

5 0.7635 0.7170 0.7626 0.7451 0.7008 0.6667 0.5196 0.5412 0.7635 

6 0.7953 0.8348 0.8328 0.5611 0.5922 0.3636 0.7877 0.5297 0.8348 

7 0.8895 0.8738 0.8738 0.9020 0.6283 0.5926 0.8176 0.8444 0.9020 

8 0.7963 0.7726 0.7962 0.7435 0.6516 0.5735 0.6444 0.6211 0.7963 

9 0.8612 0.8153 0.8402 0.9604 0.6876 0.7407 0.6801 0.8022 0.9604 

10 0.8515 0.8706 0.8706 0.6765 0.6260 0.4444 0.8147 0.6333 0.8706 

11 0.9345 0.9195 0.9551 0.7687 0.8060 0.6164 0.7420 0.6214 0.9551 

12 0.9191 0.8850 0.9028 0.9582 0.7089 0.7018 0.7688 0.8333 0.9582 

Table 3 
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The argument of (2), giving rise to the maximum, corresponds to one of the extreme 
rays in Table 3. Then the comparators can be read off from table 2. If the argument of 
(2) is not unique, (for example it is 2 or 3 for DMU10) multiple sets of weights are 
applicable and can be read off from Table 2. 
 
Example 1:  DMU 3 has inputs 25 and 160 and outputs 160 and 55. Substituting in    
(2) the maximum ratio comes from the 2nd argument: 
 
       (0.637*160  + 1*55) / (1.111*160) = 0.883                                      (3) 
 
showing DMU3 to be inefficient with an efficiency score of  0.883. Its comparators 
are DMU2 and DMU4. [Note that the maximum value in Table 3 is .8827 rather than 
.883 simply because four digit accuracy is used.] 
 
The multipliers 0.637 and 1 for the outputs and 0 and 1.111  for the inputs in (3) are 
the weightings which DMU3 should choose in order to maximise its ratio of 
weighted outputs to inputs. 
 
In order to find the quantities of the comparators DMU2 and DMU4 with which 
DMU3 should be compared, we note that input 2 and outputs 1 and 2 have positive 
weightings. We therefore solve the corresponding inequalities in the Primal model as 
equations to give: 
 
131x2  +  168x4   - 160w    =      0 
150x2  +  180x4                  =  160 
  50x2  +   72x4                   =    55 
 
leading to   x2  =  0.9,  x4  =  0.139, w =  0.883; 
ie the artificial DMU made up from these quantities of DMU2 and DMU4  produces 
the same outputs as DMU3 using no more than 88.3% of all the inputs. 
 
 
Example 2: DMU1 has inputs 20 and 151 and outputs 100 and 90. Substituting in (2) 
the maximum ratio comes from arguments 1,3,4,5 and 6, giving eg 
(0.465*100 + 90) / (0.808*20 + 0.797*151) = 1 if we use argument 1, and showing 
DMU1 to be efficient (efficiency number 1). Clearly one of its efficient 
‘comparators’ is itself. 
 
DMU1 could also choose the weightings from any of the rays 3,4,5 and 6 to 
maximise its weighted ratio of outputs to inputs. 
 
 
Example 3: From table 3 it is clear that DMU10 achieves its maximum ratio from 
arguments 2 and 3. So its comparators could be DMU2 and DMU4 or DMU1 and 
DMU4. In fact the primal solution is degenerate with w = 0.8706 achieved by letting 
x4 = 25/18 = 1.3889 and letting all other xj = 0. Using DMU4 at level 1.3889 uses 
37.5 of input 1 and 233.33 of input 2 and produces 250 of output 1 and 100 of output 
2. So the level of output is the same as DMU10 but only 0.8706 of input 2 is required 
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and even less (the slack is active) of input 1. The dual has multiple optimal solutions 
– the weights corresponding to ray 2 or ray 3 are applicable. 
  
Figure 1 gives the skeleton of the (two dimensional) efficiency frontier. 
The efficient DMUs on this frontier, viz., 1,2 and 4 are marked. 
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Figure 1 

 
The positions on the skeleton where the rays from the origin to a particular DMU 
intersect are shown. For example it can be seen that DMU3 intersects the region C 
showing that the efficient DMUs 2 and 4  are its comparators. 
 
Within each region the same set of multipliers will apply for all DMUs whose 
intersection point lies in this region. The regions are marked and the corresponding 
input and output multipliers which apply are given below in table 4. 
 

Region Input Multipliers Output Multipliers 
A 7.727 0 6.45 1 
B 0 0.867 0.409 1 
C 0 1.111 0.637 1 
D 0.808 0.797 0.465 1 

Table 4 

In addition DMUs 1 and 2 also each have alternate multipliers arising from rays 5, 6 
and 7,8 respectively.  
 
Where a DMU’s intersection point is on the boundary of different regions the 
multipliers for each region are alternatives. For example 3 above it was seen that 
both the multipliers for regions B and C apply. For example 2 the multipliers for 
regions A, B and D as well as those arising from rays 5 and 6 are applicable. This 
corresponds with the LP result that a degenerate primal solution has alternate 
corresponding dual solutions. For this model, with 2 inputs and 2 outputs the primal 

 7



model will produce at most 3 comparators for any DMU. If there are fewer (as must 
be the case, for example with an efficient DMU) then the solution is degenerate and 
there are alternate sets of multipliers (dual values) are possible.  
 
4.  A PRACTICAL EXAMPLE (B) 
 
We consider a problem discussed by Harris et al (2000). This concerns measuring the 
efficiencies of hospitals. There are 4 inputs (service mix, number of beds, number of 
employees, operational expenses) and 2 outputs (inpatient discharges, outpatients) 
applying to 20 hospitals (DMUs). The full list of inputs and outputs is given in table 5 
below. 
 

DMU Input Input Input Input Output Output 
1 55 313 61.15 28.85463 73.0734 41.136 
2 42 380 113.3 42.30335 86.6436 28.305 
3 25 284 36.4 13.84643 34.2916 14.549 
4 71 497 224.85 95.57345 265.55 150.325
5 56 379 119.75 77.52051 173.162 53.741 
6 40 230 71.1 33.86819 85.3403 73.162 
7 48 215 61.5 22.03391 80.5706 84.347 
8 61 264 114 39.21953 148.3293 155.287
9 60 725 359.2 139.6945 414.764 172.088
10 55 358 144.15 55.09739 183.5155 122.371
11 62 509 242.3 87.30443 256.3207 159.644
12 67 357 104.8 33.31825 132.0741 199.955
13 36 120 45.7 10.33024 42.72 23.724 
14 62 694 283.2 109.7963 335.9808 326.805
15 24 152 39.4 14.20126 67.7379 45.949 
16 75 671 252 85.03626 286.1716 429.329
17 52 399 141.55 50.29971 144.7157 102.422
18 79 822 447.55 146.7919 501.5636 419.729
19 47 325 130.05 42.52691 178.8929 49.649 
20 38 284 67.5 30.13273 101.8504 50.704 

Table 5 
 
We have scaled the data presented in the original paper in order to give figures of 
comparable orders of magnitude. This should reduce any potential numerical 
inaccuracy.  
 
Applying our method to project out the 20 xj   variables from the Primal model we 
obtain 60 non-trivial extreme rays. These are listed below, in table 6, together with 
the corresponding comparators. 
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RAY INPUT WEIGHTS OUTPUT WEIGHTS COMPARATOR DMUs

1 1.000 0.000 0.592 0.236 0.719 0.043 {  9 14 15 18}
2 1.000 0.000 0.549 0.608 0.698 0.152 { 14 15 16 18}
3 1.000 0.000 0.506 0.495 0.746 0.010 {  9 15 18 19}
4 0.112 0.052 0.000 1.000 0.299 0.100 {  8 12 15 16}
5 0.157 0.061 0.000 1.000 0.337 0.096 {  8 15 16 18}
6 0.102 0.091 0.000 1.000 0.416 0.050 {  8 15 18 19}
7 0.000 0.054 0.000 1.000 0.276 0.081 {  8 12 15}
8 0.000 0.134 0.000 1.000 0.253 0.240 {  8 12 16}
9 0.000 0.235 0.000 1.000 0.659 0.023 {  8 18 19}

10 0.000 0.094 0.000 1.000 0.400 0.030 {  8 15 19}
11 0.188 0.000 0.000 1.000 0.218 0.085 { 12 15 16}
12 0.369 0.000 0.000 1.000 0.296 0.065 { 15 16 18}
13 0.404 0.000 0.000 1.000 0.338 0.022 { 15 18 19}
14 0.000 0.000 0.000 1.000 0.175 0.051 { 12 15}
15 1.000 0.045 0.755 0.000 0.850 0.066 {  9 14 15 18}
16 1.000 0.000 0.698 0.000 0.731 0.043 {  9 14 15}
17 1.000 0.000 0.396 0.000 0.464 0.055 {  9 14 18}
18 0.859 0.143 0.960 0.000 1.000 0.270 { 14 15 16 18}
19 1.000 0.000 0.887 0.000 0.727 0.210 { 14 15 16}
20 1.000 0.000 0.119 0.000 0.134 0.156 { 14 16 18}
21 0.794 0.131 0.777 0.000 1.000 0.039 {  9 15 18 19}
22 0.175 0.137 1.000 0.000 0.707 0.361 {  8 12 15 16}
23 0.576 0.206 0.916 0.000 1.000 0.294 {  8 15 16 18}
24 0.000 0.802 0.000 0.000 0.381 1.000 {  8 16}
25 0.333 0.890 0.000 0.000 0.675 1.000 {  8 16 18}
26 0.260 0.249 0.688 0.000 1.000 0.075 {  8 15 18 19}
27 0.000 0.140 1.000 0.000 0.672 0.331 {  8 12 15}
28 0.000 0.265 1.000 0.000 0.636 0.578 {  8 12 16}
29 0.000 0.381 0.426 0.000 1.000 0.005 {  8 18 19}
30 0.000 0.928 0.000 0.000 1.000 0.623 {  8 18}
31 0.000 0.268 0.716 0.000 1.000 0.026 {  8 15 19}
32 0.373 0.000 1.000 0.000 0.496 0.322 { 12 15 16}
33 1.000 0.000 0.000 0.000 0.026 0.158 { 16 18}
34 1.000 0.000 0.000 0.000 0.132 0.030 {  9 18}
35 0.000 0.000 1.000 0.000 0.410 0.254 { 12 15}
36 0.000 0.141 0.000 1.000 0.000 0.419 { 12 16}
37 0.196 0.000 0.000 1.000 0.000 0.232 { 12 16}
38 0.000 0.000 0.000 1.000 0.000 0.167 { 12}
39 0.000 0.275 0.972 0.000 0.000 1.000 { 12 16}
40 1.000 0.000 0.000 0.000 0.000 0.175 { 16}
41 0.000 0.640 0.000 0.000 0.000 1.000 { 16}
42 0.392 0.000 1.000 0.000 0.000 0.655 { 12 16}
43 0.000 0.000 1.000 0.000 0.000 0.524 { 12}
44 1.000 0.000 0.451 0.559 0.723 0.000 {  9 18 19}
45 1.000 0.000 0.549 0.421 0.762 0.000 {  9 15 19}
46 0.000 0.309 0.000 1.000 0.799 0.000 { 18 19}
47 0.000 0.066 0.000 1.000 0.357 0.000 { 15 19}
48 0.522 0.000 0.000 1.000 0.375 0.000 { 18 19}
49 0.307 0.000 0.000 1.000 0.318 0.000 { 15 19}
50 0.000 0.000 0.000 1.000 0.210 0.000 { 15}
51 0.931 0.083 0.831 0.000 1.000 0.000 {  9 15 19}
52 1.000 0.000 0.737 0.000 0.783 0.000 {  9 15}
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53 0.597 0.218 0.615 0.000 1.000 0.000 {  9 18 19}
54 0.000 0.385 0.414 0.000 1.000 0.000 { 18 19}
55 0.000 0.610 0.000 0.000 1.000 0.000 { 18}
56 0.000 0.253 0.744 0.000 1.000 0.000 { 15 19}
57 1.000 0.118 0.000 0.000 0.350 0.000 {  9 18}
58 1.000 0.000 0.000 0.291 0.243 0.000 {  9 18}
59 1.000 0.000 0.000 0.000 0.145 0.000 {  9}
60 0.000 0.000 1.000 0.000 0.582 0.000 { 15}

                                                                          Table 6 
 
Since these rows represent rays, they may each be scaled by any positive quantity we 
wish. We have scaled them all to be between 0 and 1. 
 
The efficiency frontier is 4- dimensional. Therefore its skeleton graph will not, 
normally, be planar. It is, therefore, not possible to observe visually, for a given 
DMU, what its comparators are. Its intersection point will lie in one of the 4-
dimensional regions. The skeleton graph is presented in figure 2. 
 

89 16

19 18 14

12

15

 

Figure 2 
 
Our solution differs somewhat from that given in the original paper. We believe that 
the difference is due to numerical accuracy problems for this particular data set 
involving very large and very small numbers. 
 
 
Example 4: We deduce the efficiency of hospital (DMU) 1. 
 
Applying the multipliers given in the extreme rays above, to its inputs and outputs, 
the maximum ratio comes from the multipliers in ray 60 which gives an efficiency 
score of 0.695 showing hospital 1 to be inefficient with hospital 15 being the 
comparator.  
 
 
Example 5: We deduce the efficiency of hospital 5. 
 
Applying the multipliers in the extreme rays above, to its inputs and outputs, the 
maximum ratio comes from the multipliers in ray 51, which gives an efficiency score 
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of 0.945 showing hospital 5 to be (slightly) inefficient with hospitals 9, 15 and 19 
being comparators. 
 
 
Example 6: We deduce the efficiency of hospital 8. 
 
Applying the multipliers in the extreme rays above, to its inputs and outputs, the 
maximum ratio comes from ray 22 (among others) giving an efficiency score of 1 
showing hospital 8 to be efficient. 
 
All the DMUs with their efficiencies, the ray of their input and output multipliers 
(there may be alternatives) and their comparators are listed in table 7 below. 
 

DMU EFFICIENCY   RAY COMPARATORS 
1 0.695 60 {  15} 
2 0.541 45 {   9  15  19} 
3 0.548 60 {  15} 
4 0.934 29 {   8  18  19} 
5 0.945 51 {   9  15  19} 
6 0.791 22 {   8  12  15  16} 
7 0.895 27 {   8  12  15} 
8 1.000 22 {   8} 
9 1.000 52 {   9} 

10 0.951 26 {   8  15  18  19} 
11 0.867 26 {   8  15  18  19} 
12 1.000 22 {  12} 
13 0.867 50 {  15} 
14 1.000 2 {  14} 
15 1.000 50 {  15} 
16 1.000 11 {  16} 
17 0.734 1 {   9  14  15  18} 
18 1.000 54 {  18} 
19 1.000 21 {  19} 
20 0.909 52 {   9  15} 

Table 7 

5. Further Considerations 
 
For this preliminary exposition we have deliberately kept things simple by looking at 
the original constant return to scale CCR model. We are aware that the standard 
constant returns to scale model in modern literature minimises w + ε(T) where T is 
the sum of all the slack and surplus variables to deal with points on the frontier which 
have w = 1 but T ≠ 0.  Other models such as the variable returns to scale model, 
models with restrictions on weights etc. are also of great interest for practical work. 
We have been able to solve all these models using the Restricted Fourier – Motzkin 
Elimination method. 
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The projection of a polytope into a smaller dimension can lead to an exponential 
number of extreme rays. We carried out computational experiments to determine if 
this is likely to be an impediment to solving very large DEA model in this way. The 
data sets available at http://www.mscmga.ms.ic.ac.uk/jeb/orlib/deainfo.html and 
http://www.deazone.com/datasets/FILE1/index.asp were utilised.  No serious 
computational problems were encountered. The lessons learnt are: 

(i) As the problem size grows, performance measures such as number of rays, 
maximum no.of inequalities produced at any iteration, sum of inequalities 
dealt with, maximum memory used and operating time does grow. 

(ii) The effect of increasing number of factors (inputs + outputs) is much 
greater than that of increasing the number of DMUs. 

(iii) A problem with only one input or only one output is easier to solve than a 
comparable one with same number of factors but multiple inputs as well as 
outputs. 

(iv) For problems tried in our experiments (with up to 70 DMUs and 11 
factors) the computational growth is easily manageable. 

 
Based on our experience so far we maintain that the method proposed here is a viable 
method since 
(i)  DEA models tend to be small in comparison with the large LP models that arise 

in other applications. 
(ii)  The DEA based LP models have a special structure with positive coefficients in 

one of the row partitions and negative coefficients in the other. Experience with 
Fourier-Motzkin elimination suggests this will reduce the growth in inequalities 
when projecting out variables.  

(iii)  In practical DEA problems the number of factors is usually small. 
 
The calculations for the examples in this paper were carried out by means of the 
PORTA Version 2, Free Software Foundation, Boston, 1991 Program interfaced to 
our own C program.  

 12



 
REFERENCES 

 
Charnes, A., Cooper, W.W., Rhodes, E. 1978. Measuring the Efficiency of Decision Making Units. 
European Journal of Oper. Res. 2, 429-444. 
 
Cooper, W. W., Seiford, L.W., Tone, K. 1999. Data Envelopment Analysis. Kluwer Academic 
Publications. 
 
Dantzig, G.B. (1963). Linear Programming and Extensions, Princeton University Press, Princeton, 
New Jersey 
 
Harris II, J. Ozgen H. and Y. Oscan (2000), Do Mergers Enhance the Performance of Hospital 
Efficiency? JORS  51, 801-11  
 
Seiford, L.M. 1995. A Bibliography of Data Envelopment Analysis (1978-1995).  
 
Williams, H.P. (1986), Fourier’s Method of Linear Programming and its Dual, Am.Math Monthly 93, 
681-94 
 
 
 
 

Acknowledgments 

The authors would like to thank Yiannis Mourtos and Atsushi Kamiya for help with 
the calculations and Dr John Beasley for providing the test problems. The work of the 
second author was partially supported by Leverhulme Research Fellowship 
RF&G/9/RFG/2000/0174.   

 13


	WP 02 49 (coversheet).doc
	WP 02 49 Revised.doc
	Abstract 
	When solving Data Envelopment Analysis (DEA) models it is usual to solve a Linear Programme (LP) many times, with different right-hand-side (RHS) vectors: once for each Decision Making Unit (DMU) in the organisation being evaluated. Besides being tedious and involving repeated computation this iterative approach gives little insight into the overall structure of the model for the organisation. Instead, by projecting out all the variables of the LP which are common to all LP runs, we obtain a formula into which we can substitute the inputs and outputs of each DMU in turn in order to obtain its efficiency number and efficient comparators. In addition we also obtain the best weightings which the DMU would choose to put on its inputs and outputs. The method of projection, which we use, is Fourier-Motzkin Elimination. This provides us with a finite number of extreme rays of the elimination cone. These rays give the dual multipliers which can be interpreted as weights which will apply to the inputs and outputs for particular DMUs. As the approach provides all the extreme rays of the cone, multiple sets of weights, when they exist, are explicitly provided. The method also demonstrates that the same weightings will apply to all DMUs having the same comparators. In addition it is possible to construct the skeleton of the efficient frontier of efficient DMUs.    
	Region
	Table 4 
	DMU
	Input
	Table 5 



	 RAY
	INPUT WEIGHTS
	OUTPUT WEIGHTS

	COMPARATORS
	Table 7 




