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Technical Report: Smoothing the wavelet peri-
odogram using the Haar-Fisz transform

Piotr Fryzlewicz and Guy P. Nason
University of Bristol, UK

[August 3, 2004]

Summary. The wavelet periodogram is hard to smooth because of the low signal-to-noise ratio
and non-stationary covariance structure. This article introduces a method for smoothing a local
wavelet periodogram by applying a Haar-Fisz transform which approximately Gaussianizes and ap-
proximately stabilizes the variance of the periodogram. Consequently, smoothing the transformed
periodogram can take advantage of the wide variety of existing techniques suitable for homoge-
neous Gaussian data. This article demonstrates the superiority of the new method over existing
methods and supplies theory that proves the Gaussianizing, variance stabilizing and decorrelation
properties of the Haar-Fisz transform.

Keywords: periodogram smoothing; Gaussianizing transform; variance stabilization; functional central limit theo-
rem.

1 Introduction

Time series whose spectral properties vary over time arise in several, feetyl finance
(Kim (1998), Fryzlewicz (2002)), biomedical statistics (Nasb@l. (2000)) or geophysics
(Sakiyama (2002)). Estimating the time-varying second-order stucturseste for un-
derstanding the data-generating mechanism and forecasting the series.

Models for processes with an evolutionary spectral structure are oftalifications
of the following classical Cramér representation for stationary prosesakzero-mean
discrete-time stationary processgscan be represented as

X, = / A(w) expliwt)dZ(w), te7Z, (1)
(]

whereA(w) is the amplitude, and (w) is a process with orthonormal increments. Dahlhaus
(1996) introduces a class of locally stationary processes which persiiaevolution of
the transfer functioml (w) over time. Other approaches stemming from (1) include Priestley
(1965), Battaglia (1979), Mélard & Herteleer-De Schutter (1989), Nataal. (1998),
Swift (2000) and Ombaset al. (2002).

Being localised both in time and in frequency, wavelets provide a naturahafies to

the Fourier-based approach for modelling phenomena whose spéetratteristics evolve
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over time (see Vidakovic (1999) for an introduction to wavelets and their titatigp-
plications). Nasoret al. (2000) introduce the class of locally stationary wavelet (LSW)
processes which uses non-decimated wavelets, rather than Founeeexpls, as building
blocks. The LSW model enables a time-scale decomposition of the procggseanits

a rigorous estimation of thevolutionary wavelet spectruand thelocal autocovariance
The LSW class is well-suited for modelling processes believed to have aremthaulti-
scale structure, such as financial log-returns (see Calvet & FisBed)R and offers the
user freedom in choosing the underlying wavelet family. Wavelet-bastmagors of the
second-order structure of LSW processes are naturally localisedaamide computed ex-
tremely efficiently.

Thewavelet periodogranthe main quantity of interest in this paper, is a wavelet alter-
native to the classical periodogram and can be loosely defined asensemqf squared non-
decimated wavelet coefficients of a process. Nastaal. (2000) use it as a basic statistic
for estimating the evolutionary wavelet spectrum and the local autocoeariarthe LSW
model. Like the classical periodogram, the wavelet periodogram is neistent and needs
to be smoothed. Nasat al. (2000) recommended using wavelet shrinkage with a threshold
adapted fory? data or, alternatively, taking the log transform of the wavelet periodogra
and then using standard wavelet shrinkage for Gaussian distributedNtzther of these
approaches is perfect: for the non-linear wavelet shrinkage a ldoaéptimate of the local
variance is required. For the log transform, it stabilizes variance but thedasformed
periodogram is far from Gaussian and then standard denoiserstdantautomatically”
used. Chiann & Morettin (1999) define and analyse some propertiesifiégedt kind of
wavelet periodogram, based on the orthonormal wavelet transforstafiionary processes.

The prime objective of this paper is to propose a new multiscale transformiggehfor
smoothing the wavelet periodogram. The idea behind our algorithm is the fojowe
first preprocess the wavelet periodogram using a nonlinear wavededitransformation,
which we call the Haar-Fisz transformation fpt data. Then we denoise the preprocessed
vector as if it were signal plus stationary Gaussian noise. Finally, we dpplynverse
Haar-Fisz transform to obtain an estimate of the spectral structure ofigieabprocess.

Our Haar-Fisz transform is a new Gaussianizing and variance stabilizngfarm,
which operates in the wavelet domain, and not in the time domain, like the stalodard
transformation. Throughout the paper whenever we mention Gaussianipa variance
stabilization we meaapproximately For a precise technical characterisation of these prop-
erties see Section 5.

The advantages of our method are the following.

1. Its performance is good. We often see performance gains in MISEbohd 25%.
see Section 5.3 below.

2. For a time series of length the algorithm is of computational ord&tlog(7") for
estimating all scales of the wavelet periodogram.

3. Itis simple and easy to code.

4. ltis fully automatic (up to any parameters that the Gaussian denoiséragqu



5. It can make use dny signal+Gaussian noise denoising technology, an area where
a vast amount of research effort has been and is being expendede ldur method
can only get better as we take advantage of newer Gaussian denoisers.

To achieve the main objective, we take the following steps. Section 2 recatiefing
tions of an LSW process, the wavelet periodogram, and other prelimin&esntroduce
the (multiscale) Haar-Fisz transform for the wavelet periodogram in Se8tithe Haar-
Fisz transform for Poisson data was recently introduced by Fryzlewibiagon (2004)).
The Haar-Fisz transform works as an approximate Gaussianizer eadogstabilizer and
Section 4 proves a functional central limit theorem (FCLT) which is use@ati@ 5 to for-
mally quantify these Gaussianizing and variance stabilizing assertions. Ii58@lso uses
simulation to investigate the practical performance of the Haar-Fisz tramsiiod compare
it to an exising alternative. Section 6 proposes an algorithm for smoothingathelet pe-
riodogram, based on our Haar-Fisz transform. This section also coataimailation study
which demonstrates the (usually) superior performance of our algorittlemtie existing
competitor. Section 7 uses our proposed smoothing methodology to perfocal avari-
ance analysis of the Dow Jones index, and concludes that the seribg caodelled as
Gaussian.

2 Preliminaries

2.1 The LSW model

We start by recalling the definition of an LSW process.

Definition 2.1 (Nasonet al. (2000)) A triangular stochastic array{ X, v}, for T =

1,2,...,isin the class of LSW processes if there exists a mean-square nejatise
-1 00
Xer= Y Y wikrtii—k&irr, (2)
J==J(T) k=—o0

wherej € {—1,—-2,...} andk € Z are, respectively, scale and location parameters,..
are real constantsy; are discrete non-decimated wavelet vectdts,..r } ; » are, for each
T, zero-mean orthonormal identically distributed random variables, anédgh;j < —1,
there exists a Lipschitz functidi;(z) : [0,1) — R such that

o >l [Wi(2)|* < oo, uniformly inz € (0, 1),

—1
j=—o00

e the Lipschitz constants; satisfy) 277L; < oo,

-1
j=—o00

e there exists a sequence of constafifssatisfying)
eachT,

C; < oo such that, for

sup  |wjkr — W;(k/T)| < Cj/T. (3)
k=0,..,T—1



In formula (2), parameters; ;.7 can be thought of as a scale- and location-dependent
transfer function, while the nondecimated wavelet vectgrsan be thought of as building
blocks analogous to the Fourier exponentials in (1). Throughout therpap work with
Gaussian LSW processes, i.e. the.r are distributed a$v (0, 1).

Haar wavelets are the simplest example of a wavelet system. Dendte= 1 when
k is in A and zero otherwise. Haar wavelets are defined by

Yik =2 omimriy (k) = 2P0 im1 | pms_1y(R), 4

forj = —1,-2,... andk € Z, wherej = —1 corresponds to the finest scale. All results
of this paper are true not only for Haar wavelets but also for all othewpewtly supported
wavelets from the Daubechies’ families (Daubechies (1992)). Forengixavelet system
1, we setJ in Definition 2.1 to be/(n) = —min{j : £; < n}, whereL; is the length of
support ofy;.

Given an LSW proces$X; 7}, we cannot uniquely determine the transfer function
w; k7 due to the overcompleteness of the non-decimated wavelet systéfowever, the
asymptoticevolutionary wavelet spectruy (z) := |W;(2)|* = limr_ o ]wj,LzTJ;T\Q, de-
fined on the rescaled-time intervale [0, 1), is uniquely defined and can be estimated by
means of asymptotically unbiased estimators. Due to the rescaled time conceptirtiee
tion of S;(z) is analogous to the estimation of a regression function.

From Definition 2.1, it is immediate th&.X; r = 0 and indeed, throughout the paper,
we work with zero-mean processes. Such processes arise, forlexavhpn the trend has
been removed from the data, see e.g. von Sachs & MacGibbon (20G0)doent wavelet-
based technique for detrending locally stationary processes.

The autocovariance function ¢, -} can also be defined in rescaled time{(z, 7) =
E(X .77 X|27|+-7r). Nasonet al. (2000) define the corresponding asymptdtcal
autocovariancef {X; r} as

-1
c(z,7) = Y Si(2)(7), (5)
j=—00
whereU;(7) = S22 ¥jx¥jk+r, and show thater(z,7) — c(z,7)] = O(T7!) as
T — oo, uniformly in7T € Z andz € (0,1). Formula (5) defines the correspondence
between the local autocovariance and the evolutionary wavelet spe@natogous to the

usual Fourier transform link between classical spectrum and autegoga), so that an
estimate of the latter can be used to estimate the former.

2.2 The wavelet periodogram in the LSW model

We are now in a position to recall the definition of thevelet periodogramthe main
quantity of interest in this paper.

Definition 2.2 (Nasonet al. (2000)) Let X; r be an LSW process constructed using the



wavelet systenp. The triangular stochastic array

(6)

s,ij,t—s

is called thewavelet periodogram ok 1 at scalej.

Throughout the paper, we assume that the reader is familar with the faset@isVavelet
Transform (DWT; see Mallat (1989)), as well as with the fast Nonrdated DWT (NDWT;
see Nason & Silverman (1995)). In practice, we only observe a singl@fohe triangu-
lar array X; 7. The wavelet periodogram is not computed separately for each staie

instead, we compute the full NDWT transform of the observed rowkKpof (e.g. with

periodic boundary conditions) and then square the wavelet coeffdierobtaini (JT) for

t=0,...,7—1andj =—-1,— o =J(T).
We quote the following result.

Proposition 2.1 (Nasoret al. (2000)) Let X,  satisfy Definition 2.1 and define
Aij = Wi(T)T(7)

We have

-1
EL) = 3" 5 (%) Aij+O(279)T). @)

1=—00

If, in addition, ¢; ;, are Gaussian (and henck; r is Gaussian), then

Var (1) =2 ( Yos ( ) ”) L0271, ®)

1=—00

The following proposition shows that the wavelet periodogram at eadh s typically a
correlated sequence.

Proposition 2.2 Let X, r be a Gaussian LSW process satisfyfiygz) < D27. We have

- 2
cov (It(?}, It(i)s,T) =2 ( Z c (%,T) U+ s)) +0(277/T). 9)

T=—00

The proof uses exactly the same technique as the proof of (8).
To simplify the notation, we denote

B8(z) = 'Z Si(2)Aq ;. (10)



For non-trivial processes we assume thdt ) is bounded away from zero (note that by (10)
Bj(z) = 0 in a neighbourhood afy would imply all S;(z) = 0 in that neighbourhood and
the resulting process would locally be deterministic and exactly zero). Theaimaiof the
paper is to propose a new method for estimafing:) for j = —1,-2,...,—J(T), from

a single stretch of observations &f r. By (7) and (8),It(f% is an asymptotically unbiased
but inconsistent estimate ¢f;(z) and needs to be smoothed to obtain consistency. Being
able to estimat@;(z) is useful in two ways:

1. An estimate of3;(z) can be used to obtain an estimateSgz) (by (10) and by the
invertibility of (A,, ), see Nasoet al. (2000) for details);

2. The estimate of;(z) can in turn be used to obtain an estimate of the local autoco-
variancec(z, 7) (using (5)).

In short, estimating{(;(z) ]_:Jg)

second-order structure of; 7.

Example 1. Figure 1 shows an example of a wavelet spectrum, realisation from that
spectrum and the wavelet periodogram of that realisation at seale Smoothing the
wavelet periodogram is by no means an easy task, due to

allows us to make inference about the time-varying

e the fact that the variance of the noise depends on the level of the sigraiarmulae
(7) and (8)),

e alow signal-to-noise ratio: again by (7) and (8) we obtain, neglecting thairslers,
. ANy 1/2
1)/ {Var (1))} = 2712,

¢ the presence of correlation Ilﬁjjz (see formula (9)).

Many existing denoising techniques have been designed to handle statBaassian noise

and therefore it would be desirable to be able to transform the waveletipgram into a
signal contaminated with such noise before the denoising is performed. llA&mnesvn
technique for stabilizing the variance of scalgfl variables is the log-transform, see e.g.
Priestley (1981); however, the resulting variable is still far from Gausgjaike here,

n = 1. Nasonet al. (2000) propose a wavelet-based technique for smoothing the wavelet
periodogram without any pre-processing: their method is based on Neughaon Sachs
(1995).

3 The Haar-Fisz transform

In this section, we propose a multiscale algorithm, calledHbar-Fisz transform (fory?
data), for stabilizing the variance of the wavelet periodogram and bringing itslalision
closer to normality. The input to the algorithm is:

e Asingle row of the wavelet periodograf{w’% at a fixed scalg: here, we assume that
T is an integer power of two. To simplify the notation in this section, we drop the

6
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Figure 1: Top: wavelet spectrum example where ofily (z) and S_3(z) are non-zero;
Middle: example sample path from the top spectrum of leAgts 1024; Bottom: Haar
periodogram of the sample path at scale



superscripy and the subscripgf’ and consider the sequenfe:= It(i} or, in vector
notation,I = (Iéj) e ]7(?21 )

e Afixed integerM € {1,2,...,logy(T)}; its meaning will become clear later.
The output from the algorithm is:

e The empirical mean df, denoted byl.

e AvectorUM of length2 .
The vectorUM is constructed as follows:

1. LetsM™ be the vector of local averagesbf

oM (n+1)T2~M -1

S%:T Z I, for n=0,1,...,2" —1. (1)
t=nT2—M
2. Foreachm =M —1,M — 2,...,0, recursively form vectors™ andf™:
1
spo= s+ shh) (12)
Sm—i—l o Sm—l—l
m 2n 2n+1
= 4= 13
i T (13)

forn=0,1,...,2™ — 1.

3. Foreachn =0,1,..., M — 1, recursively modify the vectorg™*!:

sptl = s f (14)
spth = st — £, (15)

forn=0,1,...,2™ — 1.

4. SetUM .= M 1.

We denoteFM1 := UM, The nonlinear operatgfFV is called theHaar-Fisz transform of
I at the resolution level .

If M = log,y(T), then the length ofF™1 is T' and the algorithm is invertible, i.el
can be reconstructed fro™1 andI by reversing the steps 4.—1. Therefore, the case
M = log,(T) is the one we are the most interested in in practice. However, the exact
asymptotic Gaussianizing properties of the Haar-Fisz transform only bold ffixed (i.e.
independent of"), and this case is investigated theoretically in Section 5.1. Section 5.2
provides some heuristics as to the behaviouF T whenM = log, (T'): we still conclude
that the distribution ofF'°22(7)1 s close to Gaussian with a constant variance. To simplify
notation, we denotg := Flog2(1),



The reader will note that the steps 2.—4. of the algorithm are similar to the ridaveal
inverse Discrete Haar Transform except the divisiorsfyin formula (13). The division
by 5! is an application of the theory in Fisz (1955) and hence the name of ourthigas
the Haar-Fisz transform (for the wavelet periodogram). Informallyakimg: the division
by s in formula (13) acts as a variance stabilization step and also induces & daggre
Gaussianization; formula (11) in step 1. also Gaussianizes (by a CLT tgpenant); in
formulae (14) and (15) of step 3. a further degree of Gaussianizatiom® (again by a
CLT type argument). Fryzlewicz & Nason (2004) considered a similar{Haaralgorithm
for processing an independent Poisson signal. In that case thepappeaormalisation is
to divide through by /s7.

Example 2. Empirical comparison of log and Haar-Fisz transforms. To give the
reader an intuitive feel for the properties of the Haar-Fisz transfonerwcompared to log
we describe the following simple example. We performed the log and Haatr&isforms
on the sequence of independent variall&s} %24 where Y, is distributed ag;x? with
{v )22 = 1 and{v;}}%%; = 2. We simulated 1000 sample pathsf and computed
the mean empirical root signal to noise ratio (SNR=standard deviation oitha& slivided
by the standard deviation of the noise). The resultiégr’; was 0.156 and that faF T,
was 0.297 (to 3 decimal places). For the log transform: the mean variaecehavfirst
half of the signal was 4.909 and 4.912 on the second half. For HaatHeisorresponding
figures were 1.266 and 1.263. As for Gaussianity, the mean Kolmogomimn®, (K-S)
statistic for log transformed values was 0.10 and for Haar-Fisz it was Bdb2his example
the SNR for Haar-Fisz is nearly twice that as achieved by the log transfdtareover,
the Haar-Fisz transformed variables are more Gaussian as demonsyréted tbower K-
S statistics. Finally, both transforms stabilize variance extremely well. Morengxge
comparisons can be found in Section 5.

Example 1. (continued)Figure 2 compares the log and Haar-Fisz transforms of the
wavelet periodogram from Figure 1. The Haar-Fisz-transformedlgaperiodogram ap-
pears to be much closer to normality.

3.1 Examples of the Haar-Fisz formula

As an example, consid€r = 8. For M = 2, we have:

Z?:()It — ZZ:4It n Io+1 — 1o — I3

U =
21‘7:0 I Z?:o I
Uz — Yool =Syl Lo+ L —L—1Is
' Yol Yol
U2 S L=, 6L n Iy +1s — Ig — I
2 =
ZZ:O I 21‘7:4 I
U2 Z?:o L=, L+ls—Ig—1Ir
3 - 7 - .
Zz‘:o I 21‘7:4 I
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Figure 2: Transforms of the wavelet periodogram from the bottom pl&igire 1. Left:
log transform. Right: Haar-Fisz. Hefié = 1024 and the full transform is performed, i.e.
M = 10.

Similarly, for M = 3, we have:

v = DDA S Lo+ h—h-Iy L=
S oL 3 o Ip+ 1
Us - Yool = Yia I . Io+h—Ih,—Iy Ilo—15
Yol Yo Tt lo+1
U = Sioli—iale lh+h—-L-I L-1I
Yol ol I +13
U — Siole=iale lh+h-L-I L-1I
Yol ol I +13
Ud = _Z?:oft—ZLﬂt+I4+I5—16—I7 Iy —I5
21'7:0 I 21-724 Iy Iy + 15
Ud — DY DYy y Lt Ir LT
Zi?:o I ZZ:4 I Iy + 15
Ud = Yol - il L+ Li—Ii—Ir Ig—I
22-7:0 I 21-724 I Is + I
U — Yol - Yl L+ ILi—Is—I Ig—I
>0l ST, I Io+ Ir
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4 A Functional CLT for the centred wavelet periodogram

This section is concerned with a Functional Central Limit Theorem (FCaif)Hfe centred
wavelet periodogram

z% =19 ~EIY) (16)
(see Davidson (1994) for more on the stochastic limit theory we use hé&a).FCLT
demonstrates that the normalised cumulative sum of the centred waveletgagem con-
verges in distribution to a transformed Brownian motion. The theory in this seetiables
us to demonstrate the Gaussianizing, variance stabilizing and decorrelaipeytpes of
the Haar-Fisz transform established in Section 5. Before we state theithaee introduce

some essential notation.

Definition 4.1 (transformed Brownian motion) Let»n be an increasing homeomorphism
on|[0, 1] with»(0) = 0 andn(1) = 1. A transformed Brownian motioR,, is defined as

B(n(z)), =ze€]0,1],
whereB is a Brownian motion.

Definition 4.2 (cross-scale autocorrelation wavelets).et) be a fixed wavelet system. Vec-
torsV; ;, fori,j € {—1,-2,...}, defined by

Ui (1) = > Yisrrhjs (17)

§=—00
are called thecross-scale autocorrelation wavelets

Denote

S; = maxS;(z)

z

o = max
j=—1,..,—k

9

AR

with the conventior®/0 = 0. Denote further
AT, = Y ()T +7)

Bi(z) = Zsi<z>A;j (18)

We now state the Functional Central Limit Theorem for the centred wavetetgogram.

11



Theorem 4.1 Let X; 7 be a Gaussian LSW process, and Jéﬂr) be its centred wavelet
periodogram at scalg. Define

T-1 \?
b = E(Z Zt(fT)) (19)
t=0

12T]=1 7 (5)
Rp(z) = =22 Z0T o z €10,1].

br

1/2
there existg > 0 such that (Z > \I/ﬁj(l)&) = O(m~Y?79),  (20)

1<0 I>m+1
5J(T)/T € oo, (21)

supZ|c(z,n)| < o0, (22)
there existsD such thatS;2~7 < D forall j, (23)

and if 3;(z) is bounded away from zero, théiy A B, where

_ Jo 2 (ZZ SZ-(u)AZT’])2 du
RS (S SiwAr,) du

The proof appears in the Appendix. As is clear from the proof, the Efdlexpression in
condition (20) is a measure of dependence in the sequﬁﬁ;ﬁeat lagm. Condition (21)
places an additional restriction on the finite-sample wavelet Spe({t[ng}Lk in relation

to the asymptotic spectrufiS;(z)};. Condition (22) is a short-memory assumption for
X, and condition (23) requires that the wavelet spectrum should deeageatain speed
asj — —oo.

We now give an example of a periodogram sequence which satisfies tméctdcon-
dition (20). LetX, r be a Gaussian LSW process constructed with Haar wavelets and such
that S;(z) = S; = 2. Asymptotically,X; r is a white noise process (see Fryzlewitzl.
(2003) for a proof of this fact). Consider the Haar periodogranXpf at scalej = —1.
Using (4) and (17), simple algebra yields

22’ Z Z (1) =0(m™?),

<0 I>m+1

and (20) is satisfied. Also note that any process Wittx) = 0 for all but a finite number
of scalesj satisfies (20).

12



In particular, Theorem 4.1 implies thBY{ Rr(2)?) — n(z) asT — oo, and that the
increments ofRr(z) are asymptotically independent. Theorem 4.1 is fundamental for the
theoretical results of the next section.

5 Properties of the Haar-Fisz transform

5.1 Properties of the Haar-Fisz transform for M fixed

Theorem 5.1 Let X; 7 satisfy the assumptions of Theorem 4.1, and, Htbe the wavelet

periodogram ofX, - at scalej. Let the corresponding functiorns(z) and ZT(ﬂ]T(z))Q
(see formulae (10) and (18)) be continuous with bounded left and rigitatives. ForM

fixed, UM = 7M119) admits the following decomposition:
U]\/[ _ VM + 'Y]W
where
1. VM has an almost-sure deterministic limit &s— oo:

2. VTYM 2 N(0,%) asT — oo, with

o 2 (B7(2))? > (B7(2))?
M+1 in T\Fj _ o < (2MH u T\j
B =2) R TG O S Ban < (77 =2) s SO0
(24)
and
Yrime =O(M) for ng # no. (25)

Theorem 5.1 shows that the Haar-Fisz transformed periododdam admits an asymptotic
“signal plus noise” type representation where explicit formulae for tigna”, V!, and
“noise”, YM appear in the proof. Property 2. above is called@aeissianization property
of the Haar-Fisz transform and, theoretically, this is shown by using tbevargence to
Brownian motion” result in the FCLT of Theorem 4.1. Formulae (24) ang (&8ine,
respectively, thevariance stabilizatiorand thedecorrelation propertie®f the Haar-Fisz
transform. The decorrelation property stems from the independentrieats inherent in
the Brownian motion tha¥ ' converges to, by Theorem 4.1.
As an interesting special case suppdsgr is a time-modulated stationary process

(Xt = o(t/T)Y:r whereY; 7 is stationary). Then the quantify’ (57 (2))?/(5j(2))?

is the asymptotic sum of the autocorrelationslg)ﬁl and in this case is not dependent
on z. This means that the main terms in formula (24) are identical which implies that
Y,.n = const+ O(M) for all n (i.e. the variance is almost exactly stabilized). Note that
exact variance stabilization is not possible unless the log transform is lkmgever, as
exemplified by Example 2, in practice Haar-Fisz variance stabilization is vy gnd one
also benefits from Gaussianization and a better SNR.

13
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Figure 3: Left plot: the g-q plot of? arising from the Haar periodogram of a pure white
noise process at scaje= —1 (against the normal quantiles). Right plot: solid line —
the variance oﬂ-‘}fg2(T)_1 against the correlation of the Gaussian variables involved; short-

dashed line — variance 0.4 (see text for further description).

Note the different asymptotic regimes f8r" and'Y: the multiplication ofY™ by
VT is needed becauséar(Y,M) = O(2M/T); we remind the reader that/ is fixed.
However, for the invertible case (see the discussion in Section 3), weedd = log,(7T).
For a theoretical analysis of this case we need to be able to determine theutcstritsf
the Haar-Fisz summandy® on the finest scales. We have not been able to determine the
general form of this distribution; however, we cast some light on theietaof Floga(T)
in Section 5.2.

5.2 Heuristics of the Haar-Fisz transform for M = log,(T)

In the asymptotic framework set out in Section 5.1, we assuméfthatfixed, and therefore
the length of the Haar-Fisz-transformed vecfoV 1 is always constant and equal 28/,
even thoughl” — oo. This ensures the asymptotic Gaussianity/J¥'1, in the sense
specified by Theorem 5.1. However, to obtain an invertible operator,eed to sef\/ =
log,(T). Simulations suggest that the asymptotic distributionF&®2(T) is not exactly
Gaussian, which is not surprising given the fact that the distribution of

O

logo(T)—1 _ 42n, T ~ f2n41,T

" ) (4)
Izi,T + Iziwrl,T
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(see the second example in Section 3.1) is far from Gaussian. To illustrastatament,
let us consider the Haar periodogram sequelrﬁ@ég4 of a pure white noise process (=
1024, J = 10). The left plot in Figure 3 shows the g-q plot of the corresponding secg
9 against the normal quantiles: its distribution strongly deviates from Gadissiae tails.
Other extensive simulations have shown that, for a wide range of pex;dhe distribution
of fM gets closer to Gaussianity ¢ decreases (as expected, see proof of Theorem 5.1).
However, even though taking/ = log,(7') (instead of keeping it fixed) spoils the exact
asymptotic Gaussianity oF 1, it does not seem to upset the other important theoretical
property of FMT: the variance stabilization. To illustrate this point, we consider the vari-
ance of the summanﬂlbOg2 )=1 (for definition see formula (13)). Note tha*®>™ ! is
always of the formyi82 )™ = (2 —¢2)/(¢2+¢2), where(¢y, ) is bivariate normal with
mean(0,0). For simplicity, we assume thatar(¢;) = Var({2), which is not a restrictive
assumption: due to the local stationarity property, the two variances tend saree limit
asT — oo. Letp = corr(¢i, (2). It can be shown that

9\ 2
Var( }Log2(T)—1> _ 1 /OO <(1 — u2)2 _ ((1 - u2) p+ 2uﬂ) ) 2
T J oo (1+u?) <(1 —u?)? + ((1 —u2)p+ QUM)2>

du.

T)-

The right plot in Figure 3 shows the graph\afr ( logs ) against. It can be seen that

Var (fﬂlog?(T)* ) is “stable" for a wide range of correlation values: indeed, the variance is

betweerD.4 and0.5 for |p| < 0.74. This implies that while incorporatinfj°e2(7)—1 spoils
the asymptotic Gaussianity property of the Haar-Fisz transform, it helpevadks variance
stabilization property. Note, howevén, practice even the full invertible casg/ = log, T’
yields a distribution which is very close to variance stabilized Gaussian asfa® and
simulations in Section 5.3 show.

A similar variance stabilization phenomenon occursffdrfor M < log,(T) — 1.

5.3 Simulation

As an illustration of the Gaussianization and the variance stabilization prapeftidne
Haar-Fisz transform, consider the procéss = o(t/T)Y: 1, whereY; r = p(t/T)Y;—1 7+
e¢ wWith |p(2)| < 1 ande; ~ N(0,1) i.i.d. It can easily be shown that the local autocovari-
ance function fotX; 7 has the form

— o2 p(2)"
olem) =P s

and, for3;(z) arising from the Haar periodogram, we have

1— p(z)2 + 2j+3p(z)2—j—1+1 627 (z) _ 9j+l ( 2 J+1
(1= p(2)?)(1 = p(2))? '
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We consider the following two cases:

TVAR Model ¢2(z) = 1 andp(z) = 1.8z — 0.9, so thatX,  is a time-varying AR(1)
process;

TMWN Model o2(z) is a scaled Donoho & Johnstone (19®&)ps function with (min,
max) values of (1/8, 8), angl(z) = 0, so thatX; r is a time-modulated white noise
process.

In both of these models, we simulate 100 sample paths for’Both256 andT' = 1024.
For each of the simulated sample paths, we compute the wavelet perioddgeates] —

—1,...,—logy(T). For each of the periodogram sequenﬁé:% obtained in this way, we

compute the residualg™ 1) — FM g, (t/T) for M = log,(T) — 2,10g,(T) — 1, logy(T).
We assess the Gaussianiiy of each sequence of residuals by lookirgpatdiue of the
Kolmogorov-Smirnov statistic, returned by the S-Plus funckien gof . For comparison,
we also consider the residuals from the log transfdnég(lf]:,),) —log(3;(t/T)).

Figure 4 shows that foh! = logy(T') — 2, the propor’tion ofp-values exceeding 5%
is close to 95% for; = —1,...,—5, so that residual sequences at these scales can be
regarded as approximately Gaussian. However, evenffor log,(7") the proportion of
p-values exceeding 5% is incomparably larger than the same proportion tamirfpu the
log transform. Indeed, fof' = 1024, no p-value exceeded the 5% threshold for the log
transform.

The above experiment demonstrates that even\for= log,(7') (the invertible case),
the Haar-Fisz transform is a far better Gaussianizer than the log tramsfor

In practice, we often observe a degree of correlatioA A1), particularly at coarser
scales, i.e. for large negatiye This has to be taken into account when denoising Haar-
Fisz transformed sequences by using suitable methods for correlateasdbaacribed later
in Section 6.1.

6 Smoothing the wavelet periodogram

In this section, we first outline our general methodology for smoothing thesleape-

riodogram of a Gaussian LSW proceXs 7, basing on a single stretch of observations.

Then, we provide simulation results which demonstrate the effectiveness téchnique.
The generic algorithm consists of the following steps.

1. Foreachj = —1,...,—J(T), compute the raw wavelet periodogrdﬁ%}. In prac-
tice, this is done by taking the non-decimated wavelet transforiy, gf down to the
level —J(T"), and then squaring the result. For computational convenience, we use
periodic boundary treatment; another option would be to use e.g. symmetrid-bou
ary treatment.

2. Foreachy = —1,...,—J(T), take the Haar-Fisz transform ﬁjjT) at a fixed resolu-
tion level M < logy(T).
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Figure 4: Proportion op-values exceeding or equal to 5% againgt Left column: results
for model TVAR, right column: results for model TMWN. Top ro®: = 256, Bottom row:
T = 1024. Solid line: M = log,(T"), short-dashed lineM = log,(7T) — 1, dashed line:
M =1logy(T) — 2, long-dashed line: the log transform. Horizontal solid line: 0.95.
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3. Foreacly, denoise the Haar-Fisz transformed periodogram sequence usingeehet
denoising technique suitable for correlated Gaussian noise with constaamace.
The wavelet denoising procedure employed at this stage may be of a ti@msla
invariant (T1) type: we refer to TI-denoising at this stage as “interngatlesspinning
(CS).

4. For eacly, take the inverse Haar-Fisz transform of the denoised data.

5. If M < logy(T), then for eacly interpolate the estimates obtained in this way to
the grid{t/T}tT:‘O1 (so that they are of lengthl and not2™ < T). In our empirical
investigation, we used simple linear interpolation. For eaghke the result to be an
estimate of3;(z).

6. For a fixed integef, lets = 1,...,5 — 1. For eachyj, shift It(jT) cyclically by s,
smooth the shifted version using steps 2 — 5 of this algorithm, and shift backdoy
obtain an estimate gf;(z). The CS at this stage is referred to as “external” cycle-
spinning.

7. For eachy, thefinal estimateof 3;(z) is obtained by averaging over the estimates
obtained through th#& shifts.

A few remarks are in order.

Consistency. For considerations of consistency we have tallegrow with7": here we ex-
amine the cas@/ = log, (7). Itis easy to see that our whole algorithm is consistent
if in step 3 above we use linear Haar wavelet shrinkage. This means takimtptr
wavelet transform of the Haar-Fisz transfornlednnihilating the< finest scales and
then inverting the Haar transform. Heke — oo and K = o(log(T")). The reason
we have consistency in this simple case is that using linear Haar waveletaiin
causes the overall procedure todb&ctlythe same as: smooltusing the linear Haar
scheme, i.e. perform a Haar decompositior ,ofemove theK finest detail levels,
invert the Haar transform.

In other words, because of the structure of the Haar and Haar-Fissfdrens, the
non-linearities in our algorithm cancel out and it reduces to a linear duseaNe
feel that it is worth mentioning that in this special case consistency ocdthieuy
needing a bias correction factor which is required inlthecase.

However, if we replace the Haar wavelets in the wavelet shrinkage in sig@alif-
ferent wavelet family, we immediately lose the correspondence of the tveeguoes

and our algorithm becomes non-linear. This also happens if we repladmdhe
scheme in step 3 by non-linear wavelet shrinkage. In both cases thabvetifica-

tion of consistency is not straightforward. However, extensive comgufgeriments

with a variety of Gaussian denoisers in step 3 systematically indicate MISE of the
overall procedure decreasing to zero with increasing sample size.
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Computational complexity. Steps 1-5 of the algorithm are each of computational order
O(TJ(T)), provided that the wavelet denoising method used in step 3 has complexity
O(T). Therefore, the whole algorithm 1-7 is of computational o@és7'.J(T')).

In practice, the software is fast.

Use of wavelets.It is worth recalling here that, effectively, we use wavelets at four difie
stages of the smoothing procedure: First of all, a non-decimated waystetg) is
used in the construction of the LSW procesgr. Then the same systernis used

to compute the wavelet periodograﬁﬁ“’f} in step 1 of the smoothing algorithm. Then
the (inverse) Haar-Fisz transform in step 2 (4) relies on the Haar tnansfthus,
wavelets are used for the third time. Finally, we use wavelets (possibly aediffe
family, say+) to denoise the Haar-Fisz transformed periodogram in step 3.

Cycle-spinning. Let S be the shift-by-one-operator from Nason & Silverman (1995). The
Haar-Fisz transform is not translation-equivariant si§de" #* FMS. Therefore, it
is potentially beneficial to apply the external CS of step 6 even if step 3 usesah
CS. Another reason is that cycle-spinning can mitigate minor artefacts iddhydbe
Haar part of the Haar-Fisz transform and improve visual quality. Cgpiening is
a kind of basis averaging which arose in wavelet shrinkage in Coifman 8obo
(1995).

We now move on to describe our particular simulation setup.

6.1 Simulation

In this section, we describe the details of our simulation study which compareetfor-
mance of our Haar-Fisz smoothing algorithm with the original technique obNesal.
(2000).

The “test processes" used in this section are the same as those in Sectigaif.®ith
100 simulations: TVAR and TMWN. We consider the Haar periodogram oAR\And
TMWN, for sample paths of length 256 and 1024. In step 3 of the Haardfigmothing
algorithm, we use non-Tl level-dependent universal hard threshpldjpropriate for cor-
related Gaussian data as described in Johnstone & Silverman (1997)s stafye, we use
Daubechies’ Least Asymmetric wavelets with 4 vanishing moments, in both cunithlg
and that of Nasomet al. (2000).

Computational experiments suggest that for correlated noise, the cligiienary res-
olution (PR) is of utmost importance. (PR is a common concept in wavelet sigerdnd is
defined as the resolution levgl such that wavelet coefficients at levgfsand coarser than
jo are not denoised.) We do not choose the PR automatically (actually, waarare of
any existing technique for performing automatic PR selection when the noiseésated),
but instead, we subjectively choose the PR for which the method of Netsaln (2000)
gives the most visually appealing results for the wavelet periodograre éihtst scale, i.e.
j = —1. We also use the same PR in our algorithm. The particular values of the PR are:
for TMWN 1024, 6 for TMWN 256, 4 for TVAR 1024 and 3 for TVAR 256.
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We useS = 10 external cycle-shifts. Using more shifts is likely to be beneficial in terms
of MISE but is also more burdensome computationally and sometimes has thadgale
oversmooth. We only report results fof = log,(7") (i.e. for the full invertible Haar-Fisz
transform).

Figure 5 shows estimates of the local variance constructed from the estiofidtes
periodogram obtained using the two methods described above, for pargample paths
of TMWN 1024 and TVAR 1024. For both sample paths, our method achiewes ISE.

Figure 6 shows, for eacly the differences between the logarithm of the ISE in esti-
mating3;(z) for the method of Nasoat al. (2000), and for our Haar-Fisz algorithm. The
results are averaged over 100 simulated sample paths. Our algorithmii®supmost of
the cases, except for the 4 finest scales in TVAR 256, and the 3 sbacsdes in TMWN
1024. A similar pattern has been obtained for other values of the PR.

We have also performed additional simulations fdr = log,(7') — 1 and M =
log,(T) — 2. It turned out that as long as the PR remained fixed, the choicd ¢fad
very little influence upon the estimates.

On a final note, it must be mentioned that other denoising methods can alsedau
step 3, and our algorithm can only benefit from this flexibility. Some of thenigcies for
correlated data are reviewed in Opsoreeal. (2001). We have also experimented with the
eBayes method of Johnstone & Silverman (2003) and Barber & NasOd ) 20d obtained
encouraging results.

7 Real data example: the Dow Jones index

In this section, we perform a local variance analysis of the Dow Joriasstrial Average
seriesD; r, plotted in the top plot of Figure 7/{= 1024) and obtained from:

htt p:// bossa. pl / not owani a/ daneat ech/ net ast ock/
We used the following four methods to compute the local variande; of.

1. Our Haar-Fisz method of Section 6, based on the Haar periodogram, witblth
lowing parametersM = 10, S = 10, step 3 applied non-TI level-dependent hard
universal thresholding using Daubechies’ Least Asymmetric waveletwidimishing
moments. PR= 7.

2. Our Haar-Fisz method of Section 6, based on the Haar periodogranthevifbllow-
ing parametersiM = 10, S = 10, step 3 used the S-Plus spline smoothing routine
smoot h. spl i ne with default parameters.

3. A modification of our Haar-Fisz method: instead of the sequences of élelet
periodogram ofD, r, the input to the Haar-Fisz algorithm w&E’T. We took the
smoothed version 0D?,. to be an estimate of the local variance. The parameters
of the Haar-Fisz algorithm werelM = 10, S = 10, step 3 used the S-Plus spline
smoothing routinsnoot h. spl i ne with default parameters.
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Figure 5: Solid lines: estimates of the local variancesifor 1024 in the TMWN model
(top row), and the TVAR model (bottom row), using the method of Nastai. (2000) (left
column) and the Haar-Fisz algorithm (right column) as described in the tate tNat the
vertical scales in the two bottom plots are different. Short-dashed lineslotral variances.
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Figure 6: Solid line: difference between logged MISE for Nasbal. (2000) and for our
Haar-Fisz algorithm (x-axis shows negative scalg. Positive value means our algorithm
does better. Left column: results for TVAR, right column: results for TMWop row:
T = 256, bottom row:T" = 1024. Short-dashed line: zero.
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Figure 7: Top plot: log-returns on daily closing values of the Dow Jongssimial Average.
1024 observations; the last one corresponds to 10/11 May 2001. Balibtnfour estimates
of the local variance oD, r on a log scale. Solid line: method 1. Dashed line: method 2.
Long-dashed line: method 3. Short-dashed line: method 4. See texttloefaescription.
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4. The method of Nasoet al. (2000) with the following parameters: Tl level-dependent
universal hard thresholding using Daubechies’ Least Asymmetricleiavieh 4 van-
ishing moments, PR= 7. Thesnoot h. dev parameter in thewspec routine
(Nason (1998)) was set taar .

The results for PR 7 were less convincing. The bottom plot in Figure 7 shows all four
estimates plotted on a log scale. The two estimates based on spline smoothing show th
least variability, the estimate 4 is the most variable, and the estimate 1 — the secsind mo
variable. Moreover, 1 estimates the variance at a slightly higher level teathler three.

One interesting question which can be asked is whether oDpgtcan be modelled
as Gaussian. This can be examined, for example, by divifing by the square root of
the estimates of the local variance, and looking at the distribution of the edsidtigure 8
shows theggnor mplot of the empirical quantiles of the residuals against the quantiles of
the standard normal, for the four methods described above. The sgpmlsservation is
that all four plots consistently indicate that the upper tail is slightly platykurtiowétser,
there is no consistency in the assessment of the behaviour of the loweresa|: Ghplots
indicate platykurtosis, but the result of method 3 suggests slight leptolgairtos

However, thep-values of the Kolmogorov-Smirnov test (returned by the S-Plus rou-
tine ks. gof ) are large for each of the 4 sequences of residuals. In this sensa litec
concluded that the departure bf 7 from Gaussianity is insignificant.

This is in stark contrast to stationary nonlinear modelling (e.g. (G)ARCH artfatstic
\olatility), where, typically, the marginal distribution of financial log-returmsnodelled as
heavily leptokurtic.

8 Conclusions and further work

In this paper, we have introduced a Haar-Fisz variance-stabilizingoram$or the wavelet
periodogram (WP) of a Gaussian LSW process. The transform,rpetbin the wavelet
domain by dividing the Haar detail coefficients of the WP by the correspgremooth
coefficients (an instance of the so-called Fisz transform), brings thédistn of the WP
closer to normality, as well as stabilizing its variance. This makes the WP moreataen
to standard denoising techniques which require stationary Gaussian fibtisecomputa-
tional complexity of the Haar-Fisz transform is linear in the number of dataqoirhich
is required to be a power of two.

In order to analyse theoretical properties of the Haar-Fisz transfoencéntain asymp-
totic setting, we have formulated and proved a functional central limit the@FgDhT)
for the centred WP. Next, we have applied our FCLT to demonstrate thesi@aizing,
variance-stabilizing and decorrelating properties of the Haar-Fiszforamsn the case
where the length of the output vector remains constant as the length of tieviegtor
goes to infinity.

Exact asymptotic Gaussianity does not hold if the length of the output vettbeo
Haar-Fisz transform matches the length of the input vector (which is the imresting
case in practice). However, we have provided some numerical evidleatthe limiting
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Figure 8: Empirical quantiles of the residualsiof r against the quantiles of the standard
normal. Top left: method 1. Top right: method 2. Bottom left: method 3. Bottom right:
method 4. See text for further description.
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distribution is still not far from Gaussian, and that its variance is well stabliliExtensive
simulations have shown that even in this case, the Haar-Fisz transforar imare effective
Gaussianizer than the usual log transform.

Next, we have considered a smoothing algorithm for the WP, based on treHi$a
transform. Theory has shown that the new algorithm is computationally fassiaulation
— that its MISE performance is better than that of the existing competitor.

Finally, several variants of the algorithm have been used to compute tHevdoizance
of the time series of daily log returns on the Dow Jones index. All of themistamdly
demonstrated that the series can be modelled as Gaussian.

Further work. An interesting avenue for future work would be to explore the possi-
bility and utility of using the Haar-Fisz methodology for smoothing of the clasgiest
odogram from stationary time series theory. Of course, it remains to hengesther such a
method could compete with the wide variety of excellent existing techniquesx&mnple,
Waldenet al. (1998).

Another idea, suggested by a referee, would be whether other rarssfould be used
instead of the Haar wavelet transform within the Haar-Fisz algorithm.

It would also be interesting to show consistency for the more generad,aaskjust a
Haar wavelet transform and a linear smoother as we have shown.

Free software and documentation to carry out the analyses can begbund

http://ww. nma.ic.ac. uk/ ~pzf/wavper/wavper. ht ni
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A Proofs

For this section we again refer the reader to Davidson (1994) for furticlnical back-
ground.

We first recall the definition of..-Near Epoch Dependencé4-NED). For a random
variableX define|| X/, = (E|X|")"/".

Definition A.1 For a stochastic array{{V;r}_. }72,, possibly vector-valued, on a
probability spaceg(2, G, P), let gfj;';j = 0(Viems - -, Vigm,7). If @an integrable array
{Xer}2_ oo}, satisfies

1 Xer — E(Xe 7

G DIz < hervim,

wherev,,, — 0 asm — oo, and{h;r} is an array of positive constants, it is said to
be L,-NED on {V; r} with constants{h;r}. Further, if there existss > 0 such that
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U = O(m?~%), then{{X; r}3°_ . }5%_, is said to beL,-NED of size\ on {V, 7}.

LemmaA.l DefineZt(f% andbr as in (16) and (19). Defing, ,, = ({-1, - - gy e)-
If there exists ’

1/2
€ > 0 such that (Z Z \pf’j(l) Z) — O(mﬂ/ms)?

i<0 [>m-+1

then Zt(fT)/bT is Lo-NED of size—1/2 on {{, .}. If in additiond;r)/T € I, then the
NED constants can be set1gbr.

Proof. It suffices to examine thé,-Near Epoch Dependence fﬁij). Define

t+m _
= o€ e )

Recall the definition oft(f% and X; r from (6) and (2). We have
29 -BZerr ) = 18 -EaRIen )

—J(T) 2

= | D) wina Wit — k)éin

i=—1 k

(T 2

)
- Z Z wi k7 Vi (t — k)i k

i=—1 |k—t|<m

—J(T)
- Z Z W W7 (t — k)

i=—1 |[k—t|>m
= Y-V - K{ = (Y1 - Y2)(V1 +Y2) - K7,

whereY;? are random andk; is deterministic. Note that; — Y> andY; + Y, are Gaussian
and thafE(Y; — Y2)? = E((Y; — Y2)(Y1 + Y2)) = K3. Simple algebra yields

E (Y1 — Ya2) (Y1 + Vo) — K12)2 = 2KIR(Y? + YY) < AKIEYE.

Noting that

=
[l V]
IA

Sy X ]
2 <1+$) > N wws

i=—11>m+1

5 ——q i}
(1 + %) 3 S eS8,

i=—1 1

EY;

IN
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and recalling thaf ;7 /T € ., the assertion of the Lemma follows witf}, := 4K7EY??
andh?, = b;°, see Deflnltlon Al O

LemmaA.2 If

sup Z] clz, 7)) < o0 (26)
z€[0,1]
there existsD such thatS;2=* < D forall 1, (27)
then for fixedj
b3 ' & i
T — 2 ; Tz_:oo zi:Si(Z)A” dz
asT — oc.

Proof. All summationsy, mean) . *°,. Using Gaussianity, we have

T-1T-1-t [—J(T) 2
b?r = QZ Z (Z szkt i ( )‘I’i,j(t‘FTk’))
t=0 7=—t 1=—1
T-1T—-1—t [—J(T
C;+ Li(t — k
(s () o))
t=0 7=—t i=—1
2
X \I/i7j(t—k)\lfi7j(t+7'—k)>
T—1T—1—t . 2
= 2> > (ZSZ- (T) A;j> + Rest,
t=0 7=—t i
where
T-1T-1-t [(—J(T)
Resty = 2% 3 (z Zo<C+L ’“>>\pi,j<t_k>\pi,j<t+7_k>
t=0 7=—1 i=—1 k

o N
i=—J(T)—1

(Esls () ro(5m)

X Wit — k)Wt + T — k) + _Z S; (%) A;j>. (28)

i=—J(T)—1
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Let us first show two simple auxiliary results.
1. Summability of constants; and L;. We use the properties of from Fryzlewicz
et al. (2003) Lemma 8.

STCi+ L2 +27) Ay = D (Ci+ L2227 Ay

)

i

+ ZL1'2_j2i2_iAi,j
< 2*jZC-+L~2 Z2Alk
+ 2JZL2 22’24,”

= 02" J). (29)

2. Summability of covariance of wavelet coefficients.
3 -y Z Wi ()W, (n + 7)
= > D elz,n)¥(n+7)

Y lelzm)| Y [W5(n+7)|
K279 " Je(z,n))|

= 0(27Y), (30)

IN

IN

by assumption (26) wherE is a constant. By formula (29) and assumption (27), we have

—00

Li(
max Z ZO(C + k)>\1;i’j(t—k:)\lli7j(t+7'—k)— Z S; <T) Al <
i=—1 =—J(T)-1

o~ )Irtl%_XZCi + K3L;i(27" +277) zk: |Wi(t — k)W 5(t+7— k)| +

+maxz Z Si|,(k)| <
k i=—J(T)-1
O(T ™)) (Ci+ KsLi(27 +279)) A + 027771 =0(27/T7"),  (31)

%

whereK3s is a constant.
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Using first (31), and then (30) and (29), we bound (28) as follows

T-1T—-1—t
t Ci+ Li(t — k)
Restr < 027777} Z Z Z{ (T)+O(—T )}
t=0 7=—1 ik
X \I/i’j(t—k)q/id(t-i-T—/{)
T—1T—-1—t
< 0T Y ¥ ISs ()AL
t=0 7=—1 %
T-1T—-1—t
+ 07T )Y D D (Cit+ L2+ 279)) Ay
t=0 7=—t ¢
= 0@27¥)+0(27%),
which yields the result. O

Proof of Theorem 4.1.We apply Theorem 29.14 from Davidson (1994), with

Ur = Z%/br (32)
Ct,T = 1/bT (33)
KT(Z) = \_ZTL (34)

where the LHS’s of (32) — (34) use the notation from Davidson (1984dJ, the RHS’s of
these formulae use the notation from the article. We now check conditiors (§)from
Davidson (1994).

(@) Clearly,E Zt(jT) =0.

(b) For Gaussian LSW processes, we havg, 1 || Z, J)||T < ooforr > 2.
(c) Satisfied by Lemma A.1 a&_nT} independent.

(d) Satisfied by Lemma A.2 as

[(z4w)T]-1 1
. t=|2T] b2, .
lim sup = limsup -
T—o00 w T—oo UYUp

(e) We clearly havel /by = O(TV/?~1) = O(T~1/2).

() Again by Lemma A.2, we have
ER}(2) = —57 = n(2).
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This completes the proof. O

Proof of Theorem 5.1. DenoteZ, = I; — EI; and3](z) = >_, Si(2) A7 ;. Note that
ﬁ?(z) = f3j(z). Consider a single Haar-Fisz summafid, form € {0,1,...,M — 1} and
n € {0,1,...,2™ — 1}. In what follows,v,, ,, are appropriate integers ang, ,, € {0, 1}.
We have

mon+1)T2=(m+1) _q mont2)T2—(m+1) _1
(Ym,n+1) [_Z(’Y,JF) I

(_1)am,nfm _ (_1)am,n t="ym,n T2~ (m+1) t t=(Ym,n+1)T2—(m+1)
S “mA1)_
z(vm,nw)Tz e
t="m, nTg—(mH) t
(Ymn A T2 =1 PO (Ymn+2)T2-(m 4D 1
= (_1)amm t:77n,nT2_(m+l) =(Ym,n+1)T2~ (m+1)
(ymn+2)T2~ ("D —1 (Yot 2) T2~ 0D -1
Zt:%"’"n_(mﬂ) Zit 2 tmm TG Bt
(Ymn+1)T27 ("D -1 (vm n42)T2- M+ 1
am,n t:'Ym,nT2_(m+1) EIt Z ’Ym nt+1)T2- (m+1) EI
+ (_1) ’ —(m+1) _ (m+1)_
Z(Wm,n+2)T2 Y7, + > (Ym.n+2)T2~ [
t:fymynTQ—(m+l) t="m,n T2~ (m+1) t
m m
= Y, +u,

m=0

Cramér’s theorem (Davidson (1994), Theorem 22.14), we have

Note that{FMI} = S M- (—1)amnfm = SSMZtym 4y By Theorem 4.1 and

(Ym,n+1)T2~ (m+1) _ _ (’Ym,n+2)T2’<m+1)—1
Zt Ymn T2~ (D) Zt Et:(vm,nﬂ)Tz—(mH) Z

\/Tyzl =
br

brVT

(Ym,n+2)T2~(m+1) —1 (Y +2)T2-(m+D_1
thvm,nT?‘(m“) Zi +Zt =Ym,n T2~ (m+1) Bl

X (—1)omn

2 By +2)27) = 2By (Ymn + 127 + By (2 ™)}
1/2
( 1)amn21/2( ® fO ﬁT ZdZ)

m,n+2)27mHL
JOm T2 By (2)d

asT — oco. Denote the distributional limit by, SetY, = S"M-tym andy,M =

1/2
SM- g, Denote further ;) = 242 (3 ( 2 fo (67 (2 de) 2 . We have

VIYM Dy
o S (e Balliman +20270) = 2By + D2) + B
N

m, +2 9—m+1 I

asT — oo. Itis immediate thaEY;” = 0. We now look at the variance-covariance matrix
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of YM, We have
Var(YnM) =

2—(m+1 -1

A/[Z:l 77 7m n+ 2)2 (m+1)) 77( + 2 Z A/[Z:l Oém,n+06m/7n «

. +2 2 (m+41)
o (JOm gy(edz) DS

—20(pmn N Vm',nT(m/“)) + 40 (pmn A (Yo + 1)27 D)
('Ym,n+2)2_(m+l) ’Ym/ nt2)2- (m/+1)
‘]:Ym,n2_(m+1) d f L2 (m/+1) j(z)dz
=20(pmn N (Yo +2)27 (m’ +1)) + 77('Ym’ n2” (m/+1)) —20((Ymr i + 1)27(ml+1))
7+1)

Bj(z)dz

_|_

+
('Vm n+2 2 (m+1) d ’ym/ n+2 2 (m
f n2~ (m+1) f 2 (m/+1)

n((fym, n+ 2)27(m/+1))

- m/+1)
(7m,7z+2)2 (m+1) (7m’ n+2)2 (m/+
f’ym,nQ_(m"'l) d f 2 (m/+1) j(Z)dZ

wherep,, n = (Ymn + 1)2—(m+1).
Diagonal contribution Let us first consider the diagonal contributionMar(Y,). We
have

(Ym,n+2)2~(m+D) ar
Q) (Y + 2)270HD) — 2Dy Xt ) e (B7(2))%dz
2 ‘m,n+2 2—(m+1) 2 - - nb2)2- (m+1) 9 .
(S22 Bi(2)d) (fOma 22" 5y(2)de)
(35)

By Cauchy inequality and the extended mean-value theorem, we have

(Ym,n+2)27 (mFD) 2 (Ym,n+2)2=(m+D)
/ Bj(Z)dZ < 2—m/ (ﬁj(Z))2dz _
K vy

m,n2~ (M+1) m,n 2~ (M+1)

(Ym,n+2)2~(m+D

i [t L mammey (Bi(2))d2
2 / - Z(ﬁ] (2))7dz (Ym.n+2)2— (m+1)
Ym,n 2 (HD) T N, 2 (8] (2))?dz

7m,n27(nl+1)

('7m,n+2)27(m+1) ﬁ 2
2—m/7 z(ﬁj(z))de ( ](w))

2 (D) > (BT (W)
wherew € [V 12~ (4, + 2)270mFD]. This, combined with (35), gives
—(m+1)\ _ —(m+1)

we[uuW b (Fom22 ™ gi(yaz)
TYm,n (m
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To obtain the upper bound, note that there existsvs € [V, 2~ ™+, (4, ,+2)2 (M +1)]
such that

i (’Ym,n+2)2_(m+1)
3 / (67 (2)2dz <

’Ym,n27<m+l)

T=—00
—m [(Ymnt+2)27(m+D)
. (Ym,n+2)2~ (D) 29 7:1 2+(Wz+1) (Bj(2))%d= ZT(BJT(W)F
2 o (m+1) j(2)dz (Yrmn+2)2-(m+ 1) 2 ton (B)E
e (‘['7m n2” (m+1) ﬁJ(Z)dZ) ? ’ ’

(o, n+2)27(m+D ? 5. T(w))?
o ( [ : 5(2) dz) Bitwr) (o TG ()
v

=
2= (A D) Bj(w2) wep,)  (Biw))? —

(hm,n +2)27 (74D Y2 supen 18)(W)] > (57 ()2
om (2)d 1 stk ) =T
(/7 —(m+1) 9i(2) Z) ( * inf,,eq0,1 B5(w) ) Sl[lopl} (Bj(w))?

whereﬁ; is the one-sided derivative ¢f;. The above, combined with (35), yields

m,n2

2, (Y + 2)27 07D — n(vm,nT‘m“))
(SOt 227 g (2)dz)
SLBT@)? 2supepn 3@ S (BT(W)?
2m+1 J 5 J J
o T B Tilqon 5@) ety (Bi(@)2
(87 (w)?
2m+1
welo1] )7

IN

+0(1). (37)

Off-diagonal contribution.Two cases are possible: eithgf, , > (v n + 2)2*(7"'“) or
P < Ymr.n 2”1 In either of the two cases, we have

‘—27} (pmn N Ym/m2™ (m/ +1)> + 4n (Pm,n A (Yt + 1)2—(m’+1)> +
—2n (Pm,n A (Ym? o + 2)2_("/“)) +7 <7m,7n2—(m’+1)) —2n ((’Ym',n + 1)2—(m’+1)> 4
(220 =y ) < ()

0 (e +2)27 )| <272 sup | (w),
we[0,1]

where the last inequality follows by the mean-value theoremvénidenotes the one-sided
derivative ofy’. Using the above, and, again, the mean-value theorem, we bound the off-
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diagonal contribution by

902 Mz_l 1 N o—(m'+1) 2-m SUPye(0,1] " (w)] <
(1) ( m,n+2)2_(m+1) ( ! n+2)2—(m/+1) =
m=0 f'yl,nT(m“) Bi(#)d2 my=m-1 f%:/ 7;2*<m’+1) Bj(2)d=
262, sup,, | M- M-1 /
= f S |77 Z +2)2—(m+1) Z 270D <
n wel0,1] ﬁ] Vm; (m+1) ﬁ'(z)dz m/=m+1
2¢f)) SUP,efo,1) |77 )| Mz:l 9~ (m+1) -
m,n (m+1) -
infoep) Bjlw) 4= fvl n;ﬁﬁn B;(z)dz
cfy) Sup " (w)]
(1) wel0,1] > M — O(M) (38)
lnfwe[(),l] (ﬁj(w))
Putting together (36), (37) and (38), we finally arrive at
T(w 2 ~ T(w 2
(2M* —2) inf 2B W) g) —O(M) < Var(Y,M) < (2M*H —2) sup 2G5 (W) ;) +O(M).
welo]  (B(w)) wel0,1] (Bj(w))
(39)
Let us now conside€ov(Y,, Y;M) for ny # ny. Let M' = #{m : 7 = g™ }. Letus
first look at the cas@/’ > 0. It is straightforward to show that
COV(YnJ\I/[ , Yn]‘f ) =
M'—1 M'—1 M-1
v(Z o + Ty + Z 7 Z Uy =0+ D y’“) =
m=0 m=M'+1 m=M'+1

M'—1 M'—1 M-1
- ~M! - -m
(z)v<)(z( > e Y )
= m=0 m=M'+1 m=M'+1
M-—1
~“/\/[/ ~ -
m=M'+1 m=M’'+1

The expectation can be shown to &€\ ) using the same methodology as for bound-

ing the off-diagonal component afar(Y;*). We will now show thatVar(Z% 51 Unv) —

Var(@%l) = O(M). We first quote two simple facts: lgtbe a continuous function with a
bounded one-sided derivative ojér1] and letc, d] C [a,b] C [0,1]. We have

/abg(z)dz - Z:Z /cdg(z)dz
([ o) - (22 ([ o)
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For simplicity, denote: = n;. Using again the same method as for bounding the off-
diagonal component of the variance, we obtain

+2)2— (m+1)
M1 M1 Z'rf—oof’ym; (m+1) (ﬁT(Z))2dZ

Var( Z gn') — Var(y ) M)+ 2 Z ! 5 —

m, n+2 2 (m+1)
=0 ([ y(2)dz)

(v /’n+2)2—(M/+1)
2 Zi’;foo mfnr(M’H) (ﬁ}(z))de

2
(Yarr nH2)2-M'+D)
(f’YM/ n;*(M/+1> ﬁj (Z)dz

=0(M)+2x

M1 50 (Yt 2)2” ("D g Vyo [t +2)2- (M)
el S N e R L R S

o (ﬁT(z))de
., (M +1) ]
Z Tt

mon+2)2— (m+1) 2 a / ~(M'+1) 2
m=0 (f"fl,7z27(72+1) ﬁj(z)dz) M =m (th RN ﬂj(z)dz)

Yn! n27<M/+1)

+

/ (vpg7 +2)2 (M'+1)
2 M+1 27—7 [ele] ,YNA,I 2— (A{/+1) (ﬂ;(z))QdZ

’ 2
(Vagr p+2)2-MHD
(f’YM/ L2 (M +1) /6j<2)dz
Consider a single component of the sum owerit is a difference of two ratios which we

denote here by — 17 to shorten the notation. We ha\le— 11| < |I — I11|+ |III — 11|,
where

" (Vg7 p2)2~ D)
M'-m§0 o ’7 1) (ﬁ;(z)pdz

111 = ( - 5
mn+2 m
(f%z p 2 (mt1) 5]’(2)612)

Using (40), we get

/ /
272 sup, e | (2,87 @)?) | supuep (S (87 (@))?)
I—-111< .
| < (Ym,n+2)2~ (m+D) 2T (inf Bi(w))?
(fvm,n%(mH) ﬁj(z)dz) el
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On the other hand, using (41) we have
|11 —1I|=

2
(Yagr 22T+ 2(m—M' (Ym,n+2)27 (mFD) 2
,n (2 dZ _ 2 (m ) ( 'm,n (2 dz)
2M/_m <f'YM/,n2(1W/+1) ﬁ]( ) f'Ym,nQ_(m+1) B_]( )

X
mn42)2- (D) 2
([ 200 By(e)dz)
o0 (’Y /7L+2)2_(A1,+1> T
Z’T:—OO ’YM]Y 727(M’+1) (ﬁ] (Z))de
»n <
2 i
(g +2)2-01+D)
(f,YMI:I o—(M'+1) ﬁj(z)dz>
M5 (Y #2027 Do
N o (B qup 4 ((8;(0)))
(Vagr pH2)2- MY d ? (infwe[o,l]ﬁj(w))2 ,
Yagr 2~ L +D) ](Z) z
which is bounded by (39). This proves the assertlonma(zm 61 Unt) — Var(g]%/) =
O(M). SettingVM = "M~ 1 completes the proof of the theorem. O

References

Barber, S., & Nason, G.P. 2004. Real nonparametric regressionamimglex waveletsJ.
Roy. Statist. Soc.,iB6, (to appear).

Battaglia, F. 1979. Some extensions in the evolutionary spectral analyaistothastic
processBoll. Un. Mat. Ital. B (5) 16, 1154—-1166.

Calvet, L., & Fisher, A. 2001. Forecasting multifractal volatility. Econometrics105
27-58.

Chiann, C., & Morettin, P. 1999. A wavelet analysis for time sefdeblonparametr. Statist.
10, 1-46.

Coifman, R. R., & Donoho, D. L. 1995. Translation-invariant de-noisirigect. Notes
Statist, 103 125-150.

Dahlhaus, R. 1996. On the Kullback-Leibler information divergence cdillg stationary
processesStoch. Proc. Appl62, 139-168.

Daubechies, I. 1992Ten Lectures on WaveletBhiladelphia, Pa.: SIAM.
Davidson, J. 1994Stochastic Limit TheoryOxford University Press.
Donoho, D. L., & Johnstone, I. M. 1995. Adapting to unknown smoothns wavelet

shrinkage.J. Amer. Statist. Assq&0, 1200-1224.

36



Fisz, M. 1955. The limiting distribution of a function of two independent randariables
and its statistical applicatiorColloquium Mathematicun®, 138—-146.

Fryzlewicz, P. 2002. Modelling and forecasting financial log-retuseally stationary
wavelet processesTechnical Report 02:14, Department of Mathematics, University of
Bristol.

Fryzlewicz, P., & Nason, G. P. 2004. A Haar-Fisz algorithm for Poisstamsity estimation.
J. Comput. Graph. Statl3, 621-638.

Fryzlewicz, P., Bellegem, S. Van, & von Sachs, R. 2003. Forecastingstationary time
series by wavelet process modellirdnn. Inst. Statist. Math55, 737-764.

Johnstone, |. M., & Silverman, B. W. 1997. Wavelet threshold estimatorddta with
correlated noisel. Roy. Statist. Soc. Ser, B9, 319-351.

Johnstone, I. M., & Silverman, B. W. 2003. Empirical Bayes selection eBledthresholds.
Submitted

Kim, W. 1998. Econometric analysis of locally stationary time series modédsuscript,
Yale University

Mallat, S. 1989. A theory for multiresolution signal decomposition: the wavelatesen-
tation. IEEE Trans. Pattn Anal. Mach. Intelll1, 674—693.

Mallat, S., Papanicolaou, G., & Zhang, Z. 1998. Adaptive covarianiason of locally
stationary processesnn. Stat.26, 1-47.

Mélard, G., & Herteleer-De Schutter, A. 1989. Contributions to evolutipsaectral the-
ory. J. Time Ser. Anal10, 41-63.

Nason, G. P. 1998. WaveThresh3  Software Available from
http://ww. stats. bris.ac. uk/ ~wavet hresh/.

Nason, G. P., & Silverman, B. W. 1995. The stationary wavelet transémnsome statis-
tical applicationsLect. Notes Statist103 281-300.

Nason, G. P., von Sachs, R., & Kroisandt, G. 2000. Wavelet prosesgkadaptive estima-
tion of the evolutionary wavelet spectrumh. Roy. Statist. Soc.,B2, 271-292.

Neumann, M.H., & von Sachs, R. 1995. Wavelet thresholding: beyonéthessian iid
situation.Lect. Notes Statist103 301-329.

Ombao, H., Raz, J., von Sachs, R., & Guo, W. 2002. The SLEX model ohastationary
random processAnn. Inst. Statist. Mattb4, 171-200.

Opsomer, J.D., Wang, Y., & Yang, Y. 2001. Nonparametric regression euitrelated
errors.Stat. Sci.16, 134-153.

37



Priestley, M. 1965. Evolutionary spectra and non-stationary prosedsloy. Statist. Soc.
B, 27, 204-237.

Priestley, M. B. 1981 Spectral Analysis and Time Serigscademic Press.

Sakiyama, K. 2002. Some statistical applications for locally stationary pes&ki. Math.
Jpn, 56, 231-250.

Swift, R. 2000. The evolutionary spectra of a harmonizable procks&ppl. Statist. Sci.
9, 265-275.

Vidakovic, B. 1999.Statistical Modeling by Waveletdlew York: Wiley.

von Sachs, R., & MacGibbon, B. 2000. Non-parametric curve estimatiovalglet thresh-
olding with locally stationary errorsScand. J. Statist27, 475-499.

Walden, A.T., Percival, D.B., & McCoy, E.J. 1998. Spectrum estimation byeleathresh-
olding of multitaper estimatordEEE Trans. Sig. Pro¢46, 3153-3165.

38



	Cover-Smoothing the wavelet periodogram using the Haar-Fisz transform.doc
	Smoothing the wavelet periodogram using the Haar-Fisz transform (authors final).pdf

