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Abstract

A copula based measure of local correlation is
developed for two random variables X and Y .
The measure is originally motivated through
the limiting process of a sequence of correla-
tions in shrinking local neighbourhoods around
(x, y). It is shown that this method is better
applied in ‘copula space’ to the transformed
variables FX(x), FY (y) in a sense of capturing
the independence case properly. Upon trans-
forming back via the inverse marginal CDFs,
we arrive at a novel measure of local correla-
tion. We illustrate its geometry for the bivari-
ate Gaussian case. Finally, a non-parametric
estimator is presented and its asymptotic dis-
tribution identified.

Motivation

Let f(x, y) be the joint probability density
function of X and Y .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

FIG. 1: Random sample from the attractor of the

IKEDA map. The data clearly displays a nega-

tive correlation over the conditioning window Aǫ.

Let Aǫ :=
h

x0 ± ǫ1
2

i

×
h

y0 ± ǫ2
2

i

be the rect-

angular neighboorhood of (x0, y0). It can be
shown that the first-order approximated cor-
relation over Aǫ equals:
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FIG. 2: First order approximation of a bivariate

Gaussian density through a plane in the neigh-

bourhood of f(x0, y0).

This motivates the definition of local correla-
tion as

Z0 = −
∆x0

∆y0

f2(x, y)
= −

∂ ln f(x, y)

∂x

∂ ln f(x, y)

∂y
.

(1)
The difficulty with this version is that inde-
pendence of X and Y not necessarily implies
Z0 = 0.

The copula-based version

Let U = FX(X) and V = FY (Y ). The copula
density of (U, V ) is

fU,V (u, v) = (fX(x)fY (y))−1f(x, y).

Computing the local correlation as defined in
(1) for fU,V (u, v) and transforming back yields
the quantity central to this poster:

Z1 := −
∂

∂x

`

ln f(y|x)
´ ∂

∂y

`

ln f(x|y)
´

It is immediately clear that independence of X

and Y forces Z1 = 0 for all (x, y).

Gaussian geometry

Assume (X, Y ) has the bivariate Gaussian den-
sity with zero mean, variances σ2

1 , σ2
2 and cor-

relation coefficient ρ. Then the local correla-
tion is given by

Z1(x, y) =
(ρxσ2 − yσ1)(xσ2 − ρyσ1)ρ2

σ3
1σ3

2(1 − ρ2)2
.

The geometry of Z1 is intuitively satisfactory
as explained through Figure 3.
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FIG. 3: Z1 = 0 on the two straight lines ρσ2x′
−

σ1y′ = 0, σ2x′
− ρσ1y′ = 0, which cross each

other at the origin. These lines cross the ellip-
tical contours of the density where the contours
are vertical or horizontal. Between these lines Z1

is positive or negative according to whether the
contours of the density f(x, y) have positive or
negative slope.

A non-paramatric estimator

By definition, Z1 is composed of the con-
ditional densities f(y|x), f(x|y) and their
derivatives with respect to the condi-
tioning variable. Fan et al. [1996] show
ingeniously how to estimate a conditional
density f(y|x) and its derivatives through
a weighted regression of K(Y − y) on
polynomials in X − x, where K is a kernel
function. Consider the Taylor expansion:
E{KhY

(Y − y)|X = x} =

fY |X(y|x) +
1

2
µ2

∂2

∂y2
fY |X(y|x) + o(h2

Y ).

where µ2 :=
R

z2K(z)dz.

From this it follows that E{KhY
(Y − y)|X =

x} → f(y|x) as hY → 0, which makes it suit-
able as a regression target. A Taylor-expansion
of fY |X(y|X) about x yields:

fY |X(y|X) ≃

p
X

j=0

f
(j)
Y |X

(y|x)

j!
(X − x)j (2)

which shows that the target is linear in the
polynomials of (X − x) which permits estima-
tion through weighted least squares (WLS).

With β̂ as the WLS-estimator, β0 estimates
f(y|x) and βj the j-th derivative.
Since Z1 is composed of conditional densities,
we can adopt this approach and simultane-
ously estimate f(y|x) and f(x|y) and their

derivatives. Let Ẑ1 be the so obtained esti-
mator:

Ẑ1 :=
β̂1

β̂0

γ̂1

γ̂0
, (3)

where γ is the WLS-estimator for the reverse
regression of X on Y .

Asymptotic distribution

Asymptotic normality for Ẑ1 can be shown un-
der the same regularity assumptions imposed
by Fan et al. [1996] for the independent case.
The proof entails showing joint asymptotic
normality for (β̂, γ̂) and an application of the
‘delta-rule’ to establish weak convergence of a
continuous transformation of a weakly conver-
gent random variable. Important intermediate
observations include that the estimators of the
derivatives converge slower then estimators of
the densities themselves and hence dominate
the asymptotic behaviour and that the deriva-
tive estimators can be shown to be asymptot-
ically uncorrelated if the kernel functions are
symmetric.

Conclusion and further work

The local correlation measure Z1 has been de-
rived as the limiting correlation in a shrinking
neighbourhood for the copula density of two
random variables. Its appealing geometry was
shown for the bivariate Gaussian case. The
properties of Z1 for Non-Gaussian densities are
currently explored. We conjecture that they
are similar within the whole class of ellyptical
densities.
The non-parametric estimator Ẑ1 has been
shown to be asymptotically normally dis-
tributed. Rate of convergence and distribution
are yet to be verified numerically.
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