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Technical Report: Smoothing the wavelet peri-
odogram using the Haar-Fisz transform

Piotr Fryzlewicz and Guy P. Nason

University of Bristol, UK

[August 3, 2004]

Summary. The wavelet periodogram is hard to smooth because of the low signal-to-noise ratio

and non-stationary covariance structure. This article introduces a method for smoothing a local

wavelet periodogram by applying a Haar-Fisz transform which approximately Gaussianizes and ap-

proximately stabilizes the variance of the periodogram. Consequently, smoothing the transformed

periodogram can take advantage of the wide variety of existing techniques suitable for homoge-

neous Gaussian data. This article demonstrates the superiority of the new method over existing

methods and supplies theory that proves the Gaussianizing, variance stabilizing and decorrelation

properties of the Haar-Fisz transform.

Keywords: periodogram smoothing; Gaussianizing transform; variance stabilization; functional central limit theo-

rem.

1 Introduction

Time series whose spectral properties vary over time arise in several fields, e.g. finance
(Kim (1998), Fryzlewicz (2002)), biomedical statistics (Nasonet al. (2000)) or geophysics
(Sakiyama (2002)). Estimating the time-varying second-order stucture is essential for un-
derstanding the data-generating mechanism and forecasting the series.

Models for processes with an evolutionary spectral structure are oftenmodifications
of the following classical Cramér representation for stationary processes: all zero-mean
discrete-time stationary processesXt can be represented as

Xt =

∫

(−π,π]
A(ω) exp(iωt)dZ(ω), t ∈ Z, (1)

whereA(ω) is the amplitude, andZ(ω) is a process with orthonormal increments. Dahlhaus
(1996) introduces a class of locally stationary processes which permit a “slow" evolution of
the transfer functionA(ω) over time. Other approaches stemming from (1) include Priestley
(1965), Battaglia (1979), Mélard & Herteleer-De Schutter (1989), Mallat et al. (1998),
Swift (2000) and Ombaoet al. (2002).

Being localised both in time and in frequency, wavelets provide a natural alternative to
the Fourier-based approach for modelling phenomena whose spectral characteristics evolve
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over time (see Vidakovic (1999) for an introduction to wavelets and their statistical ap-
plications). Nasonet al. (2000) introduce the class of locally stationary wavelet (LSW)
processes which uses non-decimated wavelets, rather than Fourier exponentials, as building
blocks. The LSW model enables a time-scale decomposition of the process and permits
a rigorous estimation of theevolutionary wavelet spectrumand thelocal autocovariance.
The LSW class is well-suited for modelling processes believed to have an inherent multi-
scale structure, such as financial log-returns (see Calvet & Fisher (2001)), and offers the
user freedom in choosing the underlying wavelet family. Wavelet-based estimators of the
second-order structure of LSW processes are naturally localised andcan be computed ex-
tremely efficiently.

Thewavelet periodogram, the main quantity of interest in this paper, is a wavelet alter-
native to the classical periodogram and can be loosely defined as a sequence of squared non-
decimated wavelet coefficients of a process. Nasonet al. (2000) use it as a basic statistic
for estimating the evolutionary wavelet spectrum and the local autocovariance in the LSW
model. Like the classical periodogram, the wavelet periodogram is not consistent and needs
to be smoothed. Nasonet al. (2000) recommended using wavelet shrinkage with a threshold
adapted forχ2 data or, alternatively, taking the log transform of the wavelet periodogram
and then using standard wavelet shrinkage for Gaussian distributed data. Neither of these
approaches is perfect: for the non-linear wavelet shrinkage a local pilot estimate of the local
variance is required. For the log transform, it stabilizes variance but the log-transformed
periodogram is far from Gaussian and then standard denoisers cannot be “automatically”
used. Chiann & Morettin (1999) define and analyse some properties of a different kind of
wavelet periodogram, based on the orthonormal wavelet transform, forstationary processes.

The prime objective of this paper is to propose a new multiscale transform technique for
smoothing the wavelet periodogram. The idea behind our algorithm is the following: we
first preprocess the wavelet periodogram using a nonlinear wavelet-based transformation,
which we call the Haar-Fisz transformation forχ2 data. Then we denoise the preprocessed
vector as if it were signal plus stationary Gaussian noise. Finally, we applythe inverse
Haar-Fisz transform to obtain an estimate of the spectral structure of the original process.

Our Haar-Fisz transform is a new Gaussianizing and variance stabilizing transform,
which operates in the wavelet domain, and not in the time domain, like the standardlog
transformation. Throughout the paper whenever we mention Gaussianization or variance
stabilization we meanapproximately. For a precise technical characterisation of these prop-
erties see Section 5.

The advantages of our method are the following.

1. Its performance is good. We often see performance gains in MISE of around 25%.
see Section 5.3 below.

2. For a time series of lengthT the algorithm is of computational orderT log(T ) for
estimating all scales of the wavelet periodogram.

3. It is simple and easy to code.

4. It is fully automatic (up to any parameters that the Gaussian denoiser requires).
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5. It can make use ofany signal+Gaussian noise denoising technology, an area where
a vast amount of research effort has been and is being expended. Hence our method
can only get better as we take advantage of newer Gaussian denoisers.

To achieve the main objective, we take the following steps. Section 2 recalls thedefini-
tions of an LSW process, the wavelet periodogram, and other preliminaries. We introduce
the (multiscale) Haar-Fisz transform for the wavelet periodogram in Section 3 (the Haar-
Fisz transform for Poisson data was recently introduced by Fryzlewicz &Nason (2004)).
The Haar-Fisz transform works as an approximate Gaussianizer and variance stabilizer and
Section 4 proves a functional central limit theorem (FCLT) which is used in Section 5 to for-
mally quantify these Gaussianizing and variance stabilizing assertions. Section 5 also uses
simulation to investigate the practical performance of the Haar-Fisz transform and compare
it to an exising alternative. Section 6 proposes an algorithm for smoothing thewavelet pe-
riodogram, based on our Haar-Fisz transform. This section also containsa simulation study
which demonstrates the (usually) superior performance of our algorithm over the existing
competitor. Section 7 uses our proposed smoothing methodology to perform alocal vari-
ance analysis of the Dow Jones index, and concludes that the series canbe modelled as
Gaussian.

2 Preliminaries

2.1 The LSW model

We start by recalling the definition of an LSW process.

Definition 2.1 (Nasonet al. (2000)) A triangular stochastic array{Xt,T }T−1
t=0 , for T =

1, 2, . . ., is in the class of LSW processes if there exists a mean-square representation

Xt,T =
−1
∑

j=−J(T )

∞
∑

k=−∞

ωj,k;T ψj,t−kξj,k;T , (2)

wherej ∈ {−1,−2, . . .} andk ∈ Z are, respectively, scale and location parameters,ωj,k;T

are real constants,ψj are discrete non-decimated wavelet vectors,{ξj,k;T }j,k are, for each
T , zero-mean orthonormal identically distributed random variables, and for eachj ≤ −1,
there exists a Lipschitz functionWj(z) : [0, 1) → R such that

• ∑−1
j=−∞ |Wj(z)|2 < ∞, uniformly inz ∈ (0, 1),

• the Lipschitz constantsLj satisfy
∑−1

j=−∞ 2−jLj < ∞,

• there exists a sequence of constantsCj satisfying
∑−1

j=−∞ Cj < ∞ such that, for
eachT ,

sup
k=0,...,T−1

|ωj,k;T − Wj(k/T )| ≤ Cj/T. (3)
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In formula (2), parametersωj,k;T can be thought of as a scale- and location-dependent
transfer function, while the nondecimated wavelet vectorsψj can be thought of as building
blocks analogous to the Fourier exponentials in (1). Throughout the paper, we work with
Gaussian LSW processes, i.e. theξj,k;T are distributed asN(0, 1).

Haar wavelets are the simplest example of a wavelet system. DenoteIA(k) = 1 when
k is in A and zero otherwise. Haar wavelets are defined by

ψj,k = 2j/2
I{0,...,2−j−1−1}(k) − 2j/2

I{2−j−1,...,2−j−1}(k), (4)

for j = −1,−2, . . . andk ∈ Z, wherej = −1 corresponds to the finest scale. All results
of this paper are true not only for Haar wavelets but also for all other compactly supported
wavelets from the Daubechies’ families (Daubechies (1992)). For a given wavelet system
ψ, we setJ in Definition 2.1 to beJ(n) = −min{j : Lj ≤ n}, whereLj is the length of
support ofψj .

Given an LSW process{Xt,T }, we cannot uniquely determine the transfer function
ωj,k;T due to the overcompleteness of the non-decimated wavelet systemψ. However, the
asymptoticevolutionary wavelet spectrumSj(z) := |Wj(z)|2 = limT→∞ |ωj,bzT c;T |2, de-
fined on the rescaled-time intervalz ∈ [0, 1), is uniquely defined and can be estimated by
means of asymptotically unbiased estimators. Due to the rescaled time concept, theestima-
tion of Sj(z) is analogous to the estimation of a regression function.

From Definition 2.1, it is immediate thatEXt,T = 0 and indeed, throughout the paper,
we work with zero-mean processes. Such processes arise, for example, when the trend has
been removed from the data, see e.g. von Sachs & MacGibbon (2000) for a recent wavelet-
based technique for detrending locally stationary processes.

The autocovariance function of{Xt,T } can also be defined in rescaled time:cT (z, τ) =
E(XbzT c,T XbzT c+τ,T ). Nasonet al. (2000) define the corresponding asymptoticlocal
autocovarianceof {Xt,T } as

c(z, τ) =
−1
∑

j=−∞

Sj(z)Ψj(τ), (5)

whereΨj(τ) =
∑∞

k=−∞ ψj,kψj,k+τ , and show that|cT (z, τ) − c(z, τ)| = O(T−1) as
T → ∞, uniformly in τ ∈ Z andz ∈ (0, 1). Formula (5) defines the correspondence
between the local autocovariance and the evolutionary wavelet spectrum(analogous to the
usual Fourier transform link between classical spectrum and autocovariance), so that an
estimate of the latter can be used to estimate the former.

2.2 The wavelet periodogram in the LSW model

We are now in a position to recall the definition of thewavelet periodogram, the main
quantity of interest in this paper.

Definition 2.2 (Nasonet al. (2000)) Let Xt,T be an LSW process constructed using the
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wavelet systemψ. The triangular stochastic array

I
(j)
t,T =

∣

∣

∣

∣

∣

∑

s

Xs,T ψj,t−s

∣

∣

∣

∣

∣

2

(6)

is called thewavelet periodogram ofXt,T at scalej.

Throughout the paper, we assume that the reader is familar with the fast Discrete Wavelet
Transform (DWT; see Mallat (1989)), as well as with the fast Non-decimated DWT (NDWT;
see Nason & Silverman (1995)). In practice, we only observe a single row of the triangu-
lar arrayXt,T . The wavelet periodogram is not computed separately for each scalej but
instead, we compute the full NDWT transform of the observed row ofXt,T (e.g. with

periodic boundary conditions), and then square the wavelet coefficients to obtainI
(j)
t,T for

t = 0, . . . , T − 1 andj = −1,−2, . . . ,−J(T ).
We quote the following result:

Proposition 2.1 (Nasonet al. (2000)) LetXt,T satisfy Definition 2.1 and define

Ai,j =
∑

τ

Ψi(τ)Ψj(τ).

We have

EI
(j)
t,T =

−1
∑

i=−∞

Si

(

t

T

)

Ai,j + O(2−j/T ). (7)

If, in addition,ξj,k are Gaussian (and henceXt,T is Gaussian), then

Var
(

I
(j)
t,T

)

= 2

(

−1
∑

i=−∞

Si

(

t

T

)

Ai,j

)2

+ O(2−j/T ). (8)

The following proposition shows that the wavelet periodogram at each scalej is typically a
correlated sequence.

Proposition 2.2 LetXt,T be a Gaussian LSW process satisfyingSj(z) ≤ D2j . We have

cov
(

I
(j)
t,T , I

(j)
t+s,T

)

= 2

(

∞
∑

τ=−∞

c

(

t

T
, τ

)

Ψj(τ + s)

)2

+ O(2−j/T ). (9)

The proof uses exactly the same technique as the proof of (8).
To simplify the notation, we denote

βj(z) =
−1
∑

i=−∞

Si(z)Ai,j . (10)
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For non-trivial processes we assume thatβj(z) is bounded away from zero (note that by (10)
βj(z) ≡ 0 in a neighbourhood ofz0 would imply all Si(z) ≡ 0 in that neighbourhood and
the resulting process would locally be deterministic and exactly zero). The mainaim of the
paper is to propose a new method for estimatingβj(z) for j = −1,−2, . . . ,−J(T ), from

a single stretch of observations ofXt,T . By (7) and (8),I(j)
t,T is an asymptotically unbiased

but inconsistent estimate ofβj(z) and needs to be smoothed to obtain consistency. Being
able to estimateβj(z) is useful in two ways:

1. An estimate ofβj(z) can be used to obtain an estimate ofSj(z) (by (10) and by the
invertibility of (Am,n), see Nasonet al. (2000) for details);

2. The estimate ofSj(z) can in turn be used to obtain an estimate of the local autoco-
variancec(z, τ) (using (5)).

In short, estimating{βj(z)}−J(T )
j=−1 allows us to make inference about the time-varying

second-order structure ofXt,T .
Example 1. Figure 1 shows an example of a wavelet spectrum, realisation from that

spectrum and the wavelet periodogram of that realisation at scale−1. Smoothing the
wavelet periodogram is by no means an easy task, due to

• the fact that the variance of the noise depends on the level of the signal (see formulae
(7) and (8)),

• a low signal-to-noise ratio: again by (7) and (8) we obtain, neglecting the remainders,

EI
(j)
t,T /

{

Var
(

I
(j)
t,T

)}1/2
= 2−1/2,

• the presence of correlation inI(j)
t,T (see formula (9)).

Many existing denoising techniques have been designed to handle stationary Gaussian noise
and therefore it would be desirable to be able to transform the wavelet periodogram into a
signal contaminated with such noise before the denoising is performed. A well-known
technique for stabilizing the variance of scaledχ2

n variables is the log-transform, see e.g.
Priestley (1981); however, the resulting variable is still far from Gaussian if, like here,
n = 1. Nasonet al. (2000) propose a wavelet-based technique for smoothing the wavelet
periodogram without any pre-processing: their method is based on Neumann & von Sachs
(1995).

3 The Haar-Fisz transform

In this section, we propose a multiscale algorithm, called theHaar-Fisz transform (forχ2

data), for stabilizing the variance of the wavelet periodogram and bringing its distribution
closer to normality. The input to the algorithm is:

• A single row of the wavelet periodogramI(j)
t,T at a fixed scalej: here, we assume that

T is an integer power of two. To simplify the notation in this section, we drop the
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Figure 1: Top: wavelet spectrum example where onlyS−1(z) andS−3(z) are non-zero;
Middle: example sample path from the top spectrum of lengthT = 1024; Bottom: Haar
periodogram of the sample path at scale−1. 7



superscriptj and the subscriptT and consider the sequenceIt := I
(j)
t,T , or, in vector

notation,I = (I
(j)
0,T , . . . , I

(j)
T−1,T )′.

• A fixed integerM ∈ {1, 2, . . . , log2(T )}; its meaning will become clear later.

The output from the algorithm is:

• The empirical mean ofI, denoted bȳI.

• A vectorUM of length2M .

The vectorUM is constructed as follows:

1. LetsM be the vector of local averages ofI:

sM
n =

2M

T

(n+1)T2−M−1
∑

t=nT2−M

It for n = 0, 1, . . . , 2M − 1. (11)

2. For eachm = M − 1, M − 2, . . . , 0, recursively form vectorssm andf
m:

sm
n =

1

2
(sm+1

2n + sm+1
2n+1) (12)

fm
n =

sm+1
2n − sm+1

2n+1

2sm
n

, (13)

for n = 0, 1, . . . , 2m − 1.

3. For eachm = 0, 1, . . . , M − 1, recursively modify the vectorssm+1:

sm+1
2n = sm

n + fm
n (14)

sm+1
2n+1 = sm

n − fm
n , (15)

for n = 0, 1, . . . , 2m − 1.

4. SetUM := s
M − Ī.

We denoteFM
I := U

M . The nonlinear operatorFM is called theHaar-Fisz transform of
I at the resolution levelM .

If M = log2(T ), then the length ofFM
I is T and the algorithm is invertible, i.e.I

can be reconstructed fromFM
I and Ī by reversing the steps 4.–1. Therefore, the case

M = log2(T ) is the one we are the most interested in in practice. However, the exact
asymptotic Gaussianizing properties of the Haar-Fisz transform only hold for M fixed (i.e.
independent ofT ), and this case is investigated theoretically in Section 5.1. Section 5.2
provides some heuristics as to the behaviour ofFM

I whenM = log2(T ): we still conclude
that the distribution ofF log2(T )

I is close to Gaussian with a constant variance. To simplify
notation, we denoteF := F log2(T ).
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The reader will note that the steps 2.–4. of the algorithm are similar to the forward and
inverse Discrete Haar Transform except the division bysm

n in formula (13). The division
by sm

n is an application of the theory in Fisz (1955) and hence the name of our algorithm is
the Haar-Fisz transform (for the wavelet periodogram). Informally speaking: the division
by sm

n in formula (13) acts as a variance stabilization step and also induces a degree of
Gaussianization; formula (11) in step 1. also Gaussianizes (by a CLT type argument); in
formulae (14) and (15) of step 3. a further degree of Gaussianization occurs (again by a
CLT type argument). Fryzlewicz & Nason (2004) considered a similar Haar-Fisz algorithm
for processing an independent Poisson signal. In that case the appropriate normalisation is
to divide through by

√
sm
n .

Example 2. Empirical comparison of log and Haar-Fisz transforms. To give the
reader an intuitive feel for the properties of the Haar-Fisz transform when compared to log
we describe the following simple example. We performed the log and Haar-Fisztransforms
on the sequence of independent variables{Υt}1024

t=1 whereΥt is distributed asυtχ
2
1 with

{υt}512
t=1 ≡ 1 and{υt}1024

t=513 ≡ 2. We simulated 1000 sample paths ofΥt and computed
the mean empirical root signal to noise ratio (SNR=standard deviation of the signal divided
by the standard deviation of the noise). The result forlog Υt was 0.156 and that forFΥt

was 0.297 (to 3 decimal places). For the log transform: the mean variance over the first
half of the signal was 4.909 and 4.912 on the second half. For Haar-Fiszthe corresponding
figures were 1.266 and 1.263. As for Gaussianity, the mean Kolmogorov-Smirnov (K-S)
statistic for log transformed values was 0.10 and for Haar-Fisz it was 0.02.For this example
the SNR for Haar-Fisz is nearly twice that as achieved by the log transform.Moreover,
the Haar-Fisz transformed variables are more Gaussian as demonstrated by their lower K-
S statistics. Finally, both transforms stabilize variance extremely well. More extensive
comparisons can be found in Section 5.

Example 1. (continued)Figure 2 compares the log and Haar-Fisz transforms of the
wavelet periodogram from Figure 1. The Haar-Fisz-transformed wavelet periodogram ap-
pears to be much closer to normality.

3.1 Examples of the Haar-Fisz formula

As an example, considerT = 8. ForM = 2, we have:

U2
0 =

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

+
I0 + I1 − I2 − I3

∑3
i=0 It

U2
1 =

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

− I0 + I1 − I2 − I3
∑3

i=0 It

U2
2 = −

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

+
I4 + I5 − I6 − I7

∑7
i=4 It

U2
3 = −

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

− I4 + I5 − I6 − I7
∑7

i=4 It

.
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Figure 2: Transforms of the wavelet periodogram from the bottom plot ofFigure 1. Left:
log transform. Right: Haar-Fisz. HereT = 1024 and the full transform is performed, i.e.
M = 10.

Similarly, for M = 3, we have:

U3
0 =

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

+
I0 + I1 − I2 − I3

∑3
i=0 It

+
I0 − I1

I0 + I1

U3
1 =

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

+
I0 + I1 − I2 − I3

∑3
i=0 It

− I0 − I1

I0 + I1

U3
2 =

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

− I0 + I1 − I2 − I3
∑3

i=0 It

+
I2 − I3

I2 + I3

U3
3 =

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

− I0 + I1 − I2 − I3
∑3

i=0 It

− I2 − I3

I2 + I3

U3
4 = −

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

+
I4 + I5 − I6 − I7

∑7
i=4 It

+
I4 − I5

I4 + I5

U3
5 = −

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

+
I4 + I5 − I6 − I7

∑7
i=4 It

− I4 − I5

I4 + I5

U3
6 = −

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

− I4 + I5 − I6 − I7
∑7

i=4 It

+
I6 − I7

I6 + I7

U3
7 = −

∑3
t=0 It −

∑7
t=4 It

∑7
i=0 It

− I4 + I5 − I6 − I7
∑7

i=4 It

− I6 − I7

I6 + I7
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4 A Functional CLT for the centred wavelet periodogram

This section is concerned with a Functional Central Limit Theorem (FCLT) for the centred
wavelet periodogram

Z
(j)
t,T := I

(j)
t,T − EI

(j)
t,T (16)

(see Davidson (1994) for more on the stochastic limit theory we use here).Our FCLT
demonstrates that the normalised cumulative sum of the centred wavelet periodogram con-
verges in distribution to a transformed Brownian motion. The theory in this section enables
us to demonstrate the Gaussianizing, variance stabilizing and decorrelating properties of
the Haar-Fisz transform established in Section 5. Before we state the theorem, we introduce
some essential notation.

Definition 4.1 (transformed Brownian motion) Let η be an increasing homeomorphism
on [0, 1] with η(0) = 0 andη(1) = 1. A transformed Brownian motionBη is defined as

Bη(z)
D
= B(η(z)), z ∈ [0, 1],

whereB is a Brownian motion.

Definition 4.2 (cross-scale autocorrelation wavelets)Letψ be a fixed wavelet system. Vec-
torsΨi,j , for i, j ∈ {−1,−2, . . .}, defined by

Ψi,j(τ) =
∞

∑

s=−∞

ψi,s+τψj,s (17)

are called thecross-scale autocorrelation wavelets.

Denote

S̄j = max
z

Sj(z)

δk = max
j=−1,...,−k

Cj

S̄j
,

with the convention0/0 = 0. Denote further

Aτ
i,j =

∑

n

Ψi,j(n)Ψi,j(n + τ)

βτ
j (z) =

∑

i

Si(z)Aτ
i,j (18)

We now state the Functional Central Limit Theorem for the centred wavelet periodogram.
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Theorem 4.1 Let Xt,T be a Gaussian LSW process, and letZ
(j)
t,T be its centred wavelet

periodogram at scalej. Define

b2
T = E

(

T−1
∑

t=0

Z
(j)
t,T

)2

(19)

RT (z) =

∑bzT c−1
t=0 Z

(j)
t,T

bT
for z ∈ [0, 1].

If

there existsε > 0 such that





∑

i<0

∑

l≥m+1

Ψ2
i,j(l)S̄i





1/2

= O(m−1/2−ε), (20)

δJ(T )/T ∈ l∞, (21)

sup
z

∑

n

|c(z, n)| < ∞, (22)

there existsD such thatS̄j2
−j ≤ D for all j, (23)

and ifβj(z) is bounded away from zero, thenRT
D→ Bη, where

η(z) =

∫ z
0

∑∞
τ=−∞

(

∑

i Si(u)Aτ
i,j

)2
du

∫ 1
0

∑∞
τ=−∞

(

∑

i Si(u)Aτ
i,j

)2
du

.

The proof appears in the Appendix. As is clear from the proof, the left-hand expression in
condition (20) is a measure of dependence in the sequenceZ

(j)
t,T at lagm. Condition (21)

places an additional restriction on the finite-sample wavelet spectrum{ω2
j,k;T }j,k in relation

to the asymptotic spectrum{Sj(z)}j . Condition (22) is a short-memory assumption for
Xt,T , and condition (23) requires that the wavelet spectrum should decay ata certain speed
asj → −∞.

We now give an example of a periodogram sequence which satisfies the technical con-
dition (20). LetXt,T be a Gaussian LSW process constructed with Haar wavelets and such
thatSi(z) = Si = 2i. Asymptotically,Xt,T is a white noise process (see Fryzlewiczet al.
(2003) for a proof of this fact). Consider the Haar periodogram ofXt,T at scalej = −1.
Using (4) and (17), simple algebra yields

∑

i<0

2i
∑

l≥m+1

Ψ2
i,−1(l) = O(m−2),

and (20) is satisfied. Also note that any process withSj(z) ≡ 0 for all but a finite number
of scalesj satisfies (20).

12



In particular, Theorem 4.1 implies thatE(RT (z)2) → η(z) asT → ∞, and that the
increments ofRT (z) are asymptotically independent. Theorem 4.1 is fundamental for the
theoretical results of the next section.

5 Properties of the Haar-Fisz transform

5.1 Properties of the Haar-Fisz transform forM fixed

Theorem 5.1 Let Xt,T satisfy the assumptions of Theorem 4.1, and letI
(j)
t,T be the wavelet

periodogram ofXt,T at scalej. Let the corresponding functionsβj(z) and
∑

τ (β
τ
j (z))2

(see formulae (10) and (18)) be continuous with bounded left and right derivatives. ForM
fixed,UM = FMI

(j)
t,T admits the following decomposition:

U
M = V

M + Y
M ,

where

1. V
M has an almost-sure deterministic limit asT → ∞;

2.
√

TY
M D→ N(0, Σ) asT → ∞, with

(

2M+1 − 2
)

inf
z∈[0,1]

∑

τ (β
τ
j (z))2

(βj(z))2
−O(M) ≤ Σn,n ≤

(

2M+1 − 2
)

sup
z∈[0,1]

∑

τ (β
τ
j (z))2

(βj(z))2
+O(M)

(24)
and

Σn1,n2 = O(M) for n1 6= n2. (25)

Theorem 5.1 shows that the Haar-Fisz transformed periodogram,U
M , admits an asymptotic

“signal plus noise” type representation where explicit formulae for the “signal”, V
M , and

“noise”, YM appear in the proof. Property 2. above is called theGaussianization property
of the Haar-Fisz transform and, theoretically, this is shown by using the “convergence to
Brownian motion” result in the FCLT of Theorem 4.1. Formulae (24) and (25) define,
respectively, thevariance stabilizationand thedecorrelation propertiesof the Haar-Fisz
transform. The decorrelation property stems from the independent increments inherent in
the Brownian motion thatYM converges to, by Theorem 4.1.

As an interesting special case supposeXt,T is a time-modulated stationary process
(Xt,T = σ(t/T )Yt,T whereYt,T is stationary). Then the quantity

∑

τ (β
τ
j (z))2/(βj(z))2

is the asymptotic sum of the autocorrelations ofI
(j)
t,T and in this case is not dependent

on z. This means that the main terms in formula (24) are identical which implies that
Σn,n = const+ O(M) for all n (i.e. the variance is almost exactly stabilized). Note that
exact variance stabilization is not possible unless the log transform is used. However, as
exemplified by Example 2, in practice Haar-Fisz variance stabilization is very good and one
also benefits from Gaussianization and a better SNR.
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Figure 3: Left plot: the q-q plot off9 arising from the Haar periodogram of a pure white
noise process at scalej = −1 (against the normal quantiles). Right plot: solid line —
the variance off log2(T )−1

n against the correlation of the Gaussian variables involved; short-
dashed line — variance= 0.4 (see text for further description).

Note the different asymptotic regimes forV
M andY

M : the multiplication ofYM by√
T is needed becauseVar(Y M

n ) = O(2M/T ); we remind the reader thatM is fixed.
However, for the invertible case (see the discussion in Section 3), we requireM = log2(T ).
For a theoretical analysis of this case we need to be able to determine the distribution of
the Haar-Fisz summandsfm

n on the finest scales. We have not been able to determine the
general form of this distribution; however, we cast some light on the behaviour of F log2(T )

in Section 5.2.

5.2 Heuristics of the Haar-Fisz transform for M = log2(T )

In the asymptotic framework set out in Section 5.1, we assume thatM is fixed, and therefore
the length of the Haar-Fisz-transformed vectorFM

I is always constant and equal to2M ,
even thoughT → ∞. This ensures the asymptotic Gaussianity ofFM

I, in the sense
specified by Theorem 5.1. However, to obtain an invertible operator, we need to setM =
log2(T ). Simulations suggest that the asymptotic distribution ofF log2(T ) is not exactly
Gaussian, which is not surprising given the fact that the distribution of

f
log2(T )−1
n =

I
(j)
2n,T − I

(j)
2n+1,T

I
(j)
2n,T + I

(j)
2n+1,T

14



(see the second example in Section 3.1) is far from Gaussian. To illustrate thisstatement,
let us consider the Haar periodogram sequenceI

(−1)
t,1024 of a pure white noise process (T =

1024, J = 10). The left plot in Figure 3 shows the q-q plot of the corresponding sequence
f
9 against the normal quantiles: its distribution strongly deviates from Gaussianin the tails.

Other extensive simulations have shown that, for a wide range of processes, the distribution
of fM gets closer to Gaussianity asM decreases (as expected, see proof of Theorem 5.1).

However, even though takingM = log2(T ) (instead of keeping it fixed) spoils the exact
asymptotic Gaussianity ofFM

I, it does not seem to upset the other important theoretical
property ofFM

I: the variance stabilization. To illustrate this point, we consider the vari-
ance of the summandf log2(T )−1

n (for definition see formula (13)). Note thatf
log2(T )−1
n is

always of the formf
log2(T )−1
n = (ζ2

1−ζ2
2 )/(ζ2

1 +ζ2
2 ), where(ζ1, ζ2) is bivariate normal with

mean(0, 0). For simplicity, we assume thatVar(ζ1) = Var(ζ2), which is not a restrictive
assumption: due to the local stationarity property, the two variances tend to thesame limit
asT → ∞. Let ρ = corr(ζ1, ζ2). It can be shown that

Var
(

f
log2(T )−1
n

)

=
1

π

∫ ∞

−∞

(

(

1 − u2
)2 −

(

(

1 − u2
)

ρ + 2u
√

1 − ρ2
)2

)2

(1 + u2)

(

(1 − u2)2 +
(

(1 − u2) ρ + 2u
√

1 − ρ2
)2

)2 du.

The right plot in Figure 3 shows the graph ofVar
(

f
log2(T )−1
n

)

againstρ. It can be seen that

Var
(

f
log2(T )−1
n

)

is “stable" for a wide range of correlation values: indeed, the variance is

between0.4 and0.5 for |ρ| ≤ 0.74. This implies that while incorporatingf log2(T )−1 spoils
the asymptotic Gaussianity property of the Haar-Fisz transform, it helps achieve its variance
stabilization property. Note, however,in practice, even the full invertible caseM = log2 T
yields a distribution which is very close to variance stabilized Gaussian as Example 2 and
simulations in Section 5.3 show.

A similar variance stabilization phenomenon occurs forf
M for M < log2(T ) − 1.

5.3 Simulation

As an illustration of the Gaussianization and the variance stabilization properties of the
Haar-Fisz transform, consider the processXt,T = σ(t/T )Yt,T , whereYt,T = ρ(t/T )Yt−1,T +
εt with |ρ(z)| < 1 andεt ∼ N(0, 1) i.i.d. It can easily be shown that the local autocovari-
ance function forXt,T has the form

c(z, τ) = σ2(z)
ρ(z)τ

1 − ρ(z)2

and, forβj(z) arising from the Haar periodogram, we have

βj(z) = σ2(z)
1 − ρ(z)2 + 2j+3ρ(z)2

−j−1+1 − 6 2jρ(z) − 2j+1ρ(z)2
−j+1

(1 − ρ(z)2)(1 − ρ(z))2
.

15



We consider the following two cases:

TVAR Model σ2(z) = 1 andρ(z) = 1.8z − 0.9, so thatXt,T is a time-varying AR(1)
process;

TMWN Model σ2(z) is a scaled Donoho & Johnstone (1995)bumps function with (min,
max) values of (1/8, 8), andρ(z) = 0, so thatXt,T is a time-modulated white noise
process.

In both of these models, we simulate 100 sample paths for bothT = 256 andT = 1024.
For each of the simulated sample paths, we compute the wavelet periodogram at scalesj =

−1, . . . ,− log2(T ). For each of the periodogram sequencesI
(j)
t,T obtained in this way, we

compute the residualsFMI
(j)
t,T −FMβj(t/T ) for M = log2(T )− 2, log2(T )− 1, log2(T ).

We assess the Gaussianity of each sequence of residuals by looking at the p-value of the
Kolmogorov-Smirnov statistic, returned by the S-Plus functionks.gof. For comparison,
we also consider the residuals from the log transform:log(I

(j)
t,T ) − log(βj(t/T )).

Figure 4 shows that forM = log2(T ) − 2, the proportion ofp-values exceeding 5%
is close to 95% forj = −1, . . . ,−5, so that residual sequences at these scales can be
regarded as approximately Gaussian. However, even forM = log2(T ) the proportion of
p-values exceeding 5% is incomparably larger than the same proportion computed for the
log transform. Indeed, forT = 1024, no p-value exceeded the 5% threshold for the log
transform.

The above experiment demonstrates that even forM = log2(T ) (the invertible case),
the Haar-Fisz transform is a far better Gaussianizer than the log transform.

In practice, we often observe a degree of correlation inFM
I
(j), particularly at coarser

scales, i.e. for large negativej. This has to be taken into account when denoising Haar-
Fisz transformed sequences by using suitable methods for correlated dataas described later
in Section 6.1.

6 Smoothing the wavelet periodogram

In this section, we first outline our general methodology for smoothing the wavelet pe-
riodogram of a Gaussian LSW processXt,T , basing on a single stretch of observations.
Then, we provide simulation results which demonstrate the effectiveness ofour technique.

The generic algorithm consists of the following steps.

1. For eachj = −1, . . . ,−J(T ), compute the raw wavelet periodogramI(j)
t,T . In prac-

tice, this is done by taking the non-decimated wavelet transform ofXt,T down to the
level −J(T ), and then squaring the result. For computational convenience, we use
periodic boundary treatment; another option would be to use e.g. symmetric bound-
ary treatment.

2. For eachj = −1, . . . ,−J(T ), take the Haar-Fisz transform ofI
(j)
t,T at a fixed resolu-

tion levelM ≤ log2(T ).
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Figure 4: Proportion ofp-values exceeding or equal to 5% against−j. Left column: results
for model TVAR, right column: results for model TMWN. Top row:T = 256, Bottom row:
T = 1024. Solid line: M = log2(T ), short-dashed line:M = log2(T ) − 1, dashed line:
M = log2(T ) − 2, long-dashed line: the log transform. Horizontal solid line: 0.95.
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3. For eachj, denoise the Haar-Fisz transformed periodogram sequence using anywavelet
denoising technique suitable for correlated Gaussian noise with constant variance.
The wavelet denoising procedure employed at this stage may be of a translation-
invariant (TI) type: we refer to TI-denoising at this stage as “internal" cycle-spinning
(CS).

4. For eachj, take the inverse Haar-Fisz transform of the denoised data.

5. If M < log2(T ), then for eachj interpolate the estimates obtained in this way to
the grid{t/T}T−1

t=0 (so that they are of lengthT and not2M < T ). In our empirical
investigation, we used simple linear interpolation. For eachj, take the result to be an
estimate ofβj(z).

6. For a fixed integerS, let s = 1, . . . , S − 1. For eachj, shift I
(j)
t,T cyclically by s,

smooth the shifted version using steps 2 – 5 of this algorithm, and shift back bys to
obtain an estimate ofβj(z). The CS at this stage is referred to as “external" cycle-
spinning.

7. For eachj, the final estimateof βj(z) is obtained by averaging over the estimates
obtained through theS shifts.

A few remarks are in order.

Consistency.For considerations of consistency we have to letM grow withT : here we ex-
amine the caseM = log2(T ). It is easy to see that our whole algorithm is consistent
if in step 3 above we use linear Haar wavelet shrinkage. This means taking the Haar
wavelet transform of the Haar-Fisz transformedI, annihilating theK finest scales and
then inverting the Haar transform. HereK → ∞ andK = o(log(T )). The reason
we have consistency in this simple case is that using linear Haar wavelet shrinkage
causes the overall procedure to beexactlythe same as: smoothI using the linear Haar
scheme, i.e. perform a Haar decomposition ofI, remove theK finest detail levels,
invert the Haar transform.

In other words, because of the structure of the Haar and Haar-Fisz transforms, the
non-linearities in our algorithm cancel out and it reduces to a linear procedure.We
feel that it is worth mentioning that in this special case consistency occurs without
needing a bias correction factor which is required in thelog case.

However, if we replace the Haar wavelets in the wavelet shrinkage in step 3by a dif-
ferent wavelet family, we immediately lose the correspondence of the two procedures
and our algorithm becomes non-linear. This also happens if we replace thelinear
scheme in step 3 by non-linear wavelet shrinkage. In both cases theoretical verifica-
tion of consistency is not straightforward. However, extensive computer experiments
with a variety of Gaussian denoisers in step 3 systematically indicate MISE of the
overall procedure decreasing to zero with increasing sample size.

18



Computational complexity. Steps 1–5 of the algorithm are each of computational order
O(TJ(T )), provided that the wavelet denoising method used in step 3 has complexity
O(T ). Therefore, the whole algorithm 1–7 is of computational orderO(STJ(T )).
In practice, the software is fast.

Use of wavelets.It is worth recalling here that, effectively, we use wavelets at four different
stages of the smoothing procedure: First of all, a non-decimated wavelet systemψ is
used in the construction of the LSW processXt,T . Then the same systemψ is used

to compute the wavelet periodogramI(j)
t,T in step 1 of the smoothing algorithm. Then

the (inverse) Haar-Fisz transform in step 2 (4) relies on the Haar transform: thus,
wavelets are used for the third time. Finally, we use wavelets (possibly a different
family, sayψ̃) to denoise the Haar-Fisz transformed periodogram in step 3.

Cycle-spinning. Let S be the shift-by-one-operator from Nason & Silverman (1995). The
Haar-Fisz transform is not translation-equivariant sinceSFM 6= FMS. Therefore, it
is potentially beneficial to apply the external CS of step 6 even if step 3 uses internal
CS. Another reason is that cycle-spinning can mitigate minor artefacts induced by the
Haar part of the Haar-Fisz transform and improve visual quality. Cycle-spinning is
a kind of basis averaging which arose in wavelet shrinkage in Coifman & Donoho
(1995).

We now move on to describe our particular simulation setup.

6.1 Simulation

In this section, we describe the details of our simulation study which compares the perfor-
mance of our Haar-Fisz smoothing algorithm with the original technique of Nason et al.
(2000).

The “test processes" used in this section are the same as those in Section 5.3again with
100 simulations: TVAR and TMWN. We consider the Haar periodogram of TVAR and
TMWN, for sample paths of length 256 and 1024. In step 3 of the Haar-Fiszsmoothing
algorithm, we use non-TI level-dependent universal hard thresholding, appropriate for cor-
related Gaussian data as described in Johnstone & Silverman (1997). At this stage, we use
Daubechies’ Least Asymmetric wavelets with 4 vanishing moments, in both our algorithm
and that of Nasonet al. (2000).

Computational experiments suggest that for correlated noise, the choice of primary res-
olution (PR) is of utmost importance. (PR is a common concept in wavelet shrinkage and is
defined as the resolution levelj0 such that wavelet coefficients at levelsj0 and coarser than
j0 are not denoised.) We do not choose the PR automatically (actually, we are unaware of
any existing technique for performing automatic PR selection when the noise is correlated),
but instead, we subjectively choose the PR for which the method of Nasonet al. (2000)
gives the most visually appealing results for the wavelet periodogram at the finest scale, i.e.
j = −1. We also use the same PR in our algorithm. The particular values of the PR are:7
for TMWN 1024, 6 for TMWN 256, 4 for TVAR 1024 and 3 for TVAR 256.
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We useS = 10 external cycle-shifts. Using more shifts is likely to be beneficial in terms
of MISE but is also more burdensome computationally and sometimes has the tendency to
oversmooth. We only report results forM = log2(T ) (i.e. for the full invertible Haar-Fisz
transform).

Figure 5 shows estimates of the local variance constructed from the estimatesof the
periodogram obtained using the two methods described above, for particular sample paths
of TMWN 1024 and TVAR 1024. For both sample paths, our method achieveslower ISE.

Figure 6 shows, for eachj, the differences between the logarithm of the ISE in esti-
matingβj(z) for the method of Nasonet al. (2000), and for our Haar-Fisz algorithm. The
results are averaged over 100 simulated sample paths. Our algorithm is superior in most of
the cases, except for the 4 finest scales in TVAR 256, and the 3 coarsest scales in TMWN
1024. A similar pattern has been obtained for other values of the PR.

We have also performed additional simulations forM = log2(T ) − 1 and M =
log2(T ) − 2. It turned out that as long as the PR remained fixed, the choice ofM had
very little influence upon the estimates.

On a final note, it must be mentioned that other denoising methods can also be used in
step 3, and our algorithm can only benefit from this flexibility. Some of the techniques for
correlated data are reviewed in Opsomeret al. (2001). We have also experimented with the
eBayes method of Johnstone & Silverman (2003) and Barber & Nason (2004) and obtained
encouraging results.

7 Real data example: the Dow Jones index

In this section, we perform a local variance analysis of the Dow Jones Industrial Average
seriesDt,T , plotted in the top plot of Figure 7 (T = 1024) and obtained from:

http://bossa.pl/notowania/daneatech/metastock/

We used the following four methods to compute the local variance ofDt,T :

1. Our Haar-Fisz method of Section 6, based on the Haar periodogram, with the fol-
lowing parameters:M = 10, S = 10, step 3 applied non-TI level-dependent hard
universal thresholding using Daubechies’ Least Asymmetric wavelet with4 vanishing
moments. PR= 7.

2. Our Haar-Fisz method of Section 6, based on the Haar periodogram, withthe follow-
ing parameters:M = 10, S = 10, step 3 used the S-Plus spline smoothing routine
smooth.spline with default parameters.

3. A modification of our Haar-Fisz method: instead of the sequences of the wavelet
periodogram ofDt,T , the input to the Haar-Fisz algorithm wasD2

t,T . We took the
smoothed version ofD2

t,T to be an estimate of the local variance. The parameters
of the Haar-Fisz algorithm were:M = 10, S = 10, step 3 used the S-Plus spline
smoothing routinesmooth.spline with default parameters.
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Figure 5: Solid lines: estimates of the local variances forT = 1024 in the TMWN model
(top row), and the TVAR model (bottom row), using the method of Nasonet al. (2000) (left
column) and the Haar-Fisz algorithm (right column) as described in the text. Note that the
vertical scales in the two bottom plots are different. Short-dashed lines: true local variances.
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Figure 6: Solid line: difference between logged MISE for Nasonet al. (2000) and for our
Haar-Fisz algorithm (x-axis shows negative scale−j). Positive value means our algorithm
does better. Left column: results for TVAR, right column: results for TMWN. Top row:
T = 256, bottom row:T = 1024. Short-dashed line: zero.
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Figure 7: Top plot: log-returns on daily closing values of the Dow Jones Industrial Average.
1024 observations; the last one corresponds to 10/11 May 2001. Bottomplot: four estimates
of the local variance ofDt,T on a log scale. Solid line: method 1. Dashed line: method 2.
Long-dashed line: method 3. Short-dashed line: method 4. See text for further description.
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4. The method of Nasonet al. (2000) with the following parameters: TI level-dependent
universal hard thresholding using Daubechies’ Least Asymmetric wavelet with 4 van-
ishing moments, PR= 7. The smooth.dev parameter in theewspec routine
(Nason (1998)) was set tovar.

The results for PR6= 7 were less convincing. The bottom plot in Figure 7 shows all four
estimates plotted on a log scale. The two estimates based on spline smoothing show the
least variability, the estimate 4 is the most variable, and the estimate 1 — the second most
variable. Moreover, 1 estimates the variance at a slightly higher level than the other three.

One interesting question which can be asked is whether or notDt,T can be modelled
as Gaussian. This can be examined, for example, by dividingDt,T by the square root of
the estimates of the local variance, and looking at the distribution of the residuals. Figure 8
shows theqqnorm plot of the empirical quantiles of the residuals against the quantiles of
the standard normal, for the four methods described above. The surprising observation is
that all four plots consistently indicate that the upper tail is slightly platykurtic. However,
there is no consistency in the assessment of the behaviour of the lower tail: here, 3 plots
indicate platykurtosis, but the result of method 3 suggests slight leptokurtosis.

However, thep-values of the Kolmogorov-Smirnov test (returned by the S-Plus rou-
tine ks.gof) are large for each of the 4 sequences of residuals. In this sense, it can be
concluded that the departure ofDt,T from Gaussianity is insignificant.

This is in stark contrast to stationary nonlinear modelling (e.g. (G)ARCH or Stochastic
Volatility), where, typically, the marginal distribution of financial log-returnsis modelled as
heavily leptokurtic.

8 Conclusions and further work

In this paper, we have introduced a Haar-Fisz variance-stabilizing transform for the wavelet
periodogram (WP) of a Gaussian LSW process. The transform, performed in the wavelet
domain by dividing the Haar detail coefficients of the WP by the corresponding smooth
coefficients (an instance of the so-called Fisz transform), brings the distribution of the WP
closer to normality, as well as stabilizing its variance. This makes the WP more amenable
to standard denoising techniques which require stationary Gaussian noise. The computa-
tional complexity of the Haar-Fisz transform is linear in the number of data points, which
is required to be a power of two.

In order to analyse theoretical properties of the Haar-Fisz transform ina certain asymp-
totic setting, we have formulated and proved a functional central limit theorem(FCLT)
for the centred WP. Next, we have applied our FCLT to demonstrate the Gaussianizing,
variance-stabilizing and decorrelating properties of the Haar-Fisz transform in the case
where the length of the output vector remains constant as the length of the input vector
goes to infinity.

Exact asymptotic Gaussianity does not hold if the length of the output vector of the
Haar-Fisz transform matches the length of the input vector (which is the moreinteresting
case in practice). However, we have provided some numerical evidencethat the limiting
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Figure 8: Empirical quantiles of the residuals ofDt,T against the quantiles of the standard
normal. Top left: method 1. Top right: method 2. Bottom left: method 3. Bottom right:
method 4. See text for further description.
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distribution is still not far from Gaussian, and that its variance is well stabilized. Extensive
simulations have shown that even in this case, the Haar-Fisz transform is a far more effective
Gaussianizer than the usual log transform.

Next, we have considered a smoothing algorithm for the WP, based on the Haar-Fisz
transform. Theory has shown that the new algorithm is computationally fast, and simulation
— that its MISE performance is better than that of the existing competitor.

Finally, several variants of the algorithm have been used to compute the local variance
of the time series of daily log returns on the Dow Jones index. All of them consistently
demonstrated that the series can be modelled as Gaussian.

Further work. An interesting avenue for future work would be to explore the possi-
bility and utility of using the Haar-Fisz methodology for smoothing of the classicalperi-
odogram from stationary time series theory. Of course, it remains to be seen whether such a
method could compete with the wide variety of excellent existing techniques, forexample,
Waldenet al. (1998).

Another idea, suggested by a referee, would be whether other transforms could be used
instead of the Haar wavelet transform within the Haar-Fisz algorithm.

It would also be interesting to show consistency for the more general cases, not just a
Haar wavelet transform and a linear smoother as we have shown.

Free software and documentation to carry out the analyses can be foundat

http://www.ma.ic.ac.uk/~pzf/wavper/wavper.html
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A Proofs

For this section we again refer the reader to Davidson (1994) for further technical back-
ground.

We first recall the definition ofL2-Near Epoch Dependence (L2-NED). For a random
variableX define‖X‖r = (E|X|r)1/r.

Definition A.1 For a stochastic array{{Vt,T }∞t=−∞}∞T=1, possibly vector-valued, on a
probability space(Ω,G, P ), let Gt+m

t−m,T = σ(Vt−m,T , . . . , Vt+m,T ). If an integrable array
{{Xt,T }∞t=−∞}∞T=1 satisfies

‖Xt,T − E(Xt,T |Gt+m
t−m,T )‖2 ≤ ht,T νm,

whereνm → 0 as m → ∞, and {ht,T } is an array of positive constants, it is said to
be L2-NED on {Vt,T } with constants{ht,T }. Further, if there existsε > 0 such that
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νm = O(mλ−ε), then{{Xt,T }∞t=−∞}∞T=1 is said to beL2-NED of sizeλ on{Vt,T }.

Lemma A.1 DefineZ
(j)
t,T andbT as in (16) and (19). Defineξ

t,T
= (ξ−1,t, . . . , ξ−J(T ),t)

′.
If there exists

ε > 0 such that





∑

i<0

∑

l≥m+1

Ψ2
i,j(l)S̄i





1/2

= O(m−1/2−ε),

thenZ
(j)
t,T /bT is L2-NED of size−1/2 on {ξ

t,T
}. If in addition δJ(T )/T ∈ l∞, then the

NED constants can be set to1/bT .

Proof. It suffices to examine theL2-Near Epoch Dependence forZ
(j)
t,T . Define

Gt+m
t−m,T = σ(ξ

t−m,T
, . . . , ξ

t+m,T
).

Recall the definition ofI(j)
t,T andXt,T from (6) and (2). We have

Z
(j)
t,T − E(Z

(j)
t,T |Gt+m

t−m,T ) = I
(j)
t,T − E(I

(j)
t,T |Gt+m

t−m,T )

=

∣

∣

∣

∣

∣

∣

−J(T )
∑

i=−1

∑

k

ωi,k;T Ψi,j(t − k)ξi,k

∣

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

∣

−J(T )
∑

i=−1

∑

|k−t|6m

ωi,k;T Ψi,j(t − k)ξi,k

∣

∣

∣

∣

∣

∣

2

−
−J(T )
∑

i=−1

∑

|k−t|>m

ω2
i,k;T Ψ2

i,j(t − k)

= Y 2
1 − Y 2

2 − K2
1 = (Y1 − Y2)(Y1 + Y2) − K2

1 ,

whereY 2
n are random andK1 is deterministic. Note thatY1 − Y2 andY1 + Y2 are Gaussian

and thatE(Y1 − Y2)
2 = E((Y1 − Y2)(Y1 + Y2)) = K2

1 . Simple algebra yields

E
(

(Y1 − Y2)(Y1 + Y2) − K2
1

)2
= 2K2

1E(Y 2
1 + Y 2

2 ) ≤ 4K2
1EY 2

1 .

Noting that

K2
1 ≤ 2

(

1 +
δJ(T )

T

) −∞
∑

i=−1

∑

l≥m+1

Ψ2
i,j(l)S̄i

EY 2
1 ≤

(

1 +
δJ(T )

T

) −∞
∑

i=−1

∑

l

Ψ2
i,j(l)S̄i,
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and recalling thatδJ(T )/T ∈ l∞, the assertion of the Lemma follows withv2
m := 4K2

1EY 2
1

andh2
t,T = b−2

T , see Definition A.1. ¤

Lemma A.2 If

sup
z∈[0,1]

∑

τ

|c(z, τ)| < ∞ (26)

there existsD such thatS̄i2
−i ≤ D for all i, (27)

then for fixedj

b2
T

T
→ 2

∫ 1

0

∞
∑

τ=−∞

(

∑

i

Si(z)Aτ
i,j

)2

dz

asT → ∞.

Proof. All summations
∑

i mean
∑−∞

i=−1. Using Gaussianity, we have

b2
T = 2

T−1
∑

t=0

T−1−t
∑

τ=−t





−J(T )
∑

i=−1

∑

k

ω2
i,k;tΨi,j(t − k)Ψi,j(t + τ − k)





2

= 2
T−1
∑

t=0

T−1−t
∑

τ=−t





−J(T )
∑

i=−1

∑

k

{

Si

(

t

T

)

+ O

(

Ci + Li(t − k)

T

)}

× Ψi,j(t − k)Ψi,j(t + τ − k)

)2

= 2
T−1
∑

t=0

T−1−t
∑

τ=−t

(

∑

i

Si

(

t

T

)

Aτ
i,j

)2

+ RestT ,

where

RestT = 2
T−1
∑

t=0

T−1−t
∑

τ=−t





−J(T )
∑

i=−1

∑

k

O

(

Ci + Li(t − k)

T

)

Ψi,j(t − k)Ψi,j(t + τ − k)

−
−∞
∑

i=−J(T )−1

Si

(

t

T

)

Aτ
i,j





×





−J(T )
∑

i=−1

∑

k

{

2Si

(

t

T

)

+ O

(

Ci + Li(t − k)

T

)}

× Ψi,j(t − k)Ψi,j(t + τ − k) +
−∞
∑

i=−J(T )−1

Si

(

t

T

)

Aτ
i,j

)

. (28)
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Let us first show two simple auxiliary results.
1. Summability of constantsCi and Li. We use the properties ofA from Fryzlewicz

et al. (2003) Lemma 8.
∑

i

(Ci + Li(2
−i + 2−j))Ai,j =

∑

i

(Ci + Li2
−i)2j2−jAi,j

+
∑

i

Li2
−j2i2−iAi,j

≤ 2−j
∑

i

(Ci + Li2
−i)

∑

k

2kAi,k

+ 2−j
∑

i

Li2
−i

∑

k

2kAk,j

= O(2−j). (29)

2. Summability of covariance of wavelet coefficients.

∑

τ

∣

∣

∣

∣

∣

∑

i

Si(z)Aτ
i,j

∣

∣

∣

∣

∣

=
∑

τ

∣

∣

∣

∣

∣

∑

i

Si(z)
∑

n

Ψi(n)Ψj(n + τ)

∣

∣

∣

∣

∣

=
∑

τ

∣

∣

∣

∣

∣

∑

n

c(z, n)Ψj(n + τ)

∣

∣

∣

∣

∣

≤
∑

n

|c(z, n)|
∑

τ

|Ψj(n + τ)|

≤ K22
−j

∑

n

|c(z, n)|

= O(2−j), (30)

by assumption (26) whereK2 is a constant. By formula (29) and assumption (27), we have

max
t,τ

∣

∣

∣

∣

∣

∣

−J(T )
∑

i=−1

∑

k

O

(

Ci + Li(t − k)

T

)

Ψi,j(t − k)Ψi,j(t + τ − k) −
−∞
∑

i=−J(T )−1

Si

(

t

T

)

Aτ
i,j

∣

∣

∣

∣

∣

∣

≤

O(T−1)max
t,τ

∑

i

Ci + K3Li(2
−i + 2−j)

∑

k

|Ψi,j(t − k)Ψi,j(t + τ − k)| +

+ max
t,τ

∑

k

−∞
∑

i=−J(T )−1

S̄i|Ψj(k)| ≤

O(T−1)
∑

i

(

Ci + K3Li(2
−i + 2−j)

)

Ai,j + O(2−jT−1) = O(2−jT−1), (31)

whereK3 is a constant.

29



Using first (31), and then (30) and (29), we bound (28) as follows

RestT ≤ O(2−jT−1)
T−1
∑

t=0

T−1−t
∑

τ=−t

∣

∣

∣

∣

∣

∑

i,k

{

3Si

(

t

T

)

+ O

(

Ci + Li(t − k)

T

)}

× Ψi,j(t − k)Ψi,j(t + τ − k)

∣

∣

∣

∣

∣

≤ O(2−jT−1)
T−1
∑

t=0

T−1−t
∑

τ=−t

∣

∣

∣

∣

∣

∑

i

Si

(

t

T

)

Aτ
i,j

∣

∣

∣

∣

∣

+ O(2−jT−2)
T−1
∑

t=0

T−1−t
∑

τ=−t

∑

i

(Ci + Li(2
−i + 2−j))Ai,j

= O(2−2j) + O(2−2j),

which yields the result. ¤

Proof of Theorem 4.1.We apply Theorem 29.14 from Davidson (1994), with

Ut,T = Z
(j)
t,T /bT (32)

ct,T = 1/bT (33)

KT (z) = bzT c, (34)

where the LHS’s of (32) – (34) use the notation from Davidson (1994),and the RHS’s of
these formulae use the notation from the article. We now check conditions (a)— (f) from
Davidson (1994).

(a) Clearly,EZ
(j)
t,T = 0.

(b) For Gaussian LSW processes, we havesupt,T ‖Z(j)
t,T ‖r < ∞ for r > 2.

(c) Satisfied by Lemma A.1 as{ξ
t,T

} independent.

(d) Satisfied by Lemma A.2 as

lim sup
T→∞

∑b(z+ω)T c−1
t=bzT c

1
b2
T

ω
= lim sup

T→∞

T

b2
T

.

(e) We clearly have1/bT = O(T 1/2−1) = O(T−1/2).

(f) Again by Lemma A.2, we have

ER2
T (z) =

b2
bzT c

b2
T

→ η(z).
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This completes the proof. ¤

Proof of Theorem 5.1. DenoteZt = It − EIt andβτ
j (z) =

∑

i Si(z)Aτ
i,j . Note that

β0
j (z) = βj(z). Consider a single Haar-Fisz summandfm

n , for m ∈ {0, 1, . . . , M − 1} and
n ∈ {0, 1, . . . , 2m − 1}. In what follows,γm,n are appropriate integers andαm,n ∈ {0, 1}.
We have

(−1)αm,nfm
n = (−1)αm,n

∑(γm,n+1)T2−(m+1)−1

t=γm,nT2−(m+1) It −
∑(γm,n+2)T2−(m+1)−1

t=(γm,n+1)T2−(m+1) It

∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) It

= (−1)αm,n

∑(γm,n+1)T2−(m+1)−1

t=γm,nT2−(m+1) Zt −
∑(γm,n+2)T2−(m+1)−1

t=(γm,n+1)T2−(m+1) Zt

∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) Zt +
∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) EIt

+ (−1)αm,n

∑(γm,n+1)T2−(m+1)−1

t=γm,nT2−(m+1) EIt −
∑(γm,n+2)T2−(m+1)−1

t=(γm,n+1)T2−(m+1) EIt

∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) Zt +
∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) EIt

= ym
n + vm

n .

Note that
{

FM
I
}

n
=

∑M−1
m=0 (−1)αm,nfm

n =
∑M−1

m=0 ym
n + vm

n . By Theorem 4.1 and
Cramér’s theorem (Davidson (1994), Theorem 22.14), we have

√
Tym

n =

∑(γm,n+1)T2−(m+1)−1

t=γm,nT2−(m+1) Zt −
∑(γm,n+2)T2−(m+1)−1

t=(γm,n+1)T2−(m+1) Zt

bT

× (−1)αm,n
bT

√
T

∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) Zt +
∑(γm,n+2)T2−(m+1)−1

t=γm,nT2−(m+1) EIt

D→
{

Bη((γm,n + 2)2−m+1) − 2Bη((γm,n + 1)2−m+1) + Bη(γm,n2−m+1)
}

×
(−1)αm,n21/2

(

∑∞
τ=−∞

∫ 1
0 (βτ

j (z))2dz
)1/2

∫ (γm,n+2)2−m+1

γm,n2−m+1 βj(z)dz
,

asT → ∞. Denote the distributional limit bỹym
n . SetY M

n =
∑M−1

m=0 ym
n and Ỹ M

n =
∑M−1

m=0 ỹm
n . Denote furtherc(1) = 21/2

(

∑∞
τ=−∞

∫ 1
0 (βτ

j (z))2dz
)1/2

. We have

√
TY M

n
D→ Ỹ M

n =

c(1)

M−1
∑

m=0

(−1)αm,n
Bη((γm,n + 2)2−m+1) − 2Bη((γm,n + 1)2−m+1) + Bη(γm,n2−m+1)

∫ (γm,n+2)2−m+1

γm,n2−m+1 βj(z)dz
,

asT → ∞. It is immediate thatEỸ M
n = 0. We now look at the variance-covariance matrix
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of ỸM . We have

Var(Ỹ M
n ) =

c2
(1)







M−1
∑

m=0

η((γm,n + 2)2−(m+1)) − η(γm,n2−(m+1))
(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 + 2

M−1
∑

m=0

M−1
∑

m′=m+1

(−1)αm,n+αm′,n ×











−2η(ρm,n ∧ γm′,n2−(m′+1)) + 4η(ρm,n ∧ (γm′,n + 1)2−(m′+1))
∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
∫ (γm′,n+2)2−(m′+1)

γm′,n2−(m′+1)
βj(z)dz

+

−2η(ρm,n ∧ (γm′,n + 2)2−(m′+1)) + η(γm′,n2−(m′+1)) − 2η((γm′,n + 1)2−(m′+1))
∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
∫ (γm′,n+2)2−(m′+1)

γm′,n2−(m′+1)
βj(z)dz

+

η((γm′,n + 2)2−(m′+1))
∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
∫ (γm′,n+2)2−(m′+1)

γm′,n2−(m′+1)
βj(z)dz
















,

whereρm,n = (γm,n + 1)2−(m+1).
Diagonal contribution.Let us first consider the diagonal contribution toVar(Ỹ M

n ). We
have

c2
(1)

2

η((γm,n + 2)2−(m+1)) − η(γm,n2−(m+1))
(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 =

∑∞
τ=−∞

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) (βτ
j (z))2dz

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 .

(35)
By Cauchy inequality and the extended mean-value theorem, we have

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

βj(z)dz

)2

≤ 2−m

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

(βj(z))2dz =

2−m

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

∑

τ

(βτ
j (z))2dz

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) (βj(z))2dz

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

∑

τ (β
τ
j (z))2dz

=

2−m

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

∑

τ

(βτ
j (z))2dz

(βj(ω))2
∑

τ (β
τ
j (ω))2

,

whereω ∈ [γm,n2−(m+1), (γm,n + 2)2−(m+1)]. This, combined with (35), gives

2m+1 inf
ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
≤ c2

(1)

η((γm,n + 2)2−(m+1)) − η(γm,n2−(m+1))
(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 . (36)
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To obtain the upper bound, note that there existsω1, ω2 ∈ [γm,n2−(m+1), (γm,n+2)2−(m+1)]
such that

∞
∑

τ=−∞

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

(βτ
j (z))2dz ≤

2m

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

βj(z)dz

)2 2−m
∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) (βj(z))2dz
(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 sup

ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
=

2m

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

βj(z)dz

)2
βj(ω1)

βj(ω2)
sup

ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
≤

2m

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1)

βj(z)dz

)2 (

1 +
2−m supω∈[0,1] |β′

j(ω)|
infω∈[0,1] βj(ω)

)

sup
ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
,

whereβ′
j is the one-sided derivative ofβj . The above, combined with (35), yields

c2
(1)

η((γm,n + 2)2−(m+1)) − η(γm,n2−(m+1))
(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2

≤ 2m+1 sup
ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
+

2 supω∈[0,1] |β′
j(ω)|

infω∈[0,1] βj(ω)
sup

ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2

= 2m+1 sup
ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
+ O(1). (37)

Off-diagonal contribution.Two cases are possible: eitherρm,n ≥ (γm′,n + 2)2−(m′+1) or
ρm,n ≤ γm′,n2−(m′+1). In either of the two cases, we have

∣

∣

∣
−2η

(

ρm,n ∧ γm′,n2−(m′+1)
)

+ 4η
(

ρm,n ∧ (γm′,n + 1)2−(m′+1)
)

+

−2η
(

ρm,n ∧ (γm′,n + 2)2−(m′+1)
)

+ η
(

γm′,n2−(m′+1)
)

− 2η
(

(γm′,n + 1)2−(m′+1)
)

+

η
(

(γm′,n + 2)2−(m′+1)
)∣

∣

∣ =
∣

∣

∣η
(

γm′,n2−(m′+1)
)

− 2η
(

(γm′,n + 1)2−(m′+1)
)

+

η
(

(γm′,n + 2)2−(m′+1)
)∣

∣

∣
≤ 2−2m′−1 sup

ω∈[0,1]
|η′′(ω)|,

where the last inequality follows by the mean-value theorem andη′′ denotes the one-sided
derivative ofη′. Using the above, and, again, the mean-value theorem, we bound the off-
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diagonal contribution by

2c2
(1)

M−1
∑

m=0

1
∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz

M−1
∑

m′=m+1

2−(m′+1)
2−m′

supω∈[0,1] |η′′(ω)|
∫ (γm′,n+2)2−(m′+1)

γm′,n2−(m′+1)
βj(z)dz

≤

2c2
(1) supω∈[0,1] |η′′(ω)|
infω∈[0,1] βj(ω)

M−1
∑

m=0

1
∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz

M−1
∑

m′=m+1

2−(m′+1) ≤

2c2
(1) supω∈[0,1] |η′′(ω)|
infω∈[0,1] βj(ω)

M−1
∑

m=0

2−(m+1)

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
≤

c2
(1) supω∈[0,1] |η′′(ω)|
infω∈[0,1](βj(ω))2

M = O(M). (38)

Putting together (36), (37) and (38), we finally arrive at

(

2M+1 − 2
)

inf
ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
−O(M) ≤ Var(Ỹ M

n ) ≤
(

2M+1 − 2
)

sup
ω∈[0,1]

∑

τ (β
τ
j (ω))2

(βj(ω))2
+O(M).

(39)
Let us now considerCov(Ỹ M

n1
, Ỹ M

n2
) for n1 6= n2. Let M ′ = #{m : ỹm

n1
= ỹm

n2
}. Let us

first look at the caseM ′ > 0. It is straightforward to show that

Cov(Ỹ M
n1

, Ỹ M
n2

) =

Cov

(

M ′−1
∑

m=0

ỹm
n1

+ ỹM ′

n1
+

M−1
∑

m=M ′+1

ỹm
n1

,
M ′−1
∑

m=0

ỹm
n1

− ỹM ′

n1
+

M−1
∑

m=M ′+1

ỹm
n2

)

=

Var

(

M ′−1
∑

m=0

ỹm
n1

)

− Var
(

ỹM ′

n1

)

+ E

(

M ′−1
∑

m=0

ỹm
n1

(

M−1
∑

m=M ′+1

ỹm
n1

+
M−1
∑

m=M ′+1

ỹm
n2

)

+

ỹM ′

n1

(

M−1
∑

m=M ′+1

ỹm
n1

−
M−1
∑

m=M ′+1

ỹm
n2

))

.

The expectation can be shown to beO(M) using the same methodology as for bound-
ing the off-diagonal component ofVar(Ỹ M

n ). We will now show thatVar(
∑M ′−1

m=0 ỹm
n1

) −
Var(ỹM ′

n1
) = O(M). We first quote two simple facts: letg be a continuous function with a

bounded one-sided derivative over[0, 1] and let[c, d] ⊂ [a, b] ⊂ [0, 1]. We have

∣

∣

∣

∣

∫ b

a
g(z)dz − b − a

d − c

∫ d

c
g(z)dz

∣

∣

∣

∣

≤ (b − a)2 sup
z

|g′(z)| (40)
∣

∣

∣

∣

∣

(∫ d

c
g(z)dz

)2

−
(

d − c

b − a

)2 (∫ b

a
g(z)dz

)2
∣

∣

∣

∣

∣

≤ (d − c)2(b − a) sup
z

|(g2(z))′|.(41)
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For simplicity, denoten = n1. Using again the same method as for bounding the off-
diagonal component of the variance, we obtain

Var(
M ′−1
∑

m=0

ỹm
n ) − Var(ỹM ′

n ) = O(M) + 2
M ′−1
∑

m=0

∑∞
τ=−∞

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) (βτ
j (z))2dz

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 −

2
∑∞

τ=−∞

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
(βτ

j (z))2dz

(

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
βj(z)dz

)2 = O(M) + 2 ×

M ′−1
∑

m=0











∑∞
τ=−∞

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) (βτ
j (z))2dz

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 −

∑∞
τ=−∞

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
(βτ

j (z))2dz

2M ′−m

(

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
βj(z)dz

)2











+

2−M ′+1
∑∞

τ=−∞

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
(βτ

j (z))2dz

(

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
βj(z)dz

)2 .

Consider a single component of the sum overm: it is a difference of two ratios which we
denote here byI − II to shorten the notation. We have|I − II| ≤ |I − III|+ |III − II|,
where

III =
2M ′−m

∑∞
τ=−∞

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
(βτ

j (z))2dz

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 .

Using (40), we get

|I − III| ≤
2−2m supω∈[0,1]

∣

∣

∣

∣

(

∑

τ (β
τ
j (ω))2

)′
∣

∣

∣

∣

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2 ≤

supω∈[0,1]

∣

∣

∣

∣

(

∑

τ (β
τ
j (ω))2

)′
∣

∣

∣

∣

(

infω∈[0,1] βj(ω)
)2 .
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On the other hand, using (41) we have

|III − II| =

2M ′−m

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
βj(z)dz

)2

− 22(m−M ′)
(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2

(

∫ (γm,n+2)2−(m+1)

γm,n2−(m+1) βj(z)dz
)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

∑∞
τ=−∞

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
(βτ

j (z))2dz

(

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
βj(z)dz

)2 ≤

2−M ′ ∑∞
τ=−∞

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
(βτ

j (z))2dz

(

∫ (γM′,n+2)2−(M′+1)

γM′,n2−(M′+1)
βj(z)dz

)2

supω∈[0,1]((βj(ω))2)′

(

infω∈[0,1] βj(ω)
)2 ,

which is bounded by (39). This proves the assertion thatVar(
∑M ′−1

m=0 ỹm
n1

) − Var(ỹM ′

n1
) =

O(M). SettingV M
n =

∑M−1
m=0 vm

n completes the proof of the theorem. ¤
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