
 

 

Konstantinos Kalogeropoulos 
Inference for diffusion models using time 
change transformations 
 
Article (Accepted version) 
(Refereed) 

Original citation: 
Kalogeropoulos, Konstantinos and Roberts, Gareth O. and Dellaportas, Petros (2010) Inference 
for diffusion models using time change transformations. Annals of statistics, 38 (2). pp. 784-807. 
 
DOI: 10.1214/09-AOS702
 
© 2007 IMS
 
This version available at: http://eprints.lse.ac.uk/31421/
 
Available in LSE Research Online: January 2011 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final manuscript accepted version of the journal article, 
incorporating any revisions agreed during the peer review process.  Some differences between 
this version and the published version may remain.  You are advised to consult the publisher’s 
version if you wish to cite from it. 

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/09-AOS702
http://www.imstat.org/
http://eprints.lse.ac.uk/31421/


Inference for stochastic volatility models using time
change transformations

Konstantinos Kalogeropoulos, Gareth O. Roberts and Petros Dellaportas

Abstract

We address the problem of parameter estimation for diffusion driven stochastic volatility models
through Markov chain Monte Carlo (MCMC). To avoid degeneracy issues we introduce an innovative
reparametrisation defined through transformations that operate on the time scale of the diffusion. A
novel MCMC scheme which overcomes the inherent difficulties of time change transformations is also
presented. The algorithm is fast to implement and applies to models with stochastic volatility. The
methodology is tested through simulation based experiments and illustrated on data consisting of US
treasury bill rates.

1 Introduction

Diffusion processes provide natural models for continuous time phenomena. They are used extensively
in diverse areas such as finance, biology and physics. A diffusion process is defined through a stochastic
differential equation (SDE)

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dWt, 0 ≤ t ≤ T, (1)

where W is standard Brownian motion. The drift µ(.) and volatility σ(.) reflect the instantaneous mean
and standard deviation respectively. In this paper we assume the existence of a unique weak solution to (1),
which translates into some regularity conditions (locally Lipschitz with a linear growth bound) on µ(.) and
σ(.); see chapter 5 of Rogers and Williams (1994) for more details.

The task of inference for diffusion processes is particularly challenging and has received remarkable
attention in the recent literature; see Sørensen (2004) for an extensive review. The main difficulty is inherent
in the nature of diffusions which are infinite dimensional objects. However, only a finite number of points may
be observed and the marginal likelihood of these observations is generally unavailable in closed form. This has
stimulated the development of various non-likelihood approaches which use indirect inference (Gouriéroux
et al., 1993), estimating functions (Bibby and Sorensen, 1995), or the efficient method of moments (Gallant
and Tauchen, 1996); see also Gallant and Long (1997).

Most likelihood based methods approach the likelihood function through the transition density of (1).
Denote the observations by Yk, k = 0, . . . , n, and with tk their corresponding times. If the dimension of Yk
equals that of X (for each k) we can use the Markov property to write the likelihood, given the initial point
Y0, as:

L(Y, θ|Y0) =

n
∏

k=1

pk(Yk|Yk−1; θ,∆), ∆ = tk − tk−1 (2)

The transition densities pk(.) are not available in closed form but several approximations are available. They
may be analytical, see Aı̈t-Sahalia (2002), Aı̈t-Sahalia (2008), or simulation based, see Pedersen (1995),
Durham and Gallant (2002). They usually approximate the likelihood in a way so that the discretisation
error can become arbitrarily small, although the methodology developed in Beskos et al. (2006) succeeds
exact inference in the sense that it allows only for Monte Carlo error. A potential downside of these methods
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may be their dependence on the Markov property. In many interesting multidimensional diffusion models
the observation regime is different and some of their components are not observed at all.

A famous such example is provided by stochastic volatility models, used extensively to model financial
time series such as equity prices (Heston, 1993; Hull and White, 1987; Stein and Stein, 1991), or interest
rates (Andersen and Lund, 1998; Durham, 2002; Gallant and Tauchen, 1998). A stochastic volatility model
is usually represented by a 2-dimensional diffusion

(

dXt

dαt

)

=

(

µx(Xt, αt, θ)
µα(αt, θ)

)

dt+

(

σx(αt, θ) 0
0 σα(αt, θ)

) (

dBt
dWt

)

, (3)

where X denotes the observed equity (stock) log-price or the short term interest rate with volatility σx(.),
which is a function of a latent diffusion α. Note that the observed process X in (3) is not Markov; the
distribution of a future stock price depends (besides the current price) on the current volatility which in
turn depends on the entire price history. Nevertheless, since the 2-dimensional diffusion is Markov, state
space approaches are possible and may be implemented using sequential Monte Carlo techniques Pitt and
Shephard (1999), Fearnhead et al (2008). While such approaches allow for online estimation of the volatility,
various implications arise regarding inference for the diffusion parameters Liu and West (2001), Stroud et al
(2004).

An alternative approach to the problem adopts Bayesian inference utilising Markov chain Monte Carlo
(MCMC) methods. Adhering to the Bayesian framework, a prior p(θ) is first assigned on the parameter
vector θ. Then, given the observations Y , the posterior p(θ|Y ) can be explored through data augmentation
(Tanner and Wong, 1987), treating the unobserved paths of X (paths between observations) as missing data.
Note that the augmented diffusion satisfies the Markov property irrespectively of the observation regime.
Hence data augmentation approaches are more general.

Initial MCMC schemes following this programme were introduced by Jones (1999); see also Jones (2003),
Eraker (2001) and Elerian et al. (2001). However, as noted in the simulation based experiment of Elerian
et al. (2001) and established theoretically by Roberts and Stramer (2001), any such algorithm’s convergence
properties will degenerate as the number of imputed points increases. The problem may be overcome with
the reparametrisation of Roberts and Stramer (2001), and this scheme may be applied in all one-dimensional
and some multi-dimensional contexts. However this framework does not cover general multidimensional
diffusion models. Chib et al. (2007) and Kalogeropoulos (2007) offer appropriate reparametrisations but
only for a class of stochastic volatility models. Alternative reparametrisations were introduced in Golightly
and Wilkinson (2007); see also Golightly and Wilkinson (2006) for a sequential approach.

In this paper we introduce a novel reparametrisation that, unlike previous MCMC approaches, operates
on the time scale of the observed diffusion rather than its path. This facilitates the construction of irreducible
and efficient MCMC schemes, designed appropriately to accommodate the time change of the diffusion path.
Being a data augmentation procedure, our approach does note rely on the Markov property and can be
applied to a much larger class of diffusions than those considered in Aı̈t-Sahalia (2002) and Beskos et al.
(2006). Moreover it may be coupled with the approaches of Roberts and Stramer (2001) and Chib et al.
(2007) to handle more general models, that is almost every stochastic volatility model used in practice.
The paper is organized as follows: Section 2 elaborates on the need for a transformation of the diffusion
to avoid problematic MCMC algorithms. In Section 3 we introduce a class of transformations based on
changing the time scale of the diffusion process. Section 4 provides the details for the corresponding non-
trivial MCMC implementation. The proposed methodology of the paper is tested and illustrated through
numerical experiments in section 5, and on US treasury bill rates in section 6. Finally, section 7 concludes
and provides some relevant discussion.

2 The necessity of reparametrisation

A Bayesian data augmentation scheme bypasses a problematic sampling from the posterior π(θ|Y ) by in-
troducing a latent variable X that simplifies the likelihood L(Y ;X , θ). It usually involves the following two
steps:
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1. Simulate X conditional on Y and θ.

2. Simulate θ from the augmented conditional posterior which is

proportional to L(Y ;X , θ)π(θ).

It is not hard to adapt our problem to this setting. Y represents the observations of the price process
X . The latent variables X introduced to simplify the likelihood evaluations are discrete skeletons of diffu-
sion paths between observations or entirely unobserved diffusions. In other words, X is a fine partition of
multidimensional diffusion with drift µX(t,Xt, θ) and diffusion matrix

ΣX(t,Xt, θ) = σ(t,Xt, θ) × σ(t,Xt, θ)
′,

and the augmented dataset is Xiδ, i = 0, . . . , T/δ, where δ specifies the amount of augmentation. The
likelihood can be approximated via the Euler scheme

LE(Y ;X , θ) =

T/δ
∏

i=1

p(Xiδ|X(i−1)δ), Xiδ|X(i−1)δ ∼ N
(

X(i−1)δ + δµX (.), δΣX (.)
)

,

which is known to converge to the true likelihood L(Y ;X , θ) for small δ (Pedersen, 1995).
Another property of diffusion processes relates ΣX (.) to the quadratic variation process. Specifically we

know that

lim
δ→0

T/δ
∑

i=1

(

Xiδ −X(i−1)δ

) (

Xiδ −X(i−1)δ

)T
=

∫ T

0

ΣX (s,Xs, θ)ds a.s.

The solution of the equation above determines the diffusion matrix parameters. Hence, there exists
perfect correlation between these parameters and X as δ → 0. This has disastrous implications for the
mixing and convergence of the MCMC chain as it translates into reducibility for δ → 0. This issue was first
noted by Roberts and Stramer (2001) for scalar diffusions and also confirmed by the simulation experiment
of Elerian et al. (2001). In fact the convergence time is of O(1

δ ). This problem is not MCMC specific as it
turns out that the convergence of its deterministic analogue, EM algorithm, is also problematic when the
amount of information in the augmented data X strongly exceeds that of the observations. In our case X
contains an infinite amount of information for δ → 0.

The problem may be resolved if we apply a transformation so that the algorithm based on the trans-
formed diffusion is no longer reducible as δ → 0. Roberts and Stramer (2001) provide appropriate diffusion
transformations for scalar diffusions. In a multivariate context this requires a transformation to a diffusion
with unit volatility matrix; see for instance Kalogeropoulos et al. (2007). Aı̈t-Sahalia (2008) terms such
diffusions as reducible and proves the non-reducibility of stochastic volatility models that obey (3). The
transformations introduced in this paper follow a slightly different route and target the time scale of the
diffusion. Since the construction obeys the same principles of Roberts and Stramer (2001) the convergence
time of the algorithm is independent of augmentation level controlled by δ. Another appealing features of
such a reparametrisation is the generalisation to stochastic volatility models.

3 Time change transformations

For ease of illustration we first provide the time change transformation and the relevant likelihood function
for scalar diffusion models with constant volatility. Nevertheless, one of the main advantages of this technique
is the applicability to general stochastic volatility models.

3



3.1 Scalar diffusions

Consider a diffusion X defined through the following SDE:

dXt = µ(t,Xt, θ)dt+ σdWX
t , 0 < t < 1 σ > 0. (4)

Without loss of generality, we assume a pair of observations X0 = y0 and X1 = y1. For more data, note
that the same operations are possible for every pair of successive observations, and these pairs are linked
together through the Markov property. We introduce the latent ‘missing’ path of X for 0 ≤ t ≤ 1, denoted
by Xmis, so that X = (y0, X

mis, y1). In the spirit of Roberts and Stramer (2001), the goal is to write
the likelihood for θ, σ with respect to a parameter-free dominating measure. Using Girsanov’s theorem we
can get the Radon-Nikodym derivative between the law of the diffusion X, denoted by P

X , and that of the
driftless diffusion dMt = σdWX

t which represents Wiener measure and is denoted by W
X . We write

dPX(X)

dWX
= G(t,X, θ, σ) = exp

{
∫ 1

0

µ(t,Xt, θ)

σ2
dXt −

1

2

∫ 1

0

µ(t,Xt, θ)
2

σ2
dt

}

.

Consider the factorisation

W
X = W

X
y × Leb(y1) × f(y1|y0, σ

2), (5)

where y1 is a Gaussian random variable, y1|y0 ∼ N (y0, σ
2), and Leb(.) denotes Lebesgue measure. This

naturally factorises the measure of X as the Lebesgue density of y1 under the dominating measure, multiplied
by the conditional dominating measure W

X
y . We can now write

dPX(Xmis, y0, y1)

d
{

WX
y × Leb(y)

} = G(t,X, θ, σ)f(y1|y0, σ),

where clearly the dominating measure depends on σ since it contains W
X
y which represents a Brownian

bridge with volatility σ.
To remove this dependency on the parameter σ we consider the following time change transformation.

Let a new time scale be

s = η1(t, σ) =

∫ t

0

σ2dω = tσ2, (6)

and then define the new transformed diffusion U as

Us =

{

Xη−1
1 (s,σ), 0 ≤ s ≤ σ2,

Mη−1
1 (s,σ), s > σ2.

The definition for t > σ2 is needed to ensure that U is well defined for different values of σ2 > 0 which
is essential in the context of a MCMC algorithm. Using standard time change properties, see for example
Oksendal (2000), the SDE for U is

dUs =

{

1
σ2µ(s, Us, θ)dt+ dWU

s 0 ≤ s ≤ σ2,
dWU

s , s > σ2,

where WU is another Brownian motion at the time scale s. Applying Girsanov’s theorem again, the law
of U , denoted by P

U , is given through its Radon-Nikodym derivative with respect to the law W
U of the

Brownian motion WU at the time scale s:

dPU (Umis, y0, y1)

dWU
= G(s, U, θ, σ) = exp

{
∫ +∞

0

µ(s, Us, θ)

σ2
dUs −

1

2

∫ +∞

0

µ(s, Us, θ)
2

σ4
ds

}

= exp

{

∫ σ2

0

µ(s, Us, θ)

σ2
dUs −

1

2

∫ σ2

0

µ(s, Us, θ)
2

σ4
ds

}

. (7)
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By applying the factorisation of (5) on W
U at the new time scale s, the likelihood can be written as

dPU (Umis, y0, y1)

d
{

WU
y × Leb(y)

} = G(s, U, θ, σ)f(y1|y0, σ),

The dominating measure still depends on σ as it contains W
U
y which reflects a Brownian bridge with condi-

tioning event Uσ2 = y1. We therefore introduce a second transformation which applies to both the path and
the time scale of the diffusion process U . Consider a new time scale

u = η2(s, σ) =
s

σ2(σ2 − s)
, or s = η−1

2 (u, σ) =
uσ4

1 + uσ2
,

and define a new diffusion Z through

Us = (σ2 − s)Zη2(s,σ) +
(

1 −
s

σ2

)

y0 +
s

σ2
y1, 0 ≤ t < σ2. (8)

Note that this transformation is a bijection. In the case of y0 = y1 = 0 its inverse is given by

Zu =
1 + uσ2

σ2
Uη−1

2 (u,σ), 0 ≤ u < +∞.

Applying Ito’s formula and using time change properties we can also obtain the SDE of Z based on another
driving Brownian motion WZ operating at the time scale u:

dZu =
µ

(

t, σ2

1+uσ2 ν(Zu, σ), θ
)

+ ν(Zu, σ)σ2

1 + uσ2
dt+ dWZ

u , 0 ≤ u < +∞, (9)

where ν(Zu, σ) = Us. This operation essentially transforms to a diffusion that runs from 0 to +∞ preserving
the unit volatility. A third attempt to write the likelihood, now based on Z, again uses the Girsanov theorem
and the factorisation of (5) to condition the dominating measure on y1. This writes

dPZ(Z, y0, y1)

d
{

WZ
y × Leb(y)

} = G(u, Z, θ, σ)f(y1|y0, σ), (10)

where P
Z denotes the law of Z and W

Z
y reflects the law of the driftless diffusion Z conditioned on y1.

The integrals in G(Z, θ, σ) run up to +∞), however the expression is finite being a bijection of the Radon-
Nikodym derivative between P

U and W
U given by (7). Using the following lemma, we can prove that W

Z
y is

the law of the standard Brownian motion and hence the likelihood is written with respect to a dominating
measure that does not depend on any parameters.

Lemma 1: Let W be a standard Brownian motion in [0, +∞). Consider the process defined for 0 ≤ t ≤ T

Bt = (T − t)Wt/{T (T−t)} + (1 −
t

T
)y0 +

t

T
y1, 0 ≤ t < T

Then B is a Brownian bridge from y0 at time 0 to y1 at time T .

Proof. See (Rogers and Williams, 1994, IV.40.1) for the case y0 = 0, T = 1. The extension for general y0
and T is trivial.

Corollary 1: The process Z is standard Brownian motion under the dominating measure. In other words
W
Z
y is standard Wiener measure.

Proof. Note that W
U
y reflects a Brownian bridge from y0 at time 0 to y1 at time T and we obtained W

Z
y

by using the transformation of Lemma 1. Since this transformation is a bijection, U is a Brownian bridge
(under the dominating measure) if and only if Z is standard Brownian motion.
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The likelihood, given by (10), allows the construction of an irreducible MCMC scheme that alternates
between updating the parameters and the diffusion process Z. For the path updates we may use the fact
that

dPZy
dWZ

y

(Z|y0, y1) = G(t, Z, θ, σ)
f(y1|y0, σ)

fP (y1|y0, θ, σ)
∝ G(t, Z, θ, σ), (11)

where P
Z
y is the law of Z conditioned on y1 and fP (.) is the density of y1 under P

Z . Both P
Z
y and fP (.) are

generally unknown but their calculation may be avoided in a MCMC algorithm which essentially only uses
(10) and (11). Since these expressions only require the evaluation of f(.) and G(.), which are either known or
may be approximated using the augmented diffusion path, the task of Bayesian inference is feasible. Details
are presented in Section 4.

3.2 Stochastic volatility models

We will first demonstrate how the case of stochastic volatility models may be brought to a similar and
equivalent form to that of the previous section. Consider the general class of stochastic volatility models
with SDE given by (3) for 0 ≤ t ≤ t1. Without loss of generality, we may assume a pair of observations
(X0 = y0, X1 = y1) due to the Markov property of the 2-dimensional diffusion (X,α). The likelihood can
then be divided into two parts: The first contains the marginal likelihood of the diffusion α and the remaining
part corresponds to the diffusion X conditioned on the path of α

Pθ(X,α) = Pθ(α)Pθ(X |α).

Denote the marginal likelihood for α by Lα(α, θ). To overcome reducibility issues arising from the paths
of α one may use the reparametrisations of Chib et al. (2007) or Kalogeropoulos (2007). The relevant
transformations of the latter are

βt = h1(αt, θ),
∂h1(αt, θ)

∂αt
= {σα(αt, θ)}

−1 ,

γt = βt − β0, βt = h2(γt),

and the marginal likelihood for the transformed latent diffusion γ becomes

Lγ(γ, θ) =
dP

dW
(γ) = Gγ (t, γ, θ) . (12)

where W denotes Wiener measure. By letting αt = gθ,γt = h−1
1 (h2(γt), θ), the SDE of X conditional on γ

becomes:

dXt = µx(Xt, g
θ,γ
t , θ)dt+ σx(g

θ,γ
t , θ)dBt, 0 ≤ t ≤ 1.

Given the paths of the diffusion γt, the volatility function σx(g
θ,γ
t , θ) may be viewed as a deterministic

function of time and θ. The situation is similar to that of the previous section. We can now introduce a new
time scale

s = η(t, γ, θ) =

∫ t

0

σ2
x(g

θ,γ
ω , θ)dω.

Let T be the transformation of the ending time t1, T = η(t1, γ, θ). We can then define U on the new time
scale s as in (6):

Us =

{

Xη−1(s,γ,θ), 0 ≤ s ≤ T,
Mη−1(s,γ,θ), s > T.

(13)

The SDE for U now becomes

6



dUs =







µx

(

Us, g
θ,γ
η−1(s,γ,θ), θ

)

σ2
x(g

θ,γ
η−1(s,γ,θ), θ)







dt+ dWU
s , 0 ≤ s ≤ T.

We obtain the Radon Nikodym derivative between the distribution of U with respect to that of the Brownian
motion WU ,

dP

dWU
= G(s, U, γ, θ),

and introduce W
U
y as before. The density of y1 under W

U , denoted by f(y1|y0, γ, θ), is just

f(y1|y0, γ, θ) ≡ N(y0, T ).

The dominating measure W
U
y reflects a Brownian motion conditioned to equal y at a parameter depended

time T = η(t1, γ, θ). To remove this dependency we introduce another time scale

u = η2(s) =
s

T (T − s)
, or s = η−1

2 (u) =
uT 2

1 + uT
,

which defines a second time change similar to (8)

Ut = (T − s)Zs/{T (T−s)} + (1 −
s

T
)y0 +

s

T
y1, 0 ≤ s < T. (14)

Therefore, the SDE for Z is now given by

dZu =
T

1 + uT







µ
(

T
1+uT ν(Zu), γk(u,γ,θ), θ

)

σ2
x(γk(u,γ,θ), θ)

+ ν(Zu)







dt+ dWZ
u , 0 ≤ u <∞,

where k(u, γ, θ) denotes the initial time scale of X , t, and ν(Zu) = Us.
Conditional on γ, the likelihood can be written in a similar manner as in (10):

dP

d
{

WZ
y × Leb(y)

}(Z|y0, y1, γ) = G(u, Z, γ, θ)f(y1|y0, γ, θ) (15)

By using the exact same arguments of Section 3.1, we can show that W
Z
y reflects a standard Wiener measure

and therefore the dominating measure is independent of parameters. To obtain the full likelihood we need
to multiply the two parts given by (12) and (15).

3.3 Incorporating leverage effect

In the previous section we made the assumption that the increments of X and γ are independent, in other
words we assumed no leverage effect. This assumption can be relaxed in the following way: In the presence
of a leverage effect ρ, the SDE of X conditional on γ can be written as

dXt = µx(Xt, g
γ,θ
t , θ)dt+ ρσx(g

γ,θ
t , θ)dWt +

√

1 − ρ2σx(g
γ,θ
t , θ)dBt, 0 ≤ t ≤ t1,

where W is the driving Brownian motion of γ). Note that given γ, W can be regarded as a function of γ

and its parameters θ. Therefore, the term ρσx(g
γ,θ
t , θ)dWt can be viewed as a deterministic function of time,

and it can be treated as part of the drift of Xt. However, this operation introduces additional problems as
the assumptions ensuring a weakly unique solution to the SDE of X are violated. To avoid this issue we
introduce the infinitesimal transformation

Xt = H(Ht, ρ, γ, θ) = Ht +

∫ t

0

ρσx(g
γ,θ
ω , θ)dWω ,

7



which leads us to the following SDE for H :

dHt = µx

{

H(Xt, ρ, γ, θ), g
γ,θ
t , θ

}

dt+
√

1 − ρ2σx(g
γ,θ
t , θ)dBt, 0 ≤ t ≤ t1.

We can now proceed as before, defining U and Z based on the SDE of H in a similar manner as in (13) and
(14) respectively.

3.4 State dependent volatility

Consider the family of state dependent stochastic volatility models where conditional on γ, the SDE of X
may be written as:

dXt = µx(Xt, g
γ,θ
t , θ)dt+ σ1(g

γ,θ
t , θ)σ2(Xt, θ)dBt, 0 ≤ t ≤ t1.

This class contains among others, the models of Andersen and Lund (1998), Gallant and Tauchen (1998),
Durham (2002), Eraker (2001). In order to apply the time change transformations of section 3.2, we should
first transform X to Ẋt, through Ẋt = l(Xt, θ), so that it takes the form of (3). Such a transformation,
which may be viewed as the first transformation in Roberts and Stramer (2001), should satisfy the following
differential equation

∂l(Xt, θ)

∂Xt
=

1

σ2(Xt, θ)
.

The time change transformations for U and Z may then be defined on the basis of Ẋ that will now have
volatility σ1(g

γ,θ
t , θ). The transformation l(.) also applies to the observations ẏ0 = l(X0, θ) and ẏ1 = l(X1, θ)

which may now be functions of the parameters in σ2(.). These parameters enter the reparametrised likelihood
in two ways: through the density f(y1|γ, θ) which now should include the relevant Jacobian term, and through
the function ν(Zu) in the drift of Z which according to (14) would depend on the transformed endpoints.

3.5 Multivariate stochastic volatility models

We may use the techniques of section 3.3 to define time change transformations for multidimensional diffu-
sions. Consider a d−dimensional version of the SDE in (4) where σ now is a 2 × 2 matrix ([σ]ij = σij). As
noted in Kalogeropoulos et al. (2007), the mapping between σ and the volatility matrix σσT should be 1-1
in order to ensure identifiability of the σ parameters. A way to achieve this, is by allowing σ to be the lower
triangular matrix that produces the Cholesky decomposition of σσT . For d = 2, the SDE of such a diffusion
is given by

dX
{1}
t = µ(X

{1}
t , X

{2}
t , θ)dt+ σ11dBt,

dX
{2}
t = µ(X

{1}
t , X

{2}
t , θ)dt+ σ21dBt + σ22dWt.

The time change transformations for X{1} will be exactly as in section 3.1. For X{2} note that given
X{1} the term σ21dBt is now a deterministic function of time and may be treated as part of the drift. Thus,
we may proceed following the route of the section 3.3.

Similar transformations can be applied for diffusions that have, or may be transformed to have, volatility
functions independent of their paths. For example we may assume two correlated price processes with
correlation ρx:

[σ]11 = σ{1}
x (gγ,θt , θ),

[σ]21 = ρxσ
{2}
x (gγ,θt , θ),

[σ]22 =
√

1 − ρ2
xσ

{2}
x (gγ,θt , θ).

We may proceed in a similar manner for multivariate stochastic volatility models of general dimension d.
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4 MCMC implementation

The construction of an appropriate data augmentation algorithm involves several issues. We focus on describ-
ing how to update the latent diffusion paths and the parameters that drive the time change transformations.
The updates of the remaining parameters include standard MCMC steps and are thus omitted. The change
in the time scale introduces three interesting features: the presence of three time scales; the need to update
diffusion paths that run from 0 to +∞; and the fact that time scales depend on parameters. In this section
we present the details of a MCMC scheme that addresses the above. For ease of illustration, we start with
the simple case of a univariate diffusion with constant volatility

dXt = µ(t,Xt, θ)dt+ σdBXt , 0 ≤ t ≤ 1, X0 = y0, X1 = y1

and build up to the case of stochastic volatility models (3). Note that such extensions are not hard to
implement since the time change transformations need only be applied to the paths of the observed diffusion
process X . The updates of the transformed diffusion process γ, which drives the volatility, may be carried
out using an overlapping scheme as in Kalogeropoulos (2007).

4.1 Three time scales

We introduce m intermediate points of X at equidistant times between 0 and 1, to give X = {Xi/(m+1), i =
0, 1, . . . ,m + 1}. In addition, we make the assumption that m is large enough for accurate likelihood
approximations and any error induced by the time discretisation is negligible for the purposes of our analysis.
This assumption introduces no implications as the value of m may be set to an arbitrarily large value prior
to the analysis.

Given a value of the time scale parameter σ, we can get the U−time points by applying (6) to each one
of the existing points X , so that

Uσ2i/(m+1) = Xi/(m+1), i = 0, 1, . . . ,m+ 1.

Note that it is only the times that change, the values of the diffusion remain intact. In a stochastic volatility
model we would use the quantities

∫
i+1

m+1

i
m+1

σ2
x(.)ds

for each pair of consecutive imputed points.
The points of Z are multiplied by a time factor which corrects the deviations from unit volatility. The

times of the diffusion Z may be obtained by

tZi =
σ2i/(m+ 1)

σ2(σ2 − σ2i/(m+ 1))
, i = 0, 1, . . . ,m.

Clearly this does not apply to the last point which occurs at time +∞. The paths of X, or U, are thus
more convenient for likelihood evaluations as they only contain finite time points. They may be used instead
exploiting the fact that the relevant transformations are bijections. However, the component of the relevant
Gibbs sampling scheme should be the diffusion process Z.

4.2 Updating the paths of Z

The paths of Z may be updated using an independence sampler with the reference measure as a proposal.
Here W

Z
y reflects a Brownian motion at the Z−time scale u, which is fixed given the current values of

the time-scale parameters and the paths of γ in the case of stochastic volatility models. An appropriate
algorithm is given by the following steps.

• Step 1: Propose a Brownian motion on the Z−time, say Z∗. The value at the endpoint

(time +∞) is not needed.

9



• Step 2: Transform back to X∗, using (8).

• Step 3: Accept with probability: min
{

1, G(X∗,θ,σ)
G(X,θ,σ)

}

.

4.3 Updating time scale parameters

The updates of parameters that define the time scale, such as σ, are of particular interest. In almost all
cases, their conditional posterior density is not available in closed form, and Metropolis steps are inevitable.
However, every proposed value of these parameters will imply a different Z− time scale u. In other words,
for each potential proposed value for σ there exists a different set of Z− points needed for accurate approxi-
mations of the likelihood the Metropolis accept-reject probabilities. In theory, this would pose no issues had
we been able to store an infinitely thin partition of Z, but of course this is not possible.

We use retrospective sampling ideas; see Papaspiliopoulos and Roberts (2008) and Beskos and Roberts
(2005) for applications in different contexts. Under the assumption of a sufficiently fine partition of the
time scale of Z, all the non-recorded intermediate points contribute nothing to the likelihood and they are
irrelevant in that respect. The set of recorded points is sufficient for likelihood approximation purposes. In
other words, their distribution is given by the likelihood dominating measure W

Z
y which reflects a Brownian

motion. Hence, they can be drawn after the proposal of the candidate value of the time scale parameter. To
ensure compatibility with the recorded partition of Z, it suffices to condition on their neighboring points.
This is easily done using standard Brownian bridge properties: Suppose that we want to simulate the value
of Z at time tb which falls between the recorded values at times ta and tc, so that ta ≤ tb ≤ tc. Denote
by Zta and Ztc the corresponding Z values. Under the assumption that Z is distributed according to W

Z
y

between ta and tc we have that

Ztb | Zta , Ztc ∼ N

{

(tb − ta)Ztc + (tc − tb)Zta
tc − ta

,
(tb − ta)(tc − tb)

tc − ta

}

. (16)

We describe the algorithm for the case of more than two observations; denote by X0 = y0, Xt1 = y1,
. . .Xtn = yn. The time change transformations should be applied to each pair of successive observations,
thus giving n separate Z diffusion processes. As mentioned earlier, the diffusion processes X , or U are
bijections of this collection of Z diffusion processes and may be used instead in a MCMC scheme. Our
proposed algorithm for the σ−updates may be summarized through the following steps:

• Step 1: Propose a candidate value for σ, say σ∗.

• Step 2: Repeat for each pair of successive points:

– Use (6) and (8) to get the new times associated with it.

– Draw the values of Z retrospectively at the new times using (16).

– Transform back to X∗ (which corresponds to the time between the pair

of successive points), using (8).

• Step 3: Form the entire path X∗ by appropriately joining the bits between

successive observations.

• Step 4: Accept with probability: min
{

1,
G(t,X∗,θ,σ∗)

∏n
i=1 f(yi|yi−1,σ

∗)

G(t,X,θ,σ)
∏

n
i=1 f(yi|yi−1,σ)

}

.

In a stochastic volatility model the updates of the paths of the transformed diffusion γ may be imple-
mented using overlapping blocks. Note that these paths drive the time u, of the diffusion process Z, and
therefore a similar algorithm as above should be embedded in their updates. For simplicity consider blocks
of γ paths that correspond to times between non-successive observations. Each block is then further split
into sub-blocks containing intervals between successive observations, thus providing a number of separate Z
diffusion processes. Details are presented below:

10



• Step 1: Propose γ∗ between the times of of two non-successive observations,

yA and yB, by a Brownian bridge connecting the relevant endpoints of γ.

• Step 2: Repeat for each pair of successive points between (and

including) yA and yB:

– Use (13) and (14) to get the new times associated with it.

– Draw the values of Z retrospectively at the new times using (16).

– Transform back to X∗ (which corresponds to the time between the pair

of successive points), using (14).

• Step 3: Join the bits of X∗ to form its path between yA and yB.

• Step 4: Accept with probability: min
{

1,
Gγ(t,γ∗,θ)G(t,X∗,γ∗,θ)

∏

n
i=1 f(yi|yi−1,γ

∗,θ)

Gγ(t,γ,θ)G(t,X,γ,θ)
∏

n
i=1 f(yi|yi−1,γ,θ)

}

.

5 Simulations

As discussed in section 2, appropriate reparametrisations are necessary to avoid issues regarding the mixing
and convergence of the MCMC algorithm. In fact, the chain becomes reducible as the level of augmentation
increases. This is also verified by the numerical examples performed in Kalogeropoulos (2007) even in very
simple stochastic volatility models. In this section we present a simulation based experiment to check the
immunity of MCMC schemes to increasing levels of augmentation, as well as the ability of our estimation
procedure to retrieve the correct values of the diffusion parameters despite the fact that the series is partially
observed and only at a finite number of points. We simulated data from the following stochastic volatility
model

dXt = κx(µx −Xt)dt+ ρ exp(αt/2)dWt +
√

1 − ρ2 exp(αt/2)dBt,

dαt = κα(µα − αt)dt+ σdWt,

where B and W represent independent Brownian motions, and ρ reflects the correlation between the incre-
ments of X and α (also termed as leverage effect). A high frequency Euler approximating scheme with a
step of 0.001 was used for the simulation of the diffusion paths. Specifically, 500, 001 points were drawn and
one value of X for every 1000 was recorded, thus forming a dataset of 501 observations of X at 0 ≤ t ≤ 500.
The parameter values were set to ρ = −0.5, σ = 0.4, κx = 0.2, µx = 0.1, κα = 0.3 and µα = −0.2

The transformations required to construct an irreducible data augmentation scheme are listed below.
First α was transformed to γ through

γt =
αt − α0

σ
, 0 ≤ t ≤ 500,

αt = gγ,σt = α0 + σγt.

Given γ, and for each pair of consecutive observation times tk−1 and tk (k = 1, 2, . . . , 500) on X, the following
transformations were applied: First, we removed the term introduced from the leverage effect

Ht = Xt −

∫ t

tk−1

ρ exp {gγ,σt /2}dWs, tk−1 ≤ t ≤ tk,

and consequently we set

η1(t) =

∫ t

tk−1

(1 − ρ)2 exp {ν(γs, σ, α0} ds.

11



Parameter True value Post. mean Post. SD Post 2.5% Post median Post 97.5%
κx 0.2 0.244 0.038 0.173 0.243 0.321
µx 0.1 0.313 0.174 -0.046 0.317 0.641
κα 0.3 0.304 0.148 0.110 0.277 0.672
µα -0.2 -0.268 0.107 -0.484 -0.267 -0.059
σ 0.4 0.406 0.130 0.202 0.390 0.705
ρ -0.5 0.477 0.138 -0.657 -0.491 -0.066

Table 1: Summaries of the posterior draws for the simulation example of Section 5 for m = 50.

Then, U and Z may be defined again from 13 and 14 respectively, but based on H rather on X . The elements
of the MCMC scheme are Z, γ, α0 and the parameters (κx, µx, κα, µα, ρ, σ).

Vague priors were assigned to all of the parameters, subject to positivity constraints for κx, κα, σ and for
ρ to be in (−1, 1). The chain was run several times for 50,000 iterations on different levels of augmentation,
by setting the number of imputed points to 2, 30, 40 and 50. As in Kalogeropoulos (2007), it was noted that
a good choice of length of the overlapping blocks, needed for the updates of γ, may improve substantially the
mixing of the chain. We used blocks with length corresponding to 8 observations. The acceptance rate rate
for each block of γ was around 75% whereas the acceptance rate for each path of Z was around 95%. The time
needed for such a MCMC run with m = 40 was roughly 4 hours in a mid-specification PC. We also noted a
linear relationship between running times and m, which confirms the fact that the computational complexity
of the algorithm is O(m) (see discussion for more). Figure 1 shows autocorrelation plots for all parameters.
There is no sign of any increase in the autocorrelation to raise suspicions against the irreducibility of the
chain. This confirms the fact that convergence time of the algorithm is independent of m. Figure 2 shows
density plots for all parameters and on all of m. These plots may be used to monitor the deterioration of the
discretisation error. In this example, a choice of m = 2 may have been suboptimal whereas any value above
30 seems to perform well. Also, these plots reveal good agreement with the true values of the parameters,
which is also supported by Table 1.

6 Application: US treasury bill rates

To illustrate the time change methodology we fit a stochastic volatility model to US treasury bill rates. The
dataset consists of 1809 weekly observations (Wednesday) of the 3−month US Treasury bill rate from the
5th of January 1962 up to the 30th of August 1996. The data are plotted in Figure 3.

Previous analyses of these data include Andersen and Lund (1998), Gallant and Tauchen (1998), Durham
(2002), Durham and Gallant (2002), Eraker (2001), and Golightly and Wilkinson (2006). Apart from some
slight deviations the adopted stochastic volatility models consisted of the following SDE.

drt = (θ0 − θ1rt)dt+ rψt exp(αt/2)dBt,

dαt = κ(µ− αt)dt+ σdWt, (17)

with independent Brownian motions B and W . In some cases the following equivalent model was used:

drt = (θ0 − θ1rt)dt+ σrr
ψ
t exp(αt/2)dBt,

dαt = −καtdt+ σdWt. (18)

The model in (17) was chosen, as posterior draws of its parameters exhibit substantially less autocorrelation.
In line with Gallant and Tauchen (1998) and Golightly and Wilkinson (2006), we also set ψ = 1. Eraker
(2001), Durham (2002) and Durham and Gallant (2002) assume general ‘elasticity of variance’ ψ but their
estimates do not indicate a significant deviation from 1. By setting Xt = log(rt), the volatility of Xt becomes
exp(αt/2). Therefore the U−time for two consecutive observation times tk−1 and tk is defined as

12
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Figure 1: Autocorrelation plots of the parameter posterior draws for different numbers of imputed points
m = 2, 30, 40, 50. Simulation example of Section 5.
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Figure 2: Kernel densities of the posterior draws of all the parameters for different numbers of imputed
points m = 2, 30, 40, 50. Simulation example of Section 5.
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Parameter Post. mean Post. SD Post 2.5% Post median Post 97.5%
θ0 0.130 0.238 -0.347 0.132 0.589
θ1 0.013 0.057 -0.096 0.013 0.125
κ 2.403 0.620 1.319 2.360 3.745
µ -3.966 0.211 -4.384 -3.964 -3.547
σ 2.764 0.311 2.199 2.750 3.420

Table 2: Summaries of the posterior draws for the stochastic volatility model of Weekly 3−month US
Treasury bill rates.

η1(t) =

∫ t

tk−1

exp(αt)ds,

and U and Z are given by (13) and (14) respectively. We also transformed α to γ as in section 5:

γt =
αt − α0

σ
,

αt = gγ,σt = α0 + σγt.

We constructed appropriate MCMC schemes based on Z and γ to sample from the posterior of the
parameters θ0, θ1, κ, µ and σ. The time was measured in years setting the distance between successive
Wednesdays to 5/252. Non-informative priors were assigned to all the parameters, restricting κ and σ to be
positive to ensure identifiability and eliminate the possibility of explosion. The algorithm was run for 50, 000
iterations and for m equal to 2, 10 and 20. To optimize the efficiency of the chain we set the length of the
overlapping blocks of γ to 10 which produced an acceptance rate of 51.9%. The corresponding acceptance
rate for Z was 98.6% .

The kernel density plots of the posterior parameters and likelihood (Figure 4) indicate that a discreti-
sation corresponding to an m of 10 or 20 provide reasonable approximations. A choice of m = 2 produces
similar parameter posterior draws but the log-likelihood plot (bottom right) seems to be slightly off. The
relevant autocorrelation plots of Figure 5 do not provide evidence of increasing autocorrelation in m. Finally,
summaries of the posterior draws for all the parameters are provided in Table 2. The parameters κ, µ and σ
are different from 0 verifying the existence of stochastic volatility. On the other hand, there is no evidence
to support the existence of mean reversion on the interest rate process, as θ0 and θ1 are not far from 0. The
results are in line with those of Durham (2002), Durham and Gallant (2002) and Golightly and Wilkinson
(2006).

7 Discussion

Data augmentation MCMC schemes constitute a very useful tool for likelihood-based inference on diffusion
models. They may not have the appealing properties of complete elimination of the time discretisation
error (Beskos et al., 2006), or the closed form approximate likelihood expressions of Aı̈t-Sahalia (2002), but
nevertheless they give a satisfactory and very general solution to the problem. However, data augmentation
schemes require careful construction to avoid the degeneracy issues described at the beginning of this paper.

Here, we introduce an innovative transformation which operates by altering the time axis of the diffu-
sion. To accommodate the special features of time change transformations we also introduce a novel efficient
MCMC scheme which mixes rapidly and is not prohibitively computationally expensive. Our method is also
easy to implement and introduces no additional approximation error other than that included in method-
ologies based on a discretisation of the diffusion path. Moreover it has a broad range of applications which
include general stochastic volatility models.

One clear advantage of the time change methodology is that in its pure form produces algorithms whose
mixing time is bounded as m goes to infinity, as in Roberts and Stramer (2001). In addition, the computing

16



−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

m=2
m=10
m=20

−0.2 −0.1 0.0 0.1 0.2

0
2

4
6

m=2
m=10
m=20

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

m=2
m=10
m=20

−5.0 −4.5 −4.0 −3.5 −3.0 −2.5

0.
0

0.
5

1.
0

1.
5

2.
0

m=2
m=10
m=20

2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

m=2
m=10
m=20

6150 6200 6250 6300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

log−likelihood

m=2
m=10
m=20

κ µ

θ0 θ1

σ

Figure 4: Kernel densities of the posterior draws of all the parameters and the log-likelihood for different
values of imputed points m = 2, 10, 20. Example on Weekly 3−month US Treasury bill rates.

17



0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

m=2
m=10
m=20

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

m=2
m=10
m=20

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

m=2
m=10
m=20

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

m=2
m=10
m=20

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC
F

m=2
m=10
m=20

Lag - σ

Lag - κ Lag - µ

Lag - θ0 Lag - θ1

Figure 5: Autocorrelation plots for the posterior draws of the model parameters for different numbers of
imputed points m = 2, 10, 20 for the analysis of Weekly 3−month US Treasury bill rates.
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cost per iteration of our methods is O(m) as with other competing methods. Thus the overall computing
cost of our approach is O(m) which compares favourably with competing methods that are typically O(m2).
In our experience mixing properties of the methods introduced in this paper are good in comparison with
competing methods for these types of models and data. Furthermore we have found out that implementation
can routinely be carried out in a few hours on a mid-specification PC.

Further work will consider problems with state-dependent volatility and models which involve jump
diffusions, to which the methodology introduced here can be easily applied. Fundamental to our approach
here has been the introduction of a non-centered parametrisation to decouple dependence inherent in the
model between missing data and volatility parameters. However non-centered constructions are not unique,
as illustrated by the choice in the diffusion context between the state rescaling approaches of Golightly
and Wilkinson (2007); Roberts and Stramer (2001) and the time-stretching strategy adopted here. Clearly,
further work is required to investigate the relative merits of these approaches in different situations.
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