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Internet Service Classes Under Competition
Richard Gibbens, Robin Mason, and Richard Steinberg

Abstract—This paper analyzes competition between two
Internet service providers (ISPs), either or both of which may
choose to offer multiple service classes. In the model analyzed,
a social planner who maximizes the total benefit from network
usage and a profit maximizing monopolist will both form multiple
service classes; but two networks competing to maximize profits
will not. The reason is that a competition effect always outweighs
a segmentation effect. Networks wish to offer multiple service
classes in order to increase user benefits and hence charge higher
prices. In doing so, however, they effectively increase the number
of points in the service quality range at which they compete.
Consequently, in any equilibrium competitive outcome, both
ISP’s offer a single service class. The analysis has particular
implications for the Paris Metro pricing (PMP) proposal, which is
considered in depth in this paper, since it suggests that PMP may
not be viable under competition.

Index Terms—Congestion, differentiated services, Internet
charging, multiproduct competition, Paris Metro pricing, quality
of service.

I. INTRODUCTION AND MOTIVATION

I T IS widely recognized that Internet usage is subject to a
“tragedy of the commons” [10], and that pricing of Internet

resources is required to control congestion. Many proposals
have been considered in the literature. The reader is referred, in
particular, to [4], [9], [12], and [15]. One approach suggested
by several authors is that a small number of service classes
should be offered on the Internet. For example, Gupta, Stahl,
and Whinston advocate a finite number of (perhaps four or less)
priority classes. In Odlyzko’s “Paris Metro Pricing” (PMP)
proposal [17], between two and four service classes would be
generated by differential pricing on logically separate channels.
(See below for more on this scheme.)

This paper assesses the viability of these service class
proposals in general—and Odlyzko’s PMP in particular—when
there are competing network providers. Three cases are referred
to in the paper: thesocial optimum, where total benefit from
network usage is maximized;monopoly, where a single network
maximizes profit; andduopoly, where two networks compete to
maximize their individual profits. In the model developed here,
both a “social planner,” interested in maximizing the welfare
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of users, and a profit maximizing monopolist will wish to use
several service classes; duopolists will not.1

The model is based on the particular proposal by Odlyzko.
Some years ago on the Paris Metro, and up until quite recently
on the suburban RER lines [18], users were offered a choice of
travelling in first or second class carriages. The only difference
was the price charged: both carriages had the same number and
quality of seats, and obviously both reached the destination at
the same time. The first class carriage was, however, more ex-
pensive, and consequently on average had fewer passengers in it.
Those users with a strong preference for, e.g., obtaining a seat,
were willing to pay the higher price; others, content to travel in
what they would expect to be a more congested carriage, paid
the lower second class fare.2

Odlyzko’s proposal is to apply the same scheme to packet
based networks, such as the Internet. A network would be
partitioned into separate logical networks, with different
charges applied on each subnetwork. No guarantees of service
quality would be offered; but, on average, networks charging
higher prices will be less congested. Users will sort themselves
according to their preferences for congestion and the prices
charged on the subnetworks.

In order to assess the PMP proposal, we place the problem in a
more general context of competition between networks who sell
multiple products in the presence of negative externalities, i.e.,
congestion. There has been little analysis of multiproduct com-
petition in the economic literature, and even less when conges-
tion is present. The model involves two competing profit-maxi-
mizingnetworks who each may offer several service classes.Ser-
vice classes are generated by forming “subnetworks,” differenti-
atedbycongestionlevel.Thecongestiononasubnetworkisdeter-
mined by two factors: the fraction of the network’s total capacity
allocated to the subnetwork; and the number of users on the sub-
network. A subnetwork with a low capacity and many users will
have a high level of congestion. Quality is therefore demand-de-
pendent,determined (inpart)by thechoicesofnetworks’prices.

Our main result is as follows. The unique outcome is that nei-
ther network subdivides its network. The intuition behind this
can be understood by appealing to the analyzes by [2] and [24].
The desire to discriminate between users with heterogeneous
valuations drives networks to charge different prices on separate
subnetworks (i.e., produce multiple goods of different qualities).

1See the Appendix for an analysis of the social optimum.
2There are many other examples of PMP. Reference [3] cites dentists in India

who operate a “two queue scheme” in which people requiring dental treatment
can pay a lower price and join a longer queue, or pay a higher price and join a
shorter queue. Both sets of people are treated by the same dentist; but the second
set receive treatment sooner. In the U.K., there is the choice to receive free (at
the point of delivery) medical care via the National Health Service (NHS), or to
pay for private treatment. While the patient sees the same doctor regardless of
the option chosen, the waiting time is usually greater under the NHS.

0733–8716/00$10.00 © 2000 IEEE
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This is a “segmentation effect.” Offsetting this is any increase
in competition between networks which results from the use of
another subnetwork (i.e., production of another good); this is a
“competition” (in Champsaur and Rochet’s terms) or “expan-
sion” (Shaked and Sutton) effect. In the model of this paper,
these two effects interact so that either 1) there is no outcome
that is an equilibrium3 under competition, or 2) when an equilib-
rium outcome exists, the competition effect always outweighs
the segmentation effect, and both networks in a duopoly earn
lower profits in any “multiproduct” outcome in which multiple
service classes are offered than in the unique outcome in which
each network offers a single service class.

The paper is structured as follows. The next section presents
the model and discusses related work. Section III provides the
main results of the paper concerning the outcomes of the model
when there are two competing networks with fixed and equal
capacities. Section IV presents numerical results to assess how
allowing capacities to be freely and optimally chosen might
change the conclusions of Section III. Section V concludes.
Proofs are contained in the Appendix.

II. THE MODEL AND RELATED WORK

In this section, we present the basic framework and discuss re-
lated work. On joining network, a user receives utility
per unit time, which has three components: a positive benefit
which is independent of which network he has joined; a disben-
efit, depending on the degree of congestion on the network,
and his preference for (lack of) congestion; and a disbenefit
from having to pay a price per unit time to the network for
its services. Thus, the utility of a user with preferencefrom
joining a network can be written as

To simplify further, suppose that congestion on a network is
simply the number of users divided by the capacity of the net-
work:

where is the mass of users on the network, andis the
network capacity. Three main assumptions are contained in this
functional form for utility. First, the congestion function is linear.
This may not be very realistic—it might be, for example, that the
effect of congestion will be negligible at low usage levels, but
will rise sharply beyond some critical level. The linear functional
form captures, however, the relevant feature that congestion in-
creases with the number of users, while maintaining tractability.4

Second, the utility function is separable in the various terms. In
fact, there is no major loss of generality here: all that is required
is that expenditure on network services is not too large relative
to a user’s income (so that there are no wealth effects to be

3See Section II-A for a precise definition of equilibrium.
4In the monopoly case, it can be shown that the linearity assumption does

not make a qualitative difference to the conclusions; see [3]. There is as yet no
equivalent result when there is more than one network.

considered). Finally, it is assumed that each user contributes
equally to congestion, i.e., generates the same amount of traffic.
This assumption is commented on further below.

Two further assumption are made. First, all users join one and
only one network. Second, a user pays a price per unit time for
the right to be connected to network; hence, prices aresub-
scription-basedrather thanusage-based. (In the latter case, the
price paid would depend on the volume of data transmitted.)
The first assumption seems more extreme than actually it is. In
particular, it is compatible with users selecting networks on a
per packet or call basis, provided that the decision as to which
network to use is largely independent across the various packets
and calls. In this case, the price charged by the network in the
current model is price per packet or call. When the network
choice decision is not independent across packets or calls, a
fully dynamic analysis would be required; this is outside the
scope of the present paper. The second assumption, that prices
are subscription-based, is reasonable when users generate the
same amount of traffic. When this is not the case, the networks
might wish to use both subscription and usage charges. Refer-
ences [1] and [16] show that the degree of competition may be
increased when both subscription- and usage-based pricing is
allowed. These analyzes suggest that including such two-part
pricing might strengthen this paper’s results, since the same fac-
tors that will rule out multiple service classes in this model (see
Section III) can lead to only subscription prices being charged
in, e.g., [16]. There are no agreed results in this area, however;
consequently, we ignore this issue in the rest of the paper.

With these assumptions, the profit of networkis .
(Costs of forming subnetworks, as well as any other costs, are
for simplicity set to zero.)

Users differ in their preference for congestion. For example,
those with elastic traffic will receive little disbenefit from con-
gestion; they will have low values of. Users with inelastic
traffic will be very sensitive to congestion, and will have high
values of .5 To reflect the range of preferences in the popula-
tion of users in the simplest manner, assume that there is a con-
tinuum of users whose parameters form a population distri-
bution which is uniformly distributed on the interval [0, 1]. The
uniform distribution is commonly used in economic models of
competition between firms whose products are of different qual-
ities; see, among many others, [22], [7], and [27]. The use of a
uniform distribution is not crucial: as [2] shows, the important
feature is that the density function is not too “irregular” (see [2,
assumptions A.1 and A.1 bis]).6

A. Nash Equilibria

In this model, two networks compete to maximize individual
profits. This assumption may not be as extreme as it appears.
As far as users are concerned, choice is not necessarily limited
by this restriction, since the two networks may offer multiple
service classes. More importantly, there is good reason to sup-
pose that, under certain circumstances, industries with conges-
tion (and, more generally, industries in which firms sell products

5Here, we use the terms elastic and inelastic in the sense introduced by [26]:
a user with inelastic traffic is sensitive to congestion and hence delay; elastic is
not.

6Taking the support to be [0, 1] is simply a normalization.
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of different qualities) may have very concentrated market struc-
tures (i.e., a small number of firms have a large market share);
see the analyses of [22] and [23]. Nevertheless, the restriction
to two networks is quite strong, and further work should gener-
alize the model to allow for more networks to enter the industry.
In the meantime, the current setting is the most transparent en-
vironment in which to study the effect of competition on the use
of multiple service classes.

It is natural to assume that prices on the subnetworks are
chosen after the decisions have been made regarding the number
of subnetworks and the capacities of these subnetworks. Thus,
a network has three decisions to make. First, it must choose the
number of subnetworks to form. Second, it must set the capacity
of its subnetworks. Finally, it must choose its prices. The non-
cooperative game between networks may have, therefore, three
stages. In Section III, for analytical convenience, capacities are
treated as fixed; hence, there are two stages in the game in this
section. The three stage game with chosen capacities is analyzed
numerically in Section IV. The rest of the paper analyzes the out-
comes of this game. For the basic game theoretic terminology
and concepts, the reader is referred to [6].

In the two stage game, a network’s strategy in the first stage is
the number of subnetworks to form. A strategy for the network
in the second stage consists of a pricing decision, taking the
number of subnetworks as given.

This paper concentrates on pure strategies. An important
finding of the paper is that equilibrium may fail to exist in the
pricing stage of the game when networks form subnetworks.
Note, however, that the results of [5] ensure that mixed strategy
equilibria always exist in this model—that is, equilibria in
which networks randomize over pure strategies (choose proba-
bility distributions over all prices) rather than a single price for
sure.7 (A pure strategy is therefore a special case of a mixed
strategy, where the probability distribution is degenerate.)
Mixed strategy equilibria are not examined here, for several
reasons. The first and most important is that the aim is to show
that pure strategy equilibria may not exist, since the proof of
this highlights the two key economic forces that are at play in
the model (the segmentation and competition effects). Second,
a standard criticism of mixed strategy equilibria is that they
impose too large an informational burden on users; see, e.g.,
[6]. When choosing a network to join, users are faced not with
certain price levels, but price distributions from which the final
prices will be drawn. The complexity of this task is increased
in the setting here, since quality is demand-dependent: in order
for users to decide which subnetwork to join, they must be
fully aware not only of the equilibrium strategies (probability
distributions over prices) of networks, but also the choices of
all other users. It is unlikely that actual users would be able to

7Hence, in this model, a mixed strategy in the pricing stage is a real-valued
(distribution) function defined overR with a range in [0, 1] . In a simpler ex-
ample, suppose that an individual has two actions open to her,A andB. A pure
strategy specifies that one of the two actions should be played for sure in a par-
ticular situation; e.g., “chooseA if another player choosesA; otherwise choose
B.” A mixed strategy specifies that an action be chosen with some probability;
e.g., “chooseAwith probabilityp andB with probability1�p if another player
choosesA with probabilityq; otherwise. . .,” and so on. See [6] for more detail
on mixed strategies.

perform this task.8 Third, the mixed strategy formulation in
this setting does not entirely solve the problem of nonexistence
of equilibrium. Randomization may generate an equilibrium;
but once prices have actually been chosen (i.e., the randomness
realized), the networks will adjust their prices. Hence, for
the mixed strategy formulation to work, it must be that the
networks are committed in some way to charge the prices that
emerge from the randomization procedure. This is inconsistent
with the setup in which prices are the networks’ most flexible
choice variable.

If a network is not divided into subnetworks, then the net-
work’s price is simply a scalar: ; if subnetworks
are formed, price is an-vector: . Index the networks
by . Let the profit of firms and be denoted and

, respectively; these profits are functions of the number of
subnetworks formed and the prices charged. A Nash equilib-
rium in the second stage subgame is a pair of price vectors,

, such that for all , and

(1)

and for all , , and

(2)

In other words, in a Nash equilibrium, no network has a uni-
lateral incentive to change its strategy. We call a Nash equilib-
rium conditionally subgame perfectif the networks’ pure strate-
gies constitute a Nash equilibrium in every subgame in which
a pure strategy equilibrium exists. This concept of conditional
subgame perfection is motivated by the concept of subgame per-
fection, which allows mixed strategies as well. In our case, how-
ever, we rule out mixed strategies; and so it may be (and, in fact,
will be) that no equilibrium exists in a particular subgame. The
standard notion of subgame perfection, described in, e.g., [6] is
modified to take account of this issue.

A strategy for a user is a choice of network to join, given the
prices quoted by the networks. (If the user is indifferent between
any two (sub)networks, his choice can be made randomly.) Any
solution to this model will satisfy the following properties.9

Property 1: A (sub)network charging a higher price has
lower congestion; e.g., in the two network case, if ,
then .

Property 2: Users who dislike congestion more will join a
more expensive, less congested (sub)network; e.g., in the two
network case, if , then users with high will join
network ; in other words, there exists such that for ,

.
In the example with just two networks, the critical value

identified in property 2 is the identity of the marginal user who
is indifferent between networkand network . When the two

8There are, however, justifications of mixed strategies that rely on the in-
formation incompleteness; see for example the famous purification theorem of
[11].

9The proofs of these properties are straightforward, and so are omitted.
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Fig. 1. The critical value of� .

networks set prices and with , and have ca-
pacities and , the mass of users who join networkis

, and network , (given the assumption of prefer-
ences uniformly distributed on the unit interval). This is illus-
trated in Fig. 1. Here is determined by the indifference rela-
tion , which implies:10

(3)

B. Related Work

The model is related to the substantial body of existing work
which examines charging schemes for congestible resources.
The contribution of this paper is to analyze the equilibrium when
multiple networks each offer one or more subnetworks. That is,
the paper addresses the question of multiproduct duopoly with
demand-dependent quality. None of the papers surveyed below
has attempted a full analysis of this area.

The model used here is based on work by [3] and [19].
(In turn, these papers can be related to the theory of price
competition with capacity constraints, e.g., [13].) Chander and
Leruth show that a profit maximizing monopolist will charge
the maximum number of different prices, and hence offer the
maximum number of subnetworks with different qualities.
By doing this, the monopolist segments the market, and can
therefore extract more surplus from users and earn higher
profits. Reference [19] studies duopoly outcomes with two
firms, when each firm charges a single price, in an identical
model setup to ours. (Part of their analysis is repeated briefly
in the next section.) Reference [14] examines the duopoly case,
and [21] oligopoly, again with each firm offering a single price.
In contrast with these papers, we examine duopoly competition
when both firms can charge more than one price, and hence
offer more than one quality.

Our analysis is also related, therefore, to the literature on
multiproduct competition. The majority of papers assume that
the number and/or characteristics of products are fixed; [2] and
[24] allow both the number, quality, and price of products to
be chosen optimally. Both papers highlight two effects. Firms
wish to offer a broad range of qualities, in order to segment the
market. On the other hand, a firm lowers its profits when it of-
fers qualities close to those of its rivals due to price competition;
this effect drives firms toward a small quality range. The model
in this paper differs from Champsaur and Rochet and Shaked
and Sutton, since quality is determined by price, and costs play
no part in the argument. Nevertheless, the same two effects will
be important for competitive outcomes.

10Only the positive root is taken in the quadratic for� , to ensure that a net-
work attracts fewer users when it charges a higher price.

There is a small but growing literature that combines engi-
neering with economics to provide a multidisciplinary analysis
of quality of service provision on the Internet. For example, see
[25] and [20]. These papers provide considerable detail on the
engineering aspects of networks, and consequently adopt a more
abstract approach to the economic analysis, concentrating on
the existence and general inefficiency of noncooperative (Nash)
equilibrium. In this paper, we concentrate on the economic as-
pects, constructing specific Nash equilibria to assess efficiency;
consequently, the engineering aspects of the model are less de-
tailed. These two approaches should be seen as complements—
both are required to gain a complete understanding of the how
service classes can and should be implemented on the Internet.

Of special relevance to our work is that of [28], who considers
a problem of the supply of electricity when there is the possi-
bility of excess demand. He confines his analysis topriority ra-
tioning, where customers are grouped into priority classes such
that those with highest priority are supplied first. His model is
therefore somewhat different to the one used in this paper; how-
ever, many of his conclusions have parallels in our setting.

In summary, many papers have considered charging and com-
petitive outcomes when resources are congestible. A few pa-
pers have examined multiproduct competition when qualities
are given. This paper combines these two approaches to address
the question: will competing firms offer multiple products when
quality is demand-dependent?

III. RESULTS

In order to derive analytical results, this section treats capac-
ities as fixed and equal: ; and, when a network
forms subnetworks, it assumes that the network splits its total
capacity equally between the subnetworks. These assumptions
will be relaxed in Section IV.

Our results, described below, confirm two results suggested
by the work in [28] on priority rationing.

1) The only equilibrium when one network offers two
classes (prices), while the other offers one, has the
single-offer network’s class lying between the two-offer
network’s classes. The two-class network earns lower
profits in this equilibrium than in the single class,
symmetric case. (Bysymmetric, we mean that the two
networks offer the identical set of prices.)

2) No asymmetric equilibrium exists when both networks in
a duopoly offer two or more classes.

In fact, the first result holds in a stronger form in this model:
we show thatboth networks earn lower profits as a result of
one of the networks introducing a second class. Moreover, un-
like Wilson who uses numerical methods (which he himself
concedes “are subject, of course, to the fallibility of numerical
methods”), we derive our results analytically.

Proposition 1: Consider the case of fixed, equal capacities
for the two networks. In the pricing subgame where neither net-
work divides into subnetworks, there is a unique Nash equilib-
rium: the two networks charge the same price,

and have positive profits, .
In the equilibrium identified in the Proposition 1, the networks

compete directly (both have the same capacity, charge the same
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price, and offer the same level of congestion), and yet earn posi-
tive profits.11 The level of equilibrium profits is a consequence of
congestion. A cut in price by one network does not attract the en-
tire market demand (as it would in a standard Bertrand model),12

since as users defect from the high-price network, congestion
rises on the low-pricenetwork.The fall inqualityof the low-price
network’s good eventually stems the flow of users.

Proposition 2: Consider the case of fixed, equal capacities
for the two networks. In the pricing subgame where (wlog)
network chooses to subdivide its network and network
does not, there exists a unique Nash equilibrium in pure strate-
gies: network charges price which lies
strictly between network ’s two prices, ,

. The profits of the networks are:
and .

Proposition 3: Consider the case of fixed, equal capacities
for the two networks. In the pricing subgame where (wlog) both
networks choose to subdivide their networks into subnetworks,
there exists no Nash equilibrium in pure strategies.

The proofs of Propositions 1, 2, and 3 appear in the Appendix.
These propositions yield the following.

Proposition 4: The following strategy (expressed for net-
work , but symmetric for the two networks) constitutes the
unique (up to the arbitrary prices ) conditionally subgame
perfect equilibrium of the two-stage game.

First Stage:Do not subdivide into subnetworks.
Second Stage:If both networks have not formed subnetworks

in the first stage, charge ; if network has not subdi-
vided its network, but network formed two subnetworks,
charge ; if network formed two subnetworks and
network did not subdivide its network, charge
and ; and if both networks formed two subnetworks,
charge any two nonnegative prices .

Corollary 1: The unique equilibrium outcome is that neither
network subdivides its network, and both charge the single price

.
Proposition 2 shows the outcome of the two economic

forces—the segmentation and competition effects—that deter-
mine equilibrium in this model. The segmentation effect can be
seen by considering the profit derivatives for the two networks
when prices are all equal to , the level in the 2-network,
2-price equilibrium identified in proposition 1:

(4)

These derivatives imply that, from a starting point of equal
prices, network wishes to increase and decrease .
Network , on the other hand, will not wish to change

11The requirement that all users join a network requires that the user with the
highest dislike of congestion, with� = 1, should be willing to join a network.
This user has utility equal toV � (1� � )=C � p ; for this to be nonnegative
in equilibrium requires thatV � 1=C .

12See, e.g., [27].

its price. (But of course, once network changes its price,
network may wish to respond.) Network—the segmenting
network—wishes to offer a broader range of qualities.

Due to the competition effect, such a move lowers profit. In
the equilibrium identified in Proposition 2, networksucceeds
in segmenting that market: . But in this case, it
is as if the two networks compete in two places, rather than just
one, since there are now two indifferent users (the one indifferent
between network ’s cheaper, more congested subnetwork and
network ; and the one indifferent between network’s more
expensive, less congested subnetwork and network). As a
result, the networks compete more fiercely and the average price
(weighted by market share) charged by the networks falls from

in the two-network, two-price equilibrium in Proposition
1 to . Note that, although this difference is small, in
practice it may be large, for several reasons. First, this model
relies on a certain parameterization in order to show that profits
decrease through introducing multiple service classes. With
other parameterizations, the difference may be larger (although,
of course, it could also be smaller). Second, for the sake of clarity,
the cost of introducing multiple service classes has been ignored.
If these are at all significant, then profits will be even lower and
multiple service classes even less attractive to the networks.

These same two forces are at work in Proposition 3 and lead
to nonexistence of equilibrium in pure strategies in the pricing
subgame when both networks form two subnetworks. As in [28],
the basic problem is that profit maximization drives the net-
works to move prices away from feasible levels. Consider, for
example, the possible case in which . Both
networks gain from greater segmentation (other things equal),
and so network will decrease and network increase
until the case no longer holds. Instead, ;
but then there are three indifferent users between the networks,
rather than one, and so competition is increased. As a result,
the networks will adjust prices to move away from this case.
This process continues through all other possible cases and so
an equilibrium in pure strategies does not exist.

IV. CHOICE OFCAPACITIES

Section III assumes that network capacities are fixed and
symmetric. This assumption is convenient analytically; but,
clearly, it is a strong restriction. In this section, numerical
analysis is presented which suggests that the main conclu-
sion—that multiproduct competition is not sustainable in a
profit maximizing equilibrium—stands when networks are free
to choose capacities, as well as prices.13

The game now has three stages. The number of subnetworks
is chosen in the first stage; capacities are chosen in the second
stage; and prices in the third stage. The Nash equilibrium is
found for the third stage pricing sub-game, taking capacities
and the number of subnetworks as given. Then the Nash equilib-
rium is found for the second stage subgame in capacities, taking
into account the effect that capacity choice will have on optimal
prices in the third stage pricing subgame. Finally, profits for dif-
ferent numbers of subnetworks are compared. The assumption
of costless capacity is maintained in this section.

13Full details of the numerical analysis are contained in [8].
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Fig. 2. The profit functions forC = C = 1.

In the simplest case of two networks each charging a single
price, [19] proves that the Nash equilibrium in capacities is
asymmetric. In the absence of costs of increasing capacity and
when all users join one network, the network who charges the
higher price has a strict incentive always to add to its capacity;
the other network has a strict incentive always to decrease its
capacity. While this result may appear counterintuitive, it is in
fact the familiar result that firms have an incentive to differen-
tiate themselves to the greatest extent; see, e.g., [22]. The reason
is that, by making their services as different as possible, the two
networks minimize price competition between them and hence
maximize profits. In the absence of capacity costs, the one net-
work increases its capacity, and hence its price, until the require-
ment is reached that the user with receives nonnegative
surplus from joining the network.

As in the previous section, it is helpful to consider first the
2-network, 3-price situation. There are two cases: 1)

or ; and 2) . Let the capacities
of network ’s subnetworks be and ;
network ’s capacity is .

The analytical results of the previous section show that there
is no equilibrium in the price stage in case 1 when
and . Numerical investigation indicates that, for any
fixed value of , there are critical values of and , denoted

and , respectively, such that a pricing equilibrium exists
only when and . Furthermore, network
’s profits are decreasing infor all values of and for

which there exists a pricing equilibrium. Hence, the numerical
analysis of this case suggests network’s optimal choice of
is zero, so that the 2-network, 3-price solution collapses to the
2-network, 2-price equilibrium: network allocates all of its
capacity to a single subnetwork, i.e., it does not subdivide.

Consider next the price stage under case 2, examined in Fig. 2.
The figure plots profits with fixed total capacities
( 1), and with varying between 0 and 1. It confirms the ana-
lytical results in Section III: when , profits when there

Fig. 3. The profit functions forC = 1; C = 0:75.

is PMP (denoted and ) are, respectively, lower than those
with no PMP ( and ). (Note that in this instance co-
incides with .) The figure shows that there is an interior op-
timal choice of , close to but less than 1. But for this value
of , a computation shows that network ’s profits are de-
creasing in its capacity . Network will therefore lower its
capacity; the effect of this is to make network’s optimal choice
of (still holding fixed) the corner value of 1. This is illus-
trated in Fig. 3, which shows the profit functions for
and . With , the 2-network, 3-price solution
collapses to the 2-network, 2-price equilibrium. This argument
holds for any . There is another case: suppose that
is much smaller than ; in the calculations here, it is sufficient
for and . The numerical analysis then shows
that case 3 is equivalent to case 1 (although the networks are
reversed, with network 2 being the large, high-price network).
Again, the 2-network, 3-price solution collapses to the 2-net-
work, 2-price equilibrium.

A full numerical analysis of the two-network, four-price case
has not been undertaken. Instead of calculating equilibrium
prices and profits over a 4-dimensional grid of capacities, only
certain values have been considered. Moreover, only the case
in which has been examined. The aim
is not to provide an exhaustive numerical analysis, but instead
to indicate the sort of results that might emerge. The analysis
suggests first that equilibria are possible only in certain ranges
of networks’ capacities, and second that even when a 4-price
equilibrium is possible (i.e., even when profit-maximizing
prices are feasible), the networks both earn higher profits in the
2-price solution.

This section has assessed whether the main result of Sec-
tion III—that competing profit-maximizing networks will not
sell multiple products—is robust to relaxing the assumption of
fixed, equal, and symmetrically split capacities. This section of-
fers substantial support for the analytical results. In all cases
considered, the networks maximize profits by charging a single
price and offering one network each.
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V. CONCLUSION

This paper has developed a general analysis of an Internet
pricing scheme for packet based networks under competition
in which the networks are partitioned into logical subnetworks
distinguished only by price level. The costs of increased compe-
tition as more subnetworks are introduced always outweigh the
benefits from greater segmentation of the market. The intuition
behind this is that the desire to segment drives the network with
the high prices to lower one of its prices to straddle those of its
rival; in turn, this leads to lower profits.

The complexity of the problem required that several assump-
tions be made, including: a uniform distribution of user prefer-
ences toward congestion, a linear congestion function, given and
equal network capacities, and a fixed number of networks in the
industry. Numerical analysis suggests that at least one of these
assumptions—fixed capacity—may not be critical to the conclu-
sions. Further work is required to assess the importance of the
other assumptions. One area in particular seems promising. The
current analysis suggests that there will be limited product dif-
ferentiation in equilibrium, since each network offers only one
service class. We have assumed that there is a fixed number of
networks (i.e., two) in the network industry. The process of free
entry may be, however, a mechanism by which a broad range of
prices and qualities arises in equilibrium.

APPENDIX

The Social Optimum

We show that, given the model described in Section II, the so-
cial planner who aims to maximize the total welfare (user sur-
plus) from network services will wish to use multiple products
(subnetworks). It is assumed that he/she is able to allocate users
to the most appropriate subnetwork. Consider the case where
he/she splits the network, with total capacity of , into two
subnetworks, each with capacity. Let denote the critical
value of the congestion parameter. Then total user surplus is

The planner chooses to maximize . The first-order condi-
tion, , gives . (The second-
order condition for a maximum is satisfied.) Thus, he/she uses
two subnetworks. Users with higher tolerance for congestion
(i.e., lower s) are allocated to a network with a market share of
around 61%. Users more sensitive to congestion are allocated to
a network with market share of 39%. It is straightforward to ex-
tend this result to where the planner forms subnetworks
of equal capacity. In general, the planner will wish to form as
many subnetworks as possible.

Proof of Proposition 1

The networks have equal and fixed capacities:
. There is a marginal user who is indifferent between the

two networks; from equation (3), this user is given by

TABLE I
SOLUTIONS FORPROOF OFPROPOSITION2

. Suppose is an equilib-
rium, where without loss of generality we assume .
Then and , where is given
above. The first-order equilibrium conditions imply

and . Since , then
, but then the first-order conditions imply ,

a contradiction. The case , say, has .
In this case, the first-order conditions for an equilibrium imply

. The second-order conditions are easily verified.

Proof of Proposition 2

Suppose there exists a Nash equilibrium with ;
without loss of generality, suppose . Now consider
the subcase where . There are two marginal
users: one, with congestion parameter, is indifferent between
joining network ’s higher priced subnetwork with capacity

and joining network ’s lower priced subnetwork with
capacity ; the other, with congestion parameter, is
indifferent between network with capacity and network
’s lower priced subnetwork. These users are defined by the

indifference equations

(5)

(6)

Suppose there exist stationary solutions to the networks’
profit maximization problems that are consistent with the
construction. The profits are
and . From (5) and the first-order conditions
for stationary profit maximizing prices, it follows that

.
Similarly, (6) and the first-order condition imply

where .
There are therefore two possible solutions in the feasible region
(defined by and ). The
solutions are shown in Table I. The first solution can be ruled
out immediately, since it involves negative prices. The second
solution has positive variables, but violates the construction; in
particular, . Hence, there are no Nash equilibria in this
case. If , the proof proceeds similarly.

Now consider the subcase where . There are
two marginal users: one is indifferent between joining network
’s higher priced subnetwork and joining network, with ;

the other is indifferent between network and network ’s
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lower priced subnetwork, with . These users are defined by
the indifference equations

(7)

(8)

Profits of the two networks are and
. First-order conditions for stationary profit

maximizing prices and the indifference equation yield two si-
multaneous nonlinear equations in the two unknowns,and

:

These equations have a unique solution in the relevant range
that ensures that . This is and

; equations (7) and (8) then give prices as
, and , and so profits

are , . These profits are both
lower than the profits in the equilibrium where both networks
offer only one price, derived in Proposition 1,viz., .
If , then this solution, which was an equilibrium
in Proposition 1, is not an equilibrium here, as easily verified
from the first order conditions (4).

Proof of Proposition 3

Without loss of generality, assume that the highest price is
charged by network and that each network’s 2nd price does not
exceed its 1st. There are three cases: i) ,
ii) , iii) .

Consider case i. The method of analysis is the same as
for the cases where three prices are charged by the two net-
works—first, write down the indifference relations defining the
marginal users, denoted ; then use the implicit
function theorem to determine the derivatives ofwith respect
to the prices; finally, calculate derivatives of profit functions.
The indifference equations give

(9)

(10)

(11)

The profits of the networks are
and .

The proof will show that either network will wish to
lower below or, equivalently, network will wish
to raise above . Consider the derivatives
and , evaluated at , with and
determined as stationary solutions. From (11),
implies that . Setting the derivatives and

equal to zero, and substituting the resulting ex-
pressions with the equality into the profit derivatives
gives

In order for an equilibrium to exist with ,
it must be that

These inequalities together with (9) yield
. (The negative root is ruled out by the

requirement that .) This inequality must be combined
with (9) and the requirement that , i.e., yielding:

. This requires that , and therefore that
and .

The last stage of the proof shows that these inequalities are
inconsistent with stationary solutions for and . The first-
order conditions give

It is straightforward to show that, when ,
. When the inequality is strict (i.e., and
, the solution violates the requirement that . With

equality, the solution collapses to .
We conclude that in case i where ,

either network will wish to lower below , or network
will wish to raise above , or the inequalities will be

weak, i.e., the solution is the 2-network, 2-price case that arises
as an equilibrium in Proposition 1; however, as in Proposition
2, this solution is not an equilibrium here.

Finally, although we have assumed here to be in case i, the
other two cases proceed similarly. Note that in case ii, the sub-
case that arises as an equilibrium in Propo-
sition 2 is not an equilibrium here. This is because when network

is able to charge two prices, its best response to network
charging (any) two prices is also to charge two prices. (This
statement can be verified easily by examining the first-order
conditions for prices that maximize network’s profits when
it has formed two subnetworks in the first stage.) In summary, it
is always the case that one or another of the networks will wish
to change the assumed order of prices.
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