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A Profile-Kernel Estimation with Diverging

Number of Linear Parameters

By Clifford Lam and Jiangqing Fan

Department of Operations Research and Financial Engineering

Princeton University, Princeton, NJ, 08544

May 26, 2006

Abstract

A generalization to the varying coefficient model, the generalized varying coefficient par-

tially linear model (GVCPLM) has gained significant attention because of its generality

and incorporated predictive and explanatory power. Since modern statistical problems

usually deal with data of vast dimensionality, a large model is usually unavoidable for

predictive purpose. In this paper we set foot on both theoretical and practical sides of

profile likelihood estimation when the number of linear parameters in the model grows

with sample size. Existence of profile likelihood estimator and asymptotic normality for

the linear parameters are established under regularity conditions. Profile likelihood ratio

statistic for the linear parameters is discussed and Wilk’s phenomenon demonstrated as

proposed by Fan, Zhang and Zhang (2001). We propose a profile-kernel based algorithm

for evaluating the varying coefficients and the linear parameters. Simulation study shows

that the resulting estimates are as efficient as the fully iterative profile-kernel estimates.

For moderate sample size, our proposed procedure saves much computational time over

the fully iterative profile-kernel one and gives stabler estimates. A set of real data has

been analyzed using the GVCPLM with our proposed algorithm.

1 Introduction

The generalized varying-coefficient models, proposed by Hastie and Tibshirani (1993),

has attracted more attention over the last decade. It is a form of semiparametric regres-

sion which extends the generalized linear model (e.g. McCullagh and Nelder (1989))
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naturally so that the linear parameters become nonparametric functions of a covariate

U , e.g. time variable in a longitudinal data analysis. For instance, see Cai, Fan and

Li (2000) for a detailed account on statistical inferences on such models and references

therein. A further generalization to the generalized varying coefficient model is to allow

for an additive parametric part, resulting in the generalized varying coefficient partially

linear model (GVCPLM). If Y is a response variable and (U,X,Z) is the associated

covariates, then by letting µ(u,x, z) = E{Y |(U,X,Z) = (u,x, z)}, the GVCPLM takes

the form

(1) g{µ(u,x, z)} = xT α(u) + zT β,

where g(·) is a known link function, β an unknown regression coefficient and α(·) an un-

known regression function. One of the advantages over the varying coefficient model is

that GVCPLM allows for estimation of effects more efficiently when they are not really

varying with U , after adjustment of other genuine varying effects. It also allows for more

interpretable model, where primary interest is focused on the parametric component.

This model is relatively new in the literature. Instead, a special case called the partially

linear model (PLM) is studied more extensively, where the vector x is set to the scalar 1.

See, for example, Engle,et al. (1986), Wahba (1984) and Speckman (1988). Severini and

Wong (1992) established theories in generalized profile likelihood approach for efficient

estimation of the parametric component without the need of undersmoothing, and Sev-

erini and Staniswalis (1994) proposed an iterative procedure for this profile likelihood

estimation. Carroll et al. (1997) studied the generalized partially linear single-index

model. More references can be found in Härdle, Liang and Gao (2000).

The goals of this paper are two-fold: to establish theories in statistical inferences

when the dimension of the parametric component diverges with the sample size, and to

compute the estimates efficiently without sacrificing accuracy.

For the estimation aspect, Zhang, Lee and Song (2002), Li, Huang, Ki and Fu (2002)

and Xia, Zhang and Tong (2004) considered the varying coefficient partially linear model

(VCPLM, g being the identity link) and proposed different methods of estimation. Ah-

mad, Leelahanon and Li (2005) considered a series approximation approach for estimat-

ing the nonparametric component in the VCPLM, while Fan and Huang (2005) proposed

a profile-kernel approach for the VCPLM which has closed form solutions. Li and Liang

(2005) considered a backfitting-based procedure for estimating a GVCPLM (a general

link g).

In this paper we propose a profile-kernel procedure for the GVCPLM in (1) based

on Newton-Raphson iterations. Computational difficulties (e.g. Lin and Carroll (2006))

of the profile-kernel approach is overcome by introducing modifications to updating of
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the parametric component. For moderate sample size the computational expenses are

then greatly reduced while nice properties of profile-kernel approach over backfitting

(e.g. Hu et al. (2004)) are retained. This will be further demonstrated in section 4,

where Poisson and Logistic GVCPLM are considered for simulations. We also introduce

a difference-based estimation for the parametric component of the GVCPLM, which

serves well for an initial estimate of our proposed profile-kernel procedure. Such an idea

for estimation is used, for example, in Yatchew (1997) for the partial linear model.

For estimation with diverging number of parameters, early of such works include

Huber (1973) (more of his work can be found in Huber (1981)) which gave related

theories on M-estimators, and Portnoy (1988) which analyzed a regular exponential

family under the same setting. Fan and Peng (2004) analyzed a general parametric

model using the penalized likelihood approach under such setting. Donoho (2000) gave

a full introduction on how high dimensional data affects the trend of data analysis, with

examples in various fields of applications. Fan and Li (2006) proposed the penalized

likelihood method to achieve both estimation and variable selection simultaneously in

various fields involving high dimensional data analysis. We give two examples where a

large number of parameters is to be estimated relative to the sample size.

Example 1 (Framingham Heart Study (FHS)). In this classical study initiated in 1948,

the FHS follows a representative sample of 5,209 adults and their offspring aged 28-62

years in Framingham, Massachusetts. One goal of the study is to identify major risk

factors associated with heart disease, stroke and other diseases. The study lasted for

more than half a century, with original participants’ adult children and their spouses

also participated in the study. There are around p = 100 variables for the study

and so the number of parameters is large relative to the sample size. For more in-

formation on this study, see the website of National Heart, Lung and Blood Institute

(http://www.nhlbi.nih.gov/about/framingham).

Example 2 (Computational Biology). DNA microarrays monitor the mRNA expres-

sions of thousands of genes in many areas of biomedical research. The cDNA microarrays

measures the abundance of mRNA expressions by mixing mRNAs of treatment and con-

trol cells or tissues. However, systematic biases due to experimental variations have to

be removed first before the expression data can be used for further analysis. Exam-

ple of such biases include efficiency of dye incorporation, intensity effect and print-tip

block effect, among others. The process of removing these experimental biases is called

normalization, and is critical to multiple array comparison.

Let Yg be the log-ratio of the intensity of gene g of the treatment sample over that

of the control sample. Denote Ag the average log-intensities of gene g at the treatment
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and control samples, rg and cg the row and column of the block where the cDNA of gene

g resides. Fan et al.(2004) proposed the following model to estimate the intensity and

block effect:

Yg = αg + βrg + γcg + f(Ag) + εg, g = 1, · · · , N

where αg is the treatment effect of gene g, βrg and γrg are block effects decomposed into

row and column components, f(Ag) represents the intensity effect, and N is the total

number of genes. Even with replications of genes, we can see that the above model has

number of parameters p = O(N). However the number of significant genes is relatively

small, so that αg has a sparse structure. The goal is to find genes g with αg statistically

significantly different from 0.

The outline of the paper is as follows. In section 2 we briefly review the profile

likelihood estimation with local polynomial modelling, as well as presenting asymptotic

results in sections 2.1-2.3. Section 3 turns to the computational aspect, and sections

3.1-3.4 discuss the elements of our proposed profile-kernel procedure, as well as how to

choose smoothing parameters. A simulation study is given in section 4, as well as an

analysis of a real data set using the proposed methodology. The proofs of our results is

given in section 5, and technical details in the appendix.

2 Properties of profile likelihood estimation

Let (Yni;Xi,Zni, Ui)1≤i≤n be a random sample where Yni is a scalar response variable, Ui

is a scalar variable, Xi ∈ Rq and Zni ∈ Rpn are vectors of explanatory variables. Note

that Yni and Zni depends on n, and pn →∞ as n→∞.

The model we consider for the data is the generalized varying coefficient partially

linear model(GVCPLM), as in model (1), with βn and Zn having dimensions depending

on n now. The quasi-likelihood function for the response Y is

Q(µ, y) =

∫ y

µ

s− y

V (s)
ds,

where V (·) is the variance function for Y . As in Severini and Wong (1992), we denote

by αβn
(u) the ‘least favorable curve’ of the nonparametric function α(u) when we fix

the linear parameter to be βn for estimation purpose. It can be defined such that

(2)
∂

∂η
E0

{
Q(g−1(ηTX + βn

TZn), Yn)|U = u
}
|η=αβn

(u) = 0,
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where E0 means expectation is taken under the true parameters α0(u) and βn0. Note

that αβn0
(u) = α0(u). The global likelihood function for the data is then

(3) Qn(βn) =
n∑

i=1

Q{g−1(αβn
(Ui)

TXi + βT
nZni), Yni}.

To estimate the parameters in (3), we first treat βn as a constant. The model

then becomes purely nonparametric and estimation of αβn
(Ui) is done through a local

polynomial regression of order p for the jth component of αβn
(Ui), which approximate

αj(U) ≈ αj(u) +
∂αj(u)

∂u
(U − u) + · · ·+ ∂pαj(u)

∂up
(U − u)p/p!

≡ a0j + a1j(U − u) + · · ·+ apj(U − u)p/p!

for U in a neighborhood of u. Denote ar = (ar1, · · · , arq)
T for r = 0, . . . , p , noting that

they depend on βn. We then maximize the local likelihood

(4)
n∑

i=1

Q{g−1(

p∑
r=0

ar
TXi(Ui − u)r/r! + βT

nZni), Yni}Kh(Ui − u)

with respect to a0, · · · , ap. K(·) is a kernel function, and Kh(t) = K(t/h)/h is a re-

scaling of K with bandwidth h. So we get estimate α̂βn
(Uj) = â0(Uj) for j = 1, . . . , n.

Plugging our estimates into the global likelihood function (3), we have

(5) Q̂n(βn) :=
n∑

i=1

Q{g−1(α̂βn
(Ui)

TXi + βT
nZni), Yni}.

This is now a pure parametric model with parameter βn. Maximizing Q̂n(βn) with

respect to βn to get β̂n, which amounts to solving ∇Q̂n(βn) = 0. With β̂n, we estimate

our varying coefficients as α̂β̂n
(u).

One property of the quasi-likelihood is that the first and second order Bartlett’s

identities hold. In particular, if we define the marginal global likelihood for βn as in (3),

then

(6) Eβn

(
∂Qn

∂βn

)
= 0, nIn(βn) = Eβn

(
∂Qn

∂βn

∂Qn

∂βT
n

)
= −Eβn

(
∂2Qn

∂βn∂βT
n

)
,

where In(βn) is the marginal Fisher Information of a single observation for βn (See

Severini and Wong (1992) for more details).
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Note that equation (2) is true for all βn, and so by differentiating w.r.t. βn we get

the following important formulas:

E0(q1(mn(βn), Yn)X|U = u) = 0,

E0(q2(mn(βn), Yn)X(Zn + α′
βn

(U)X)T |U = u) = 0,
(7)

where α′
βn

(u) =
∂αβn

(u)

∂βn
and ql(x, y) = dl

dxl Q(g−1(x), y).

In the subsequent sections we need some regularity conditions, which are presented

in section 5, for our results to hold.

2.1 Asymptotic normality and consistency of β̂n

Theorem 1 (Existence of profile likelihood estimator). Assume that conditions (A)-

(G) are satisfied. If p4
n/n → 0 as n → ∞ and nh2p+2 = O(1) with nhp+2 → ∞, then

there is a local maximizer β̂n ∈ Ωn of Q̂n(βn) such that
∥∥∥β̂n − βn0

∥∥∥ = OP (
√

pn/n).

This consistent rate is the same as the result of the M-estimator that was studied

by Huber (1973), in which the number of parameters diverges. This rate of convergence

is also obtained by Zhang, Lee and Song (2002) for pn a constant. They also assumed

nh2p+2 = O(1).

Since the usual optimal bandwidth for minimizing conditional MSE or weighted

MISE is h = O(n−1/(2p+3))(Fan and Gijbels (1996)), it does not satisfy the assump-

tion nh2p+2 = O(1). However, note that under the optimal bandwidth, we have∥∥∥β̂n − βn0

∥∥∥ = OP (
√

pn/n(2p+2)/(2p+3)) (follow the same lines of proof in theorem 1

to get this). This rate is worse than
√

n/pn, but with somewhat stronger assumption

p5
n/n

(2p+1)/(2p+3) = o(1), a form of
√

n-consistency can be recovered as in theorem 2. In

particular, if supn pn <∞, this stronger assumption is automatically satisfied, showing

that
√

n-consistency can be achieved under optimal bandwidth. This is in line with the

results, for instance, by Severini and Staniswalis(1994) or Carroll et al. (1997).

Theorem 2 (Asymptotic normality). Under Conditions (A) - (G), if p5
n/n → 0 as

n→∞, then the
√

n/pn-consistent local maximizer β̂n in theorem 1 satisfies

√
nAnI

1/2
n (βn0)(β̂n − βn0)

D−→ N(0, G),

where An is an l × pn matrix such that AnA
T
n → G, and G is a l × l nonnegative

symmetric matrix. Furthermore, if p5
n/n

(2p+1)/(2p+3) → 0, then the local maximizer β̂n
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in theorem 1, estimated under the optimal bandwidth h = O(n−1/(2p+3)), still satisfies

the above asymptotic normality.

This result shows that profile likelihood estimation produces semi-parametric efficient

estimate of linear parameters when number of parameters diverges. To see this more

explicitly, let pn = r be a constant. Then taking An = Ir, we obtain

√
n(β̂n − βn0)

D−→ N(0, I−1
n (βn0)),

which shows that the variance of β̂n achieves the efficient lower bound (See for example

Carroll et al. (1997)). This also agrees with the result by Fan and Huang(2005), who

studied the same type of model under the usual linear regression setting with pn a

constant. The result presented here can be considered a further generalization of theirs.

2.2 Hypothesis testing

After estimation of parameters, it is of interest to test the statistical significance of

certain variables in the parametric component. Consider the problem of testing linear

hypotheses:

H0 : Anβn0 = 0 vs H1 : Anβn0 6= 0,

where An is a l × pn matrix and AnA
T
n = Il for a fixed l. Both the null and the alter-

native hypotheses are semi-parametric, with nuisance functions α(·). The generalized

likelihood ratio test (GLRT) has statistic of the form

Tn = 2

{
sup
Ωn

Q̂n(βn)− sup
Ωn;Anβn=0

Q̂n(βn)

}
,

where Q̂n(βn) is as defined in (5). It turns out that, even when the number of parame-

ters diverges with sample size, Tn still follows a chi-square distribution asymptotically,

without reference to any nuisance parameters. This reveals the Wilk’s phenomenon,

as termed in Fan et al (2001). Hence under a semi-parametric model with increasing

number of parameters, traditional likelihood ratio theory continues to apply and testing

of linear hypotheses becomes easy.

Theorem 3 Assuming conditions (A) - (G), under H0, we have

Tn
D−→ χ2

l ,

provided that p5
n/n → 0 when nh2p+2 = O(1), or p5

n/n
(2p+1)/(2p+3) → 0 when h =

O(n−1/(2p+3)).
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2.3 Consistency of the sandwich covariance formula

The estimated covariance matrix for β̂n can be obtained by the sandwich formula

Σ̂n = {∇2Q̂n(β̂n)}−1ĉov{∇Q̂n(β̂n)}{∇2Q̂n(β̂n)}−1,

where the middle matrix has (j, k) entry given by

(ĉov{∇Q̂n(β̂n)})jk =

{
n∑

i=1

∂Q̂ni(β̂n)

∂βnj

∂Q̂ni(β̂n)

∂βnk

}

−

{
1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

n∑
i=1

∂Q̂ni(β̂n)

∂βnk

}
.

With the notation Σn = n−1I−1
n (βn0), we have the following consistency result for the

sandwich formula.

Theorem 4 Assuming conditions (A) - (G). If p5
n/n → 0 when nh2p+2 = O(1) and

nh2 →∞ as n→∞, we have

AnΣ̂nA
T
n − AnΣnA

T
n

P−→ 0 as n→∞

for any l×pn (l is a fixed integer) matrix An such that AnA
T
n = G. The same conclusion

holds if p5
n/n

(2p+2)/(2p+3) = o(1) when h = O(n−(2p+3)).

This result provides a way for constructing confidence intervals for βn. However

we stress the independence of such estimate in testing hypothesis as in section 2.2.

Simulation results show that this formula indeed provide good estimates of the variances

for β̂n. For more details on sandwich covariance formula, see Kauermann and Carroll

(2001).

The theorems presented so far have assumptions p4
n/n = o(1) or p5

n/n = o(1) which

are somewhat strong. However we will use p3
n/n = O(1) in our simulation in section 4

to demonstrate a wider applicability of our theories in models like the generalized linear

models.

3 Computation of the estimates

A profile-kernel approach for estimating βn in (3) is to find β̂n maximizing (5). Backfit-

ting algorithm, on the other hand, does not assume α̂βn
(u) in (5) to depend on βn, and

the maximization w.r.t. βn is thus much easier to carry out. The updated βn is then

substituted into (4) to find α̂(u) again, and the iterations repeated until convergence.
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See Lin and Carroll (2006), Hu et al (2004) for more descriptions of the two methods

and some closed-form solutions proposed for the partially linear models.

In general, the profile-kernel estimation can be carried out through the use of the

Newton-Raphson algorithm on updating both βn and αβn
(u) alternately. We will de-

scribe modifications and implementations of the following steps in subsequent sections:

Unmodified profile-kernel updating procedure

Step 0 (Initialization). Find β(0)
n , an initial estimate for βn. Set k = 0.

Step 1. Compute bi = ZT
niβ

(k)
n . Replaces ZT

niβn in (3) by bi and the problem becomes

purely nonparametric (generalized varying coefficient model). Efficient estimation

for α̂
β

(k)
n

(u) is available, for instance, in Cai, Fan and Li(2000).

Step 2. Replaces αβn
(u) in (3) by α̂βn

(u) and the problem becomes purely parametric.

Perform a Newton-Raphson iteration

β(k+1)
n = β(k)

n − {∇2Q̂n(β(k)
n )}−1∇Q̂n(β(k)

n ).

Here Q̂n(βn) is as defined in (5). Derivative is taken with respect to βn, noting

that α̂βn
(u) depends on βn as well. Set k to k + 1.

Step 3. Iterate steps 1 and 2 until convergence.

Section 3.1 gives a detail account of obtaining an initial estimate for βn.

For modifications, we introduce a quick implementation of step 2 in section 3.3,

which not only helps save vast amount of computational time for moderate sample size,

but also is much stabler comparing with the full procedure.

The idea behind the foregoing algorithm is to estimate a least favorable curve α̂βn
(u)

for αβn
(u) at βn = β(k)

n in light of lemma 6, which then allow us to update β(k)
n to β(k+1)

n

as in step 2. Step 1 involves nonparametric estimation and is discussed in section 3.2.

In step 3 we need to iterate steps 1 and 2 until convergence. In practice, as is

demonstrated in simulation study in section 4, only several iterations are needed for

practical accuracy. We name the estimates by doing step 0 and step 1 the one-cycle

estimates, and those obtained by iterating steps 2 and step 1 (m− 1) more times as the

m-cycles estimates.
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3.1 Difference-based estimation for VCPLM

The idea of differencing to remove nonparametric part in a partially linear model (PLM)

has been applied, with different usages, in Yatchew (1997) and Fan and Huang (2005).

We generalize this idea and apply on the varying coefficient partially linear model (VC-

PLM).

Consider the VCPLM with the structure

(8) Y = α(U)TX + βn
TZn + ε,

where Y is a response variable and (U,XT ,Zn
T ) is the vector of associated covariates,

with X being a q dimensional and Zn being a pn dimensional vector. The error term ε

has mean 0 and unknown variance σ2. This is a special case of the GVCPLM where in

equation (3), g is the identity link and Q is the log-likelihood of normal density. However

it is only used to motivate our procedure.

Let {(Ui,X
T
i ,ZT

ni, Yi)}ni=1 be a random sample from (8) above, with the data ordered

according to the Ui’s. Under mild conditions, the spacing Ui+1−Ui is OP (1/n), so that

α(Ui+1)−α(Ui) ≈ γ0 + γ1(Ui+1 − Ui). Using model (8),

q+1∑
j=1

wjYi+j−1 =

q+1∑
j=1

wjα(Ui+j−1)
TXi+j−1 + βT

n

q+1∑
j=1

wjZn(i+j−1) +

q+1∑
j=1

wjεi+j−1.

Here wj depends on i as well, but we drop this subscript for simplicity. If we define

Y ∗
i =

∑q+1
j=1 wjYi+j−1, Z∗

ni =
∑q+1

j=1 wjZn(i+j−1), ε∗i =
∑q+1

j=1 wjεi+j−1 and impose the

constraint
∑q+1

j=1 wjXi+j−1 = 0, then we can re-write the above equation as

Y ∗
i ≈ γ0

T

q+1∑
r=2

q+1∑
j=r

wjXi+j−1 + γ1
T

q+1∑
r=2

q+1∑
j=r

wjXi+j−1(Ui+r−1 − Ui+r−2) + βT
nZ∗

i + ε∗i ,

which is a linear model with parameter (γ0, γ1, βn). In our simulation study in section

4, we choose i to be 1, 2, · · · , n− q so that we have exactly (n− q) ‘starred’ data points

and the ε∗i ’s are dependent in general, but with known dependence structure. So we

can perform a weighted least square fit to the starred data to find (γ̂0, γ̂1, β̂n). To solve∑q+1
j=1 wjXi+j−1 = 0, we need to find the rank r of the matrix (Xi, · · · ,Xi+q), and then

fix q + 1 − r of the wj’s so that the rest can be determined uniquely by just solving a

system of linear equations.

One concern of the above approximation is the sparsity of the Ui’s, especially in

the tail regions. Then OP (1/n) spacing is not achievable in the tails. In this case
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we may want to remove these sparse data points first before aggregating with wj’s

to avoid deterioration of quality for the estimate β̂n. In section 4, we take U to be

uniformly distributed over (0, 1) so that sparsity problem can be avoided for the ease of

our demonstration.

To use the differencing idea to obtain an initial estimate of βn for GVCPLM, we apply

transformation of the data. If g is the link function, we use g(Yi) as the transformed

data and proceed with the difference-based method as for the VCPLM. Note that for

some models like the logistic regression with logit link and Poisson log-linear model,

adjustments needed to be made in transforming the data. We use g(y) = log
(

y+δ
1−y+δ

)
for the logistic regression and g(y) = log(y + δ) for the Poisson regression. Here δ

is treated as a smoothing parameter like h in estimating varying coefficients, and the

choice of which are discussed in section 3.4.

3.2 One-step estimation for the nonparametric component

Given βn = β(k)
n , model (3) becomes purely nonparametric and we estimate the varying

coefficients αβn
(u) by using the one-step local MLE. The one-step estimates are as

efficient as the fully iterative ones but save considerable computational time. For more

theoretical properties, see for example Cai, Fan and Li (2000). We briefly describe the

method here.

The local likelihood is as defined in (4), denoted by lβn
(γ, u), where γ =

(
a0

T , · · · , ap
T
)T

.

Given an initial estimator γ̂0 = γ̂0(u0) =
(
â0(u0)

T , · · · , âp(u0)
T
)T

, one step of the

Newton-Raphson algorithm produces the updated estimator

γ̂OS = γ̂0 − {∇2lβn
(γ̂0, u0)}−1∇lβn

(γ̂0, u0),

where derivatives are taken with respect to γ. In univariate generalized linear models,

the least-squares estimate serves a natural candidate as an initial estimator. We adapt

a variation as described in Cai, Fan and Li (2000), where we first find a sub-grid points

of all the Ui’s and obtain local MLE γ̂ on the sub-grid points. Then use these estimates

as initial values for carrying out the one-step local MLE procedure on the rest of the

Ui’s.

The matrix ∇2lβn
(γ, u) can be nearly singular for certain Ui, due to possible data

sparsity in certain local regions, or when bandwidth is too small. We adapt the ridge

regression approach to overcome this problem. We omit the details here.
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3.3 Fast updating of β(k)
n

The profile-kernel approach essentially treats α̂βn
(u) from step 1 as a function of both

u and βn (Lin and Carroll (2006)). Updating of β(k)
n in step 2 needs the first and second

derivatives of α̂βn
(u) with respect to βn, which can be computationally intensive to

calculate. More precisely, denote α̂′
βn

(u) =
∂α̂βn

(u)

∂βn
which is a pn by q matrix, α

(r)
βn

(u)

the rth component of αβn
(u) and m̂ni(βn) = α̂βn

(Ui)
TXi + ZT

niβn, we need to calculate

∇Q̂n(βn) =
n∑

i=1

q1(m̂ni(βn), Yni)(Zni + α̂′
βn

(Ui)Xi),

∇2Q̂n(βn) =
n∑

i=1

q2(m̂ni(βn), Yni)(Zni + α̂′
βn

(Ui)Xi)(Zni + α̂′
βn

(Ui)Xi)
T

+
n∑

i=1

{
q1(m̂ni(βn), Yni)

q∑
r=1

∂2α̂
(r)
βn

(Ui)

∂βn∂βT
n

Xir

}
.

(9)

The following lemma shows how to construct a consistent estimator of α′
βn

(u). The

proof is in the Appendix.

Lemma 5 Under regularity conditions (A)-(G), provided
√

pn

(
h + 1√

nh

)
= o(1), we

have for each βn ∈ Ωn,

α̂′
βn

(u)
def
= −

{
n∑

i=1

q2(α̂βn
(u)TXi + ZT

niβn, Yni)ZniX
T
i Kh(Ui − u)

}

·

{
n∑

i=1

q2(α̂βn
(u)TXi + ZT

niβn, Yni)XiX
T
i Kh(Ui − u)

}−1

being a consistent estimator of α′
βn

(u) which holds uniformly in u ∈ Ω.

In implementing step 2 of the profile-kernel procedure, the first and second derivatives

of α̂ w.r.t. βn are to be calculated at each Ui, which post a computational challenge

to the profile-kernel procedure. On the other hand, the backfitting algorithm set

all such derivatives to zero in equation (9), thus reducing vastly the amount of

computations of each update. See Hu et al (2004) for a comparison of the two methods.

We propose a profile-kernel procedure which is ‘in between’ the full profile-kernel

procedure and backfitting, with two major modifications to the full profile-kernel one:

Modifications of step 2 in the proposed profile-kernel procedure

(I) The second derivatives
∂2α̂

(r)
βn

(u)

∂βn∂βT
n

are set to 0 in equation (9).

12



(II) The first derivatives α̂′
βn

(u) are calculated on a sub-grid points of the Ui’s and

those on the rest of the Ui’s are approximated by interpolation.

Since the function q2(·, ·) < 0 by regularity condition (D), we see that the modified

∇2Q̂n(βn) in equation (9) is negative-definite. This ensures the Newton-Raphson update

in step 2 of the profile-kernel procedure can be carried out without trouble.

The idea behind modification (I) is that, for a neighborhood around the true parame-

ter βn0 which is small enough, the least favorable curve αβn
(u) should be approximately

linear in βn. In fact, to estimate such second derivatives, same amount of local data

around u is needed which has served to estimate the first derivative α′
βn

(u) already, so

variability of the resulting estimates of βn may increase by incorporating the second

derivatives into the updating procedure.

For modification (II), the idea is that α′
βn

(u) is approximately linear in a small neigh-

borhood of u. The bandwidth h in estimating αβn
(u) is a natural parameter to define

what is a ‘small’ neighborhood around u. In this paper where a constant bandwidth h

is used (see section 3.4), we calculate α′
βn

(u) at the minimum and maximum values of

Ui’s from the data (assuming sparsity of the tail regions is avoided, see section 3.1), as

well as calculating such on a grid of values of u with grid width approximately equals

to h. Then α′
βn

(Ui) for data point Ui is found by interpolating the nearest two points

on the grid. If variable type of bandwidth is used then the grid points can be defined

also according to how h varies.

With these modifications, the update of β(k)
n is much faster than the original profile-

kernel procedure.

3.4 Choice of bandwidth

As usual the optimal bandwidth hopt for estimating αβn
(u) given βn is of order n−1/(2p+3),

which can be seen immediately from equation (18). The equation also gives the order

of the MSE to be n−(2p+2)/(2p+3) when such an optimal bandwidth is used. This optimal

bandwidth order can be used without affecting the asymptotic properties of our estima-

tor β̂n, as shown in Theorems 1 and 2. We do not derive explicit expressions for the

theoretical optimal bandwidth and MSE here.

As mentioned at the end of section 3.1, we have an extra smoothing parameter δ

to be determined due to adjustments to transformation of the response Yni. This two

dimensional smoothing parameter (δ, h) can be found by doing a K-fold cross-validation.

Since we have suggested a quick profile-kernel procedure and practical accuracy can be

achieved in several iterations as demonstrated in section 4, for K not too large (e.g.

K=5 or 10) the cross-validation procedure is not too computationally intensive.
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4 Simulation Study

In this section we first demonstrate how our proposed iterative procedure saves compu-

tational time as well as being stabler over the fully iterative procedure. Then using our

iterative procedure, we demonstrate the finite sample performance of our estimates and

augment our theoretical results.

To evaluate the performance of estimator α̂(·), we use the square-root of average

errors (RASE)

RASE =

{
n−1

grid

ngrid∑
k=1

‖α̂(uk)−α(uk)‖2
}1/2

,

where {uk, k = 1, · · · , ngrid} are the grid points at which the function α̂(·) is evaluated.

The Epanechnikov kernel K(u) = 0.75(1− u2)+ and ngrid = 200 are used in our simula-

tion. For assessing the performance of the estimator β̂n, we use the generalized mean

square error (GMSE)

GMSE = (β̂n − βn0)
T EZ∗Z∗T (β̂n − βn0),

where Z∗ is a new realization of the random variable Z.

Simulation 1. In this simulation, we consider a semi-varying Poisson regression model.

The response Y , given (U,X,Zn), has a Poisson distribution with mean function µ(U,X,Zn)

where

log(µ(U,X,Zn)) = XT α(U) + ZT
nβn.

We simulate 50 samples of sizes 200 and 400 with pn = b1.8n1/3c from the above model,

meaning p200 = 10 and p400 = 13. For the covariates, we take U ∼ U(0, 1),X =

(X1, X2)
T with X1 ≡ 1 and X2 ∼ N(0, 1) such that (ZT

n , X2)
T is a (pn +1)−dimensional

normal distribution with mean zero and covariance matrix (σij), where σij = 0.5|i−j|.

For the parameters of the model, βn0 = (0.5, 0.3,−0.5, 1, 0.1,−0.25, 0, · · · , 0)T which is

pn−dimensional, α(u) = (α1(u), α2(u))T where

α1(u) = 4 + sin(2πu), and α2(u) = 2u(1− u).

Using a 5-fold cross-validation (CV), we calculate 4-cycles estimates using our proposed

profile-kernel procedure in order to obtain the CV value. We finally chose δ = 0.1 and

h = 0.1, 0.08 for n = 200, 400 respectively.

The median GMSE and respective computing times of β̂n among the 4-cycles esti-

mators of backfitting, the proposed and full profile-kernel procedures are summarized

in table 1. The SDmad is a robust estimate of standard deviation and is defined by

14



Table 1: Simulation results of different fitting schemes for Poisson model

Median(SDmad) GMSE (multiplied by 10000)
backfitting profile-kernel, profile-kernel,

n pn proposed full
200 10 10.72(6.47) 5.45(2.71) 9.74(14.67)
400 13 5.63(4.39) 2.78(1.19) 5.26(9.46)

Median(SDmad) of computing times in seconds
200 10 0.6(0.0) 0.7(0.0) 77.2(0.2)
400 13 0.8(0.0) 1.4(0.0) 463.2(0.9)

Relative Median RASE (%)
200 10 84.8 97.0 89.5
400 13 85.6 98.6 88.2

interquartile range divided by 1.349. We see that the proposed profile-kernel procedure

has the smallest GMSE. The full profile-kernel procedure performs only slightly better

than backfitting, but with much greater variability in the GMSE. In terms of comput-

ing times, backfitting wins against our proposed procedure slightly, but at the price

of doubling the GMSE on average. Hence the proposed profile-kernel procedure gains

the best trade-off between computational cost and accuracy. Comparing with the full

profile-kernel procedure, it saves a vast amount of computations as well on average, and

the savings grows as n increases. We also know (not shown in the table) that on average

backfitting needs more than 20 iterations to converge without improving the GMSE too

much. For a logistic data simulation (not shown here), our proposed procedure is still

better than backfitting in terms of accuracy, but not as large an improvement as in the

Poisson case.

The relative median RASE in table 1 is defined as RASE0/RASE1, where RASE0

is the RASE calculated from the fit with true value of βn known in advance (oracle

estimate), and RASE1 is the RASE calculated from different procedures. Clearly our

proposed procedure is closest to the oracle estimate on average.

Simulation 2. In this simulation 400 samples of sizes 200, 400, 800 and 1500 with

pn = b1.8n1/3c are drawn from the Poisson model introduced in simulation 1. Estimators

β̂n and α̂β̂n
(u) are obtained by the proposed profile-kernel procedure, but with variants:

OS Our proposed profile-kernel procedure, iterated until convergence.

FS Same, except that we don’t use the One-step procedure as in Cai, Fan and Li (2000)

to estimate the nonparametric component, but by iterating Newton-Raphson al-

gorithm until convergence.
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DBE The difference-based estimation, same as one-cycle estimate.

4C The four-cycles estimate.

We compare median GMSE of the above procedures in table 2. The OS, 4C and

FS procedures perform as good as each other, meaning that the one-step updating of

nonparametric component works well and our proposed procedure converges early. In

fact (not shown in the table) the two-cycles estimates improve the DBE dramatically

already.

We summarized the effect of bandwidth choice and practical accuracy of estimated

parameters (two-cycles) in table 3. We denote hCV the choice of our bandwidth for

the nonparametric component. It is clear that the GMSE does not sensitively depends

on the bandwidth on average, as long as it is close to hCV. The right column of the

table shows the estimate for β5. Being close to the true parameter value at different

bandwidth choices with small variability (estimates of other βi’s are performing well

similarly, and are not shown), the two-cycles estimate works well.

To test the accuracy of the sandwich covariance formula, the standard deviations of

the estimated coefficients (two-cycles esimates) are computed among the 400 simulations

at hCV. These can be regarded as the true standard errors (columns labeled SD in table

4), and the 400 estimated standard errors are summarized by their median (columns

SDm) and the associated SDmad (interquartile range divided by 1.349). Note that we

have multiplied all values by 1000 for compact presentation. Clearly the sandwich

formula does a good job, and accuracy gets better as n increases.

Finally we want to examine if the GLRT in section 2.2 performs well in testing a

linear hypothesis on βn. To this end, we consider the following null hypothesis:

H0 : β7 = β8 = · · · = βpn = 0,

where we still have pn = b1.8n1/3c. The alternative hypothesis is indexed by a parameter

Table 2: Simulation results for variants of profile-kernel procedures

Relative Median GMSE (%)
Poisson Logistic

n pn FS/OS FS/DBE FS/4C FS/OS FS/DBE FS/4C
200 10 100.0 8.2 99.9 99.8 64.1 101.7
400 13 100.2 6.0 100.2 99.9 52.7 104.7
800 16 100.1 5.0 100.1 100.0 50.9 102.6
1500 20 100.0 4.2 100.0 100.0 46.4 100.5
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Table 3: Summary statistics of two-cycles estimate

Poisson Logistic
Median(SDmad) β̂5 Median(SDmad) β̂5

GMSE×105 mean(SD)×104 GMSE×10 mean(SD)
n pn hCV 1.5hCV 0.66hCV hCV 0.66hCV hCV hCV 1.5hCV

200 10 5.9(3.0) 6.4(3.3) 993(112) 995(105) 8.2(4.4) 8.4(5.1) 1.78(.40) 1.59(.37)
400 13 3.1(1.4) 3.0(1.4) 1004(67) 1001(65) 4.8(2.2) 5.4(2.5) 1.81(.26) 1.64(.27)
800 16 1.7(0.7) 1.7(0.6) 999(47) 999(46) 2.7(1.0) 2.7(1.1) 1.94(.20) 1.85(.19)
1500 20 1.1(0.3) 1.1(0.4) 1000(32) 1000(32) 1.8(0.7) 1.8(0.6) 1.97(.15) 1.91(.14)

δ as follows:

H1 : β7 = β8 = δ, βj = 0 for j > 8.

When δ = 0, the alternative collapses to the null hypothesis. The GLRT statistic is

computed for each simulation using the two-cycles estimates. Corresponding to δ = 0,

the kernel density estimate of the finite sample null distribution of these statistics is

compared to the proposed asymptotic chi-squared density with d.f.= pn−6. Figure 1(a)

shows the comparison when n = 400. The finite sample null density is seen to be close

to the theoretical asymptotic chi-squared density.

To see the power of the test, we increases δ in the alternative H1 and calculate the

GLRT statistic in each simulation based on two-cycles estimates again. Three power

functions are calculated corresponding to three different significance levels: 0.1, 0.05

and 0.01, using the theoretical chi-squared distribution to find the corresponding critical

region. The proportion of rejection among the 400 statistics is the simulated power. We

see from figure 1(b) that the upper two power curves are of slightly higher significance

levels (corresponds to δ = 0) than the theoretical significance levels 0.1 and 0.05. This

suggests slightly thicker tail regions in the null density as seen also in figure 1(a). The

power curves increase rapidly with δ, showing that the GLRT performs well.

Table 4: Standard deviations and estimated standard errors

Poisson, values×1000 Logistic, values×10
β̂1 β̂3 β̂2 β̂4

SDm SDm SDm SDm

n pn SD (SDmad) SD (SDmad) SD (SDmad) SD (SDmad)
200 10 9.1 8.5(1.3) 9.9 9.4(1.3) 3.6 2.9(.4) 3.2 2.8(.4)
400 13 6.0 5.6(0.7) 6.5 6.1(0.7) 2.3 2.1(.2) 2.2 2.0(.2)
800 16 3.7 3.8(0.3) 4.1 4.2(0.4) 1.7 1.6(.1) 1.5 1.5(.1)
1500 20 2.8 2.7(0.2) 3.1 3.0(0.2) 1.2 1.2(.1) 1.1 1.1(.1)
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Figure 1: Plots for simulation 2 and 3. (a) and (b) are plots for the Poisson GVCPLM

while (c) and (d) are plots for the Logistic GVCPLM. In (a) and (c), dotted lines are

the estimated null densities and the solid lines are χ2−densities with d.f.=pn − 6. (7

and 10 resp.) (b) and (d) are power functions of GLRT.

Simulation 3. In this simulation, we consider a semi-varying Logistic regression model.

The response Y , given (U,X,Zn), has a Bernoulli distribution with success probability

p(U,X,Zn) where

p(U,X,Zn)) = exp{XT α(U) + ZT
nβn}/[1 + exp{XT α(U) + ZT

nβn}].

Same as simulation 1, we simulate 400 samples of sizes 200, 400, 800 and 1500 with

pn = b1.8n1/3c from the above model. For the covariates, we take U ∼ U(0, 1),X =

(X1, X2)
T with X1 ≡ 1 and X2 ∼ N(0, 1), and Zn is a pn−dimensional normal distri-

bution with mean zero and covariance matrix (σij), where σij = 0.5|i−j|. For the pa-

rameters of the model, βn0 = (3, 1,−2, 0.5, 2,−2, 0, · · · , 0)T which is pn−dimensional,

α(u) = (α1(u), α2(u))T where

α1(u) = 2(u3 + 2u2 − 2u), and α2(u) = 2 cos(2πu).

Bandwidth (δ, h) is chosen by a 5-fold CV, where δ appears in the transformation

of data y → log
(

y+δ
1−y+δ

)
. We finally chose δ = 0.005 and h = 0.45, 0.4, 0.25 and 0.18,

corresponding to n = 200, 400, 800 and 1500.
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We compare median GMSE of the above procedures on the right of the table 2.

The OS and FS procedures perform similar to each other, meaning that the one-step

updating of nonparametric component works fine. The FS/DBE column shows that,

unlike in the Poisson regression case, one update of the initial estimate β(0)
n does not

decrease the GMSE by a very large proportion.

Similar to the Poisson case, the right side of table 3 shows that sensitivity of estimates

to bandwidth choice is not high. We also see a good accuracy of the sandwich covariance

formula from table 4.

To examine the performance of the GLRT for the Logistic GVCPLM we use the

same null and alternative hypotheses as defined in simulation 2. The estimated null

density is close to the theoretical χ2 density in figure 1(c) and the GLRT works well as

seen from figure 1(d).

Real data example. We used Example 11.3 and the accompanying data set of Al-

bright, Winston and Zappe (1999), where the Fifth National Bank of Springfield faced

a gender discrimination suit in which female received substantially smaller salaries than

male employees. (This example is based on a real case with data dated 1995. Only

the bank’s name is changed.) Fan and Peng (2004) has done such a salary analysis

using an additive model with quadratic spline, and did not find a significant evidence of

gender discrimination. We focus on another question: whether it was harder for female

employees to be promoted.

The data set consists of 208 employees which include the following variables:

• EduLev: educational level, a categorical variable with categories 1 (finished school),

2 (finished some college courses), 3 (obtained a bachelor’s degree), 4 (took some

graduate courses), 5 (obtained a graduate degree).

• JobGrade: a categorical variable indicating the current job level, the possible levels

being 1–6 (6 highest).

• YrHired: year that an employee was hired.

• YrBorn: year that an employee was born.

• Gender: a categorical variable with values ‘Female’ and ‘Male’.

• YrsPrior: number of years of working experience at another bank prior to working

at the Fifth National Bank.

• PCJob: a dummy variable with value 1 if the employee’s current job is computer

related and value 0 otherwise.
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Table 5: Fitted coefficients (sandwich SD) for model (10)

Response Female PCJob Edu1 Edu2 Edu3 Edu4

HighGrade4 -1.66(.50) -0.11(.71) -4.32(.68) -4.12(.80) -2.33(.45) -2.44(.89)
HighGrade5 -1.66(.50) -1.25(.50) -3.86(.52) -3.92(.59) -2.41(.59) -0.95(.98)

We use JobGrade as the response variable and Gender as one of the covariates.

The aim is to find if the Gender variable, after controlling for other factors such as

educational level and years of prior experience, is significant in explaining JobGrade.

We want to fit as large a model as possible to reduce modelling bias, and our theories

allow us to interpret the model as usual. To simplify analysis, we create a response

variable HighGrade4 which is 0 if JobGrade is less than 4 and 1 otherwise. We

can then fit a logistic regression or a logistic GVCPLM to the data and then carry out

a GLRT to test the gender effect. From figure 2(a), the correlation between Age and

TotalYrsExp (the total years of relevant working experience, calculated from YrHired

and YrsPrior) is high, we use the following logistic GVCPLM

log

(
pH

1− pH

)
= α1(Age) + α2(Age)TotalYrsExp

+ β1Female + β2PCJob +
4∑

i=1

β2+iEdui

(10)

to reduce modelling bias, where pH is the probability of having a job grade 4 or above.

Interaction terms such as that between Female and Edui are considered, but tested

non-significant with GLRT so that we do not include those terms in the model above.

(Including interaction terms increases the number of linear parameters, but theorem 3

still applies.) We use a 20-fold CV and find hCV = 23.5, δCV = 0.1.

Table 5 shows the results of the fit. (Two-cycles estimates using our proposed profile-

kernel procedure.) It has a negative coefficient for Female and appears statistically

significant since the estimated sandwich SD is small. Figure 2(b) shows the standardized

residuals (y − p̂H)/
√

p̂H(1− p̂H) against Age and the fit seems reasonable. (Other

diagnostic plots are not shown.) From figure 2(c), we see that as age increases one has a

better chance of being in a higher job grade. Figure 2(d) shows that the marginal effect

of working experience is large when age is around 30 or less, but start to fall as one gets

older.

We have done another fit using a binary variable HighGrade5 which is similar to

HighGrade4 but is 0 only when job grade is less than 5. The coefficients are shown in

table 5 and the Female coefficient is very close to the first fit.
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Figure 2: (a) and (b):TotalYrsExpand standardized residuals against Age. (c) and (d):

Varying coefficients for the logistic GVCPLM for the data.

Formally, we are testing

H0 : β1 = 0←→ H1 : β1 < 0.

Table 6 shows significant test results no matter we are using HighGrade4 or High-

Grade5 as the response. Not shown in this paper, we have done the test again after

deleting 6 data points corresponding to 5 male executives and 1 female having many

years of working experience and high salaries. The test results are still similar. In fact

from the raw data, female staffs are usually having a lower job grade than male with

similar profile of educational level, working experience and age, even their salaries dif-

ference may not be apparent. The test results support that female staff of the Fifth

National Bank of Springfield is harder to be promoted to a higher job grade than male.

Table 6: Generalized likelihood ratio test for β1 = 0

Response χ2-statistic P-value
HighGrade4 13.8095 0.0002
HighGrade5 11.3544 0.0008
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5 Technical Proofs.

In this section proofs of Theorems 1-4 will be given. We introduce some notations and

regularity conditions for our results to hold. In the following and thereafter, the symbol

⊗ represents the Kronecker product between matrices, and λmin(A), λmax(A) denotes

respectively the minimum and maximum eigenvalues of the matrix A.

Denote the true linear parameter by βn0, with parameter space Ωn ⊂ Rpn . Let

ρl(t) = (dg−1(t)/dt)
l
/V (g−1(t), mni(βn) = αβn

(Ui)
TXi + βT

nZni,

µk =
∫

ukK(u)du, Ap(X) = (µi+j)0≤i,j≤p ⊗XXT , α′
βn

(u) =
∂αβn

(u)

∂βn
,

α
(r)′′
βn

(u) =
∂2α

(r)
βn

(u)

∂βn∂βT
n

and ql(x, y) = dl

dxl Q(g−1(x), y) for l = 1, · · · , 4.

Regularity Conditions:

(A) |(Zn)j| , ‖X‖ , are OP (1) and
∥∥∥∂αβn

(u)

∂βnj

∥∥∥ ,
∥∥∥∂2αβn

(u)

∂βnj∂βnk

∥∥∥ and
∥∥∥ ∂3αβn

(u)

∂βnj∂βnk∂βnl

∥∥∥ are finite,

j, k, l = 1, · · · , pn.

(B) In(βn0) = E0

[
∇Qn1(βn0)∇T Qn1(βn0)

]
= E0

{
q2
1(mn1(βn0), Yn1)(Zn1 + α′

βn0
(U1)X1)(Zn1 + α′

βn0
(U1)X1)

T
}

satisfies the condition

0 < C1 < λmin {In(βn0)} ≤ λmax {In(βn0)} < C2 <∞ for all n.

(C) Eβn

∣∣∣ ∂l+jQni(βn)
∂jα∂βnk1

···∂βnkl

∣∣∣ ≤ Cl < ∞, Eβn

∣∣∣ ∂l+jQni(βn)
∂jα∂βnk1

···∂βnkl

∣∣∣2 ≤ C̃l < ∞ for some con-

stants Cl, C̃l and for all n, with l = 1, · · · , 4 and j = 0, 1.

(D) The function q2(x, y) < 0 for x ∈ R and y in the range of the response variable,

and E0 {q2(mn1(βn), Yn1)Ap(X1)|U = u} is invertible.

(E) The functions V ′′(·) and g′′′(·) are continuous. The varying coefficient αβn
(u) is

three times continuously differentiable in βn and u.

(F) The random variable U has a compact support Ω. The density function fU(u) of

U has a continuous second derivative and is uniformly bounded away from zero.

(G) The kernel K is a bounded symmetric density function with bounded support.

Note the above conditions are assumed to hold uniformly in u ∈ Ω. Condition

(D) ensures a unique solution in the local likelihood (4). Condition (B) and (C) are
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uniformity conditions on higher-order moments of the likelihood functions. They are

stronger than those of the usual asymptotic likelihood theory, but they facilitate techni-

cal proofs. Condition (G) is imposed just for the simplicity of proofs. It can be relaxed

at the expense of longer proofs.

Before proving Theorem 1, we need two important lemmas concerning order approx-

imations to the varying coefficients. Let cn = (nh)−1/2, α
(p)
uβn

(u) =
∂pαβn

(u)

∂up . Define the

following:

ᾱni(u) = XT
i

(
p∑

k=0

(Ui − u)k

k!
α

(k)
uβn

(u)

)
+ βT

nZni,

β̂
∗

= c−1
n

(
(â0βn

−αβn
(u))T , h(â1βn

−α′
uβn

(u))T , · · · , hp

p!
(âpβn

−α
(p)
uβn

(u))T

)T

,

X∗
i =

(
1,

Ui − u

h
, · · · ,

(
Ui − u

h

)p)T

⊗Xi.

Lemma 6 Under regularity conditions (A) - (G), for each βn ∈ Ωn, the following holds

uniformly in u ∈ Ω: ∥∥â0βn
(u)−αβn

(u)
∥∥ = OP (hp+1 +

1√
nh

).

Likewise, the norm of the kth derivative of the above with respect to any βnj’s, k =

1, · · · , 4, all have the same order uniformly in u ∈ Ω.

Proof of lemma 6. Our first step is to show that, uniform in u ∈ Ω,

β̂
∗

= Ã−1
n Wn + OP (hp+1 + cn log1/2(1/h)),

where

Ãn = fU(u)E0

{
ρ2(αβn

(U)TX + ZT
nβn)Ap(X)|U = u

}
,

Wn = hcn

n∑
i=1

q1(ᾱni, Yni)X
∗
i Kh(Ui − u),

An = hc2
n

n∑
i=1

q2(ᾱni, Yni)X
∗
i X

∗T
i Kh(Ui − u).

Since expression (4) is maximized at (â0βn
, · · · , âpβn

)T , β̂
∗

maximizes
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ln(β∗) = h

n∑
i=1

{
Q(g−1(cnX

∗T
i β∗ + ᾱni), Yni)−Q(g−1(ᾱni), Yni)

}
= WT

nβ∗ +
1

2
β∗TAnβ

∗ +
hc3

n

6

n∑
i=1

q3(ηi, yni)(X
∗T
i β∗)3Kh(Ui − u),

where ηi lies between ᾱni and ᾱni + cnX
∗T
i β∗. The concavity of ln(β∗) is ensured by

condition (D). Note that K(·) is bounded, so under condition (C) the third term on the

right hand side is bounded by

OP (nhc3
nE|q3(η1, Yn1)‖X1‖3Kh(U1 − u)| = OP (cn) = oP (1).

Direct calculation yields

E0An = −Ãn + o(1),

Var0((An)ij) = O((nh)−1),

so that mean-variance decomposition yields

An = −Ãn + oP (1).

Hence we have

(11) ln(β∗) = WT
nβ∗ − 1

2
β∗T Ãnβ

∗ + oP (1).

Note that An is a sum of i.i.d. random variables of kernel form, by lemma (A.2),

(12) An = −Ãn + oP (1) + OP

{
hp+1 + cnlog1/2(1/h)

}
uniformly in u ∈ Ω. Hence by the Convexity lemma (Pollard, 1991), equation (11) also

holds uniformly in β∗ ∈ C for any compact set C. Lemma A.1 then yields

(13) sup
u∈Ω
|β̂

∗
− Ã−1

n Wn|
P−→ 0.

Furthermore, by the definition of β̂
∗
,

(14)
∂

∂β∗ ln(β∗)|β∗=β̂
∗ = hcn

n∑
i=1

q1(ᾱni + cnX
∗T
i β̂

∗
, Yni)X

∗
i Kh(Ui − u) = 0.
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Expanding q1(ᾱni + cnX
∗T
i β̂

∗
, ·) at ᾱni,

(15) Wn + Anβ̂
∗
+

hc3
n

2

n∑
i=1

q3(ᾱni + ζ̂i, Yni)X
∗
i (X

∗T
i β̂

∗
)2Kh(Ui − u) = 0

where ζ̂i lies between 0 and cnX
∗T
i β̂

∗
. Using condition (C), the last term has order

OP (c3
nhn‖β̂

∗
‖2) = OP (cn‖β̂

∗
‖2). By (13), we know that ‖β̂

∗
‖ ≤ oP (1) + ‖Ã−1

n Wn‖ ≤
oP (1) + O(1) · ‖Wn‖. Note that by direct calculation,

E0Wn =

√
nhhp+1

(p + 1)!
α

(p+1)
uβn

(u)T

× E0

{
ρ2(αβn

(U)TX + ZT
nβn)X(µp+1, · · · , µ2p+1)

T ⊗X|U = u
}

+ o(c−1
n hp+1),

Var0Wn = O(1),

(16)

and hence ‖Wn‖ = OP (1 + c−1
n hp+1) which implies OP (cn‖β̂

∗
‖2) = oP (1). With this,

combining (12) and (15), we obtain

Wn − Ãnβ̂
∗ [

1 + OP

{
hp+1 + cnlog1/2(1/h)

}]
+ oP (1) = 0.

Hence,

(17) β̂
∗

= Ã−1
n Wn + OP (hp+1 + cn log1/2(1/h))

holds uniformly for u ∈ Ω by (13). As a direct consequence, by using (16),

(18)
∥∥â0βn

(u)−αβn
(u)
∥∥ = OP (hp+1 +

1√
nh

)

which holds uniformly for u ∈ Ω.

Differentiate both sides of (14) w.r.t. βnj,

(19) hcn

n∑
i=1

q2(ᾱni + cnX
∗T
i β̂

∗
, Yni)

∂ᾱni

∂βnj

+ cn

(
∂β̂

∗

∂βnj

)T

X∗
i

X∗
i Kh(Ui − u) = 0,

which holds for all u ∈ Ω. By Taylor’s expansion and similar treatments to (15),

W1
n + W2

n + (An + B1
n + B2

n)
∂β̂

∗

∂βnj

+ OP (cn‖β̂
∗
‖2),
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where

W1
n = hcn

n∑
i=1

q2(ᾱni, Yni)
∂ᾱni

∂βnj

X∗
i Kh(Ui − u),

W2
n = hcn

n∑
i=1

q3(ᾱni, Yni)cnX
∗T
i β̂

∗∂ᾱni

∂βnj

X∗
i Kh(Ui − u),

B1
n = hc2

n

n∑
i=1

q3(ᾱni, Yni)cnX
∗T
i β̂

∗
X∗

i X
∗T
i Kh(Ui − u),

B2
n =

1

2
hc2

n

n∑
i=1

q4(ᾱni + ζ̂i, Yni)(c
2
nX

∗T
i β̂

∗
)2X∗

i X
∗T
i Kh(Ui − u),

with ζ̂i lies between 0 and cnX
∗T
i β̂

∗
. The equation holds for all u ∈ Ω. Note that

OP (cn‖β̂
∗
‖2) = oP (1) uniformly for u ∈ Ω by (13). The order of W2

n is smaller than

that of W1
n, and the order of B1

n and B2
n are smaller than that of An. Hence

∂β̂
∗

∂βnj

= Ã−1
n W1

n + oP (1 + c−1
n hp+1)

uniformly in u ∈ Ω, by noting that

E0W
1
n =

∂

∂βnj

E0Wn + o(c−1
n hp+1),

Var0W
1
n = O(1).

From this, for j = 1, · · · , pn, we have

(20)

∥∥∥∥∂â0βn
(u)

∂βnj

−
∂αβn

(u)

∂βnj

∥∥∥∥ = OP (hp+1 +
1√
nh

).

uniformly in u ∈ Ω. Differentiating (14) again w.r.t. βnk and so on, and follow similar

arguments as above, we get results for higher order derivatives. �

Lemma 7 Under regularity conditions (A) - (G), the following holds uniformly in u ∈
Ω: ∥∥â0βn

(u)
∥∥ = OP (1).

Likewise, the norm of the kth derivative of the above with respect to any βnj’s, k =

1, · · · , 4, all have order O(1) uniformly in u ∈ Ω.

Proof of lemma 7. It follows immediately from lemma 6 and condition (A). �

Proof of Theorem 1. Let γn =
√

pn/n. Our aim is to show that, for a given ε > 0,

26



(21) P

{
sup
‖v‖=C

Q̂n(βn0 + γnv) < Q̂n(βn0)

}
≥ 1− ε,

so that this implies with probability tending to 1 there is a local maximum β̂n in the

ball {βn0 + γnv : ‖v‖ ≤ C} such that ‖β̂n − βn0‖ = OP (γn).

By Taylor’s expansion,

Dn(v) := Q̂n(βn0 + γnv)− Q̂n(βn0)

= ∇T Q̂n(βn0)vγn +
1

2
vT∇2Q̂n(βn0)vγ2

n +
1

6
∇T (vT∇2Q̂n(β∗

n)v)vγ3
n

:= Î1 + Î2 + Î3,

where β∗
n lies between βn0 and βn0 + γnv, and ‖v‖ = C with C a large constant.

Consider

Î1 =
n∑

i=1

q1(m̂ni(βn0), Yni)(Zni + α̂′
βn0

(Ui)Xi)
Tvγn

=
n∑

i=1

q1(m̂ni(βn0), Yni)(Zni + α′
βn0

(Ui)Xi)
Tvγn

+
n∑

i=1

q1(m̂ni(βn0), Yni)X
T
i (α̂′

βn0
(Ui)−α′

βn0
(Ui))

Tvγn,

:= D1 + D2

where m̂ni(βn) = α̂βn
(Ui)

TXi + βT
nZni. D2 has order smaller than D1 by condition (A)

and lemma 6. Using Taylor’s expansion,

D1 = γnv
T

n∑
i=1

∂Qni(βn0)

∂βn

+
√

nK1 + smaller order terms,

where K1 is as defined in lemma 8 so that within the lemma’s proof we have ‖K1‖ =

oP (1). Using equation (6), we have by mean-variance decomposition∥∥∥∥∥γnv
T

n∑
i=1

∂Qni(βn0)

∂βn

∥∥∥∥∥ = OP (γn

√
nvT In(βn0)v) ≤ OP (

√
npn)γn‖v‖,

where last inequality follows from Cauchy-Schwarz and condition (B).

Hence

|Î1| ≤ OP (
√

npn)γn‖v‖.
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Next consider Î2 = I2 + (Î2 − I2), where

I2 =
1

2
vT∇2Qn(βn0)vγ2

n

= −n

2
vT In(βn0)vγ2

n +
n

2
vT
{
n−1∇2Qn(βn0) + In(βn0)

}
vγ2

n

lemma 16
= −n

2
vT In(βn0)vγ2

n + oP (1)nγ2
n‖v‖2.

We want to show that Î2 − I2 has order smaller than n
2
vT In(βn0)vγ2

n.

By Taylor’s expansion,

Î2 − I2 =
1

2
vT
{
∇2Q̂n(βn0)−∇

2Qn(βn0)
}

vγ2
n

=
1

2
vT∇2

{
n∑

i=1

q1(m̃ni(βn0), Yni)X
T
i (α̂βn0

(Ui)−αβn0
(Ui))

}
vγ2

n

=
1

2
vT Bnvγ2

n + smaller order terms

where m̃ni(βn) = α̃βn0
(Ui)

TXi+ZT
niβn with α̃βn

(Ui) lies between α̂βn
(Ui) and αβn

(Ui).

Denote αβn
(Ui) = αβn

and so on. We have used condition (C) together with lemma 6

and 7 to arrive at the last equality, where

Bn =
n∑

i=1

{q3(mni(βn0), Yni)(Zni + α′
βn0

Xi)(Zni + α′
βn0

Xi)
T (α̂βn0

−αβn0
)TXi

+ q2(mni(βn0), Yni)

q∑
r=1

Xirα
(r)′′
βn0

XT
i (α̂βn0

−αβn
)

+ q2(mni(βn0), Yni)(Zni + α′
βn0

Xi)X
T
i (α̂′

βn0
−α′

βn0
)T

+ q2(mni(βn0), Yni)(α̂
′
βn0
−α′

βn0
)Xi(Zni + α′

βn0
Xi)

T

+ q1(mni(βn0), Yni)

q∑
r=1

Xir(α̂
(r)′′
βn0
−α

(r)′′
βn0

)},

with α′
βn

=
∂αβn

∂βn
and α

(r)′′
βn

=
∂2α

(r)
βn

∂βn∂βT
n
, r = 1, · · · , q. Using Cauchy-Schwarz inequality,

conditions (A), (B), lemma 6 and 7,

|vT Bnvγ2
n| ≤ OP (pn(hp+1 +

1√
nh

)) ·OP (nγ2
n‖v‖2)

= oP (nγ2
n‖v‖2).

By condition (B), we have∣∣∣∣nγ2
n

2
vT In(βn0)v

∣∣∣∣ ≥ O(nγ2
nλmin(In(βn0))‖v‖

2)

= O(nγ2
n‖v‖2).
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Finally consider Î3. Note that

Q̂n(β∗
n) ≤ Qn(βn0) + {

n∑
i=1

q1(mni(βn0), Yni)X
T
i (α̂βn0

(Ui)−αβn0
(Ui))

+
n∑

i=1

q1(m̂ni(βn0), Yni)(Zni + α̂′
βn0

Xi)γnv}(1 + oP (1)),

and by condition (C), lemma 6 and 7 again, we have

Î3 =
1

6

pn∑
i,j,k=1

∂3Qn(βn0)

∂βni∂βnj∂βnk

vivjvkγ
3
n + smaller order terms.

Hence,

|Î3| ≤ OP (np3/2
n γ3

n‖v‖3) ≤ OP (np3/2
n γ3

n‖v‖3)

= OP (

√
p4

n

n
‖v‖)nγ2

n‖v‖2 = oP (1)nγ2
n‖v‖2.

Comparing, we find the order of −nγ2
n

2
vT In(βn0)v, which is negative, dominates all other

terms by allowing ‖v‖ = C to be large enough. This proves (21). �

Before proving Theorem 2, we need another lemma.

Lemma 8 Under regularity conditions (A) - (G), if p3
n/n → 0 with nhp+2 → ∞ and

nh2p+3 = O(1), then for each βn ∈ Ωn,

1√
n
‖∇Q̂n(βn)−∇Qn(βn)‖ = oP (1).

Proof of lemma 8. Define

K1 =
1√
n

n∑
i=1

q2(mni(βn), Yni)(Zni + α′
βn

(Ui)Xi)(α̂βn
(Ui)−αβn

(Ui))
TXi,

K2 =
1√
n

n∑
i=1

q1(mni(βn), Yni)(α̂
′
βn

(Ui)−α′
βn

(Ui))Xi,

then by Taylor’s expansion, lemma 6 and condition (C),

1√
n

(∇Q̂n(βn)−∇Qn(βn)) = K1 + K2 + smaller order terms,

where mni(βn) = αβn
(Ui)

TXi + ZT
niβn. Define, for Ω as in condition (F),

S =
{
f ∈ C2(Ω) : ‖f‖∞ ≤ 1

}
,
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equipped with a metric

ρ(f1, f2) = ‖f1 − f2‖∞,

with ‖f‖∞ = supu∈Ω |f(u)|. We also let, for r = 1, · · · , q and l = 1, · · · , pn,

Arl(y, u,X,Zn) = q2(X
T αβn

(u) + ZT
nβn, y)Xr

(
Znl + XT ∂αβn

(u)

∂βnl

)
,

Br(y, u,X,Zn) = q1(X
T αβn

(u) + ZT
nβn, y)Xr.

By lemma 6, for any δ > 0 and as n→∞, we have

P0

(
n−δ

(
hp+1 +

1√
nh

)−1

(α̂
(r)
βn
− α

(r)
βn

)︸ ︷︷ ︸
:=λr

∈ S

)
→ 1,

P0

(
n−δ

(
hp+1 +

1√
nh

)−1
(

∂α̂
(r)
βn

∂βnl

−
α

(r)
βn

∂βnl

)
︸ ︷︷ ︸

:=γrl

∈ S

)
→ 1,

where r = 1, · · · , q and l = 1, · · · , pn. Hence for sufficiently large n, we have λr, γrl ∈ S.

The following three points allow us to utilize Jain and Marcus (1975) to prove our

lemma.

I. For any v ∈ S, we will view the map v 7→ Arl(y, u,X,Zn)v(u) as an element of

C(S), the space of continuous functions on S equipped with the sup norm. For

v1, v2 ∈ S, we have

|Arl(y, u,X,Zn)v1(u)− Arl(y, u,X,Zn)v2(u)| = |Arl(y, u,X,Zn)(v1 − v2)(u)|
≤ |Arl(y, u,X,Zn)|‖v1 − v2‖.

Similar result holds for Br(y, u,X,Zn).

II. By equation (7), we can easily see that

E0(Arl(Y, U,X,Zn)) = 0

for each r = 1, · · · , q and l = 1, · · · , pn. Also we have

E0(Arl(Y, U,X,Zn)2) <∞,

by regularity conditions (A) and (C). Similar results hold for Br(Y, U,X,Zn).

III. Let H(·, S) denote the metric entropy of the set S w.r.t. the metric ρ. Then

H(ε, S) ≤ C0ε
−1

for some constant C0. Hence
∫ 1

0
H(ε, S)dε <∞.
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Conditions of Theorem 1 in Jain and Marcus(1975) can be derived from the three

notes above, so that we have

1√
n

n∑
i=1

Arl(Yi, Ui,Xi,Zni)(·),

where Arl(Yi, Ui,Xi,Zni)(·), i = 1, · · · , n being i.i.d. replicates of Arl(Y, U,X,Zn)(·) in

C(S), converges weakly to a Gaussian measure on C(S). Hence, since λr, γrl ∈ S,

1√
n

n∑
i=1

Arl(Yi, Ui,Xi,Zni)(λr) = OP (1),

which implies that

1√
n

n∑
i=1

Arl(Yi, Ui,Xi,Zni)(α̂
(r)
βn
− α

(r)
βn

) = OP

(
nδ

(
hp+1 +

1√
nh

))
.

Similarly, apply Theorem 1 of Jain and Marcus(1975) again, we have

1√
n

n∑
i=1

Br(Yi, Ui,Xi,Zni)

(
∂α̂

(r)
βn

∂βnl

−
α

(r)
βn

∂βnl

)
= OP

(
nδ

(
hp+1 +

1√
nh

))
.

Then the column vector K1 which is pn−dimensional, has the lth component equals

q∑
r=1

{
1√
n

n∑
i=1

Arl(Yi, Ui,Xi,Zni)(α̂
(r)
βn
− α

(r)
βn

)

}
= OP

(
nδ

(
hp+1 +

1√
nh

))
,

using the result just proved. Hence we have shown

‖K1‖ = OP

(
√

pnn
δ

(
hp+1 +

1√
nh

))
= oP (1),

since δ can be made arbitrarily small. Similarly, we have ‖K2‖ = oP (1) as well. The

conclusion of the lemma follows. �

Proof of Theorem 2. We first assume nh2p+2 = O(1) and nhp+2 →∞ as in Theorem 1,

so that ‖β̂n − βn0‖ = OP (
√

pn/n). Since ∇Q̂n(β̂n) = 0, by Taylor’s expansion,

∇Q̂n(βn0) +∇2Q̂n(βn0)(β̂n − βn0) +
1

2
(β̂n − βn0)

T∇2(∇Q̂n(β∗
n))(β̂n − βn0) = 0,

where β∗
n lies between βn0 and β̂n. This implies

1

n
∇2Q̂n(βn0)(β̂n − βn0) =− 1

n
(∇Q̂n(βn0)

+
1

2
(β̂n − βn0)

T∇2(∇Q̂n(β∗
n))(β̂n − βn0)).

(22)
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Define C = 1
2
(β̂n − βn0)

T∇2(∇Q̂n(β∗
n))(β̂n − βn0)). Using similar argument to

approximating Î3 in Theorem 1, using lemma 6 and lemma 7, and noting ‖β∗
n−βn0‖ =

oP (1), we have
∥∥∥∇2 ∂2Q̂n(β∗n)

∂βnj

∥∥∥2

= OP (n2p2
n). Hence

‖n−1C‖2 ≤ 1

2n2
‖βn − βn0‖

4

∥∥∥∥∥∇2∂2Q̂n(β∗
n)

∂βnj

∥∥∥∥∥
2

≤ 1

2n2
OP

(
p2

n

n2

) pn∑
j=1

OP (n2p2
n)

= OP

(
p5

n

n2

)
= oP

(
1

n

)
.

(23)

At the same time, by lemma 16 and Cauchy-Schwarz inequality,∥∥∥∥ 1

n
∇2Q̂n(βn0)(β̂n − βn0) + In(βn0)(β̂n − βn0)

∥∥∥∥
≤ oP

(
1
√

npn

)
+ OP

(√
p3

n

n

(
hp+1 +

1√
nh

))

≤ oP

(
1√
n

)
+ OP

(
1√
n
·

(√
p3

n

n
+

√
p3

n

n(p+1)/(p+2)

))

= oP

(
1√
n

)
,

(24)

where the second last line used nh2p+2 = O(1) and nhp+2 → ∞, and the last line used

assumption p5
n/n→ 0.

Combining (22),(23) and (24), we have

In(βn0)(β̂n − βn0) =
1

n
∇Q̂n(βn0) + oP

(
1√
n

)
=

1

n
∇Qn(βn0) + oP

(
1√
n

)
,

(25)

where the last line follows from lemma 8. Consequently, using equation (25), we get

√
nAnI

1/2
n (βn0)(β̂n − βn0)

=
1√
n

AnI
−1/2
n (βn0)∇Qn(βn0) + oP (AnI

−1/2
n (βn0))

=
1√
n

AnI
−1/2
n (βn0)∇Qn(βn0) + oP (1),

(26)

32



where the last equality holds since by condition of Theorem 2, ‖AnI
−1/2
n (βn0)‖ is of

order O(1).

Let Bni = 1√
n
AnI

−1/2
n (βn0)∇Qni(βn0), where Qni(βn) = Q(g−1(mni(βn)), Yni), i =

1, · · · , n. Given ε > 0,

n∑
i=1

E0‖Bni‖21{‖Bni‖ > ε} = nE0‖Bn1‖21{‖Bn1‖ > ε}

≤ n
√

E0‖Bn1‖4 · P(‖Bni‖ > ε).

Using Chebyshev’s inequality,

P(‖Bn1‖ > ε) ≤ E0‖Bn1‖2

ε2

=
1

nε2
E‖AnI

−1/2
n (βn0)∇Qn1(βn0)‖

2

=
1

nε2
tr{I−1/2

n (βn0)A
T
nAnI

−1/2
n (βn0)E0(∇Qn1(βn0)∇Qn1(βn0)

T )}

=
1

nε2
tr{I−1/2

n (βn0)A
T
nAnI

1/2
n (βn0)}

=
1

nε2
tr(G) = O

(
1

n

)
,

(27)

where tr(A) is the trace of square matrix A. Similarly, we can show that

E0‖Bn1‖4 ≤
√

l

n2
λ2

max(AnA
T
n )λ2

max(I
−1
n (βn0))

√
E0∇Qn1(βn0)

T∇Qn1(βn0)

= O

(
p2

n

n2

)
.

(28)

Therefore (27) and (28) together implies

n∑
i=1

E0‖Bni‖21{‖Bni‖ > ε} = O

(
n · pn

n
· 1√

n

)
= O

(√
p2

n

n

)
= o(1).

Also,

n∑
i=1

Var0(Bni) = nVar0(Bn1) = Var0(AnI
−1/2
n (βn0)∇Qn1(βn0))

= AnI
−1/2
n (βn0)E0∇Qn1(βn0)∇Qn1(βn0)

T I−1/2
n (βn0)A

T
n

= AnA
T
n → G.
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Therefore Bni satisfies the conditions of the Lindeberg-Feller central limit Theorem (see

for example, Van der Vaart(1998)). Consequently, asymptotic normality of
∑n

i=1 Bni

follows. Using (26), it means

√
nAnI

1/2
n (βn0)(β̂n − βn0)

D−→ N(0, G).

For the optimal bandwidth h = O(n−1/(2p+3)), we can follow same lines of proof in

Theorem 1 to arrive at
∥∥∥β̂n − βn0

∥∥∥ = OP (
√

pn/n(2p+2)/(2p+3)). Note that the proof of

Theorem 2 is affected only in (23) and (24). With the condition p5
n/n

(2p+1)/(2p+3) → 0,

(23) becomes

‖n−1C‖2 ≤ 1

2n2
OP

(
p2

n

n2
· n2/(2p+3)

) pn∑
j=1

OP (n2p2
n)

= OP

(
p5

n

n2
· n2/(2p+3)

)
= OP (p5

n/n
(2p+1)/(2p+3) · 1

n
)

= oP

(
1

n

)
.

For (24), since p5
n/n → 0, p4

n/n
(2p+2)/(2p+3) → 0 is automatically satisfied and so by

lemma 16,

∥∥∥∥ 1

n
∇2Q̂n(βn0)(β̂n − βn0) + In(βn0)(β̂n − βn0)

∥∥∥∥
= oP

(
n1/(4p+6)

pnn1/(4p+6)
·
√

pn

n

)
+ OP

(
2pnn

−(p+1)/(2p+3) ·
√

pn

n
· n1/(4p+6)

)
= oP

(
1
√

npn

)
+ OP

(
1√
n
·
√

p3
n

n(2p+1)/(2p+3)

)

= oP

(
1√
n

)
.

Hence conclusion of Theorem 2 still follows. �

Refer back to section 2.2, let Bn be a (pn − l)× pn matrix satisfying BnB
T
n = Ipn−l

and AnB
T
n = 0. Since Anβn = 0 under H0, rows of An are perpendicular to βn and the

orthogonal complement of rows of An is spanned by rows of Bn by AnB
T
n = 0. Hence

βn = BT
n γ

under H0, where γ is an (pn − l) × 1 vector. Then under H0 the profile likelihood

estimator is also the local maximizer γ̂n of the problem

Q̂n(BT
n γ̂n) = max

γn

Qn(BT
n γn).
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To prove Theorem 3 we need the following lemmas, the proofs of which are given in the

appendix.

Lemma 9 Assuming regularity conditions (A) - (G). Under the null hypothesis H0 as

in Theorem 3, if nh2p+2 = O(1), then under p5
n/n = o(1),

BT
n (γ̂n − γn0) =

1

n
BT

n {BnIn(βn0)B
T
n }−1BT

n∇Qn(βn0) + oP (n−1/2).

Moreover, if h = O(n−1/(2p+3)), then under p5
n/n

(2p+1)/(2p+3) = o(1), the same con-

clusion still holds.

Lemma 10 Under regularity conditions (A) - (G) and p5
n/n = o(1), we have

1

n
‖∇2Q̂n(β̂n)−∇2Q̂n(βn0)‖ = oP

(
1
√

pn

)
if nh2p+2 = O(1). Moreover if h = O(n−1/(2p+3)), then assuming further p5

n/n
(2p+2)/(2p+3) =

o(1), the same conclusion still holds.

Lemma 11 Assuming the conditions of Theorem 3, under the null hypothesis H0, we

have

Q̂n(β̂n)− Q̂n(BT
n γ̂n) =

n

2
(β̂n −BT

n γ̂n)T In(βn0)(β̂n −BT
n γ̂n) + oP (1).

Proof of Theorem 3. Adapting the notation in lemma 11, substituting equation (30)

into its conclusion we get

Q̂n(β̂n)− Q̂n(BT
n γ̂n) =

n

2
ΦT

nΘ−1/2
n SnΘ−1/2

n Φn + oP (1),

where Θn = In(βn0), Φn = 1
n
∇Qn(βn0) and Sn = In − Θ

1/2
n BT

n (BnΘnB
T
n )−1BnΘ

1/2
n .

Since Sn is idempotent, it can be written as Sn = DT
n Dn where Dn is a l × pn matrix

satisfying DnD
T
n = Il.

By the proof of Theorem 2, substituting An there with Dn, using equation (26), we

have already shown that
√

nDnΘ
−1/2
n Φn

D−→ N(0, Il). Hence

2{Q̂n(β̂n)− Q̂n(βn0)} = n(DnΘ−1/2
n Φn)T (DnΘ−1/2

n Φn)
D−→ χ2

l . �

To prove Theorem 4, we need two lemmas. The proofs are given in the appendix.
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Lemma 12 Assuming the conditions of Theorem 4, we have

n−1‖∇2Qn(β̂n)−∇2Qn(βn0)‖ = oP (1).

Lemma 13 Assuming the conditions of Theorem 4, we have for each βn ∈ Ωn,

n−1‖∇2Q̂n(βn)−∇2Qn(βn)‖ = oP (1).

Proof of Theorem 4. Let Ân = −n−1∇2Q̂n(β̂n), B̂n = ĉov{∇Q̂n(β̂n)} and C = In(βn0).

Write

I1 = Â−1
n (B̂n − C)Â−1

n , I2 = Â−1
n (C − Ân)Â−1

n , I3 = Â−1
n (C − Ân)C−1,

then we can rewrite

Σ̂n − Σn = I1 + I2 + I3.

Our aim is to show that, for all i = 1, · · · , pn,

λi(Σ̂n − Σn) = oP (1),

so that An(Σ̂n −Σn)AT
n

P−→ 0, where λi(A) is the ith eigenvalue of a symmetric matrix

A. Using the inequalities

λmin(I1) + λmin(I2) + λmin(I3) ≤ λmin(I1 + I2 + I3)

≤ λmax(I1 + I2 + I3) ≤ λmax(I1) + λmax(I2) + λmax(I3),

it suffices to show that λi(Ij) = oP (1) for j = 1, 2, 3. From the definition of I1, I2 and I3,

it is clear that we only need to show λi(C − Ân) = oP (1) and λi(B̂n − C) = oP (1). Let

K1 = In(βn0) + n−1∇2Qn(βn0),

K2 = n−1(∇2Qn(β̂n)−∇2Qn(βn0)),

K3 = n−1(∇2Q̂n(β̂n)−∇2Qn(β̂n)),

then

C − Ân = K1 + K2 + K3.

Applying lemma 16 on K1, lemma 12 on K2 and lemma 13 on K3, we have ‖C − Â‖ =

oP (1), and so λi(C−Â) = oP (1). Hence the only thing left to show is λi(B̂n−C) = oP (1).

To this end, consider the decomposition

λi(B̂n − C) = K4 + K5
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where

K4 =

{
1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

∂Q̂ni(β̂n)

∂βnk

}
− In(βn0),

K5 = −

{
1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

}{
1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnk

}
.

Our goal is to show that K4 and K5 are oP (1), which then implies λi(B̂n − C) = oP (1).

We consider K4 first, which can be further decomposed such that

K4 = K6 + K7,

where

K6 =

{
1

n

n∑
i=1

∂Q̂ni(β̂n)

∂βnj

∂Q̂ni(β̂n)

∂βnk

− 1

n

n∑
i=1

∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

}
,

K7 =

{
1

n

n∑
i=1

∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

}
− In(βn0).

Observe that

K6 =

{
1

n

n∑
i=1

∂Qni(βn0)

∂βnj

{
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

}
+

1

n

n∑
i=1

∂Qni(βn0)

∂βnk

{
∂Q̂ni(β̂n)

∂βnj

− ∂Qni(βn0)

∂βnj

}
+

1

n

n∑
i=1

{
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

}{
∂Q̂ni(β̂n)

∂βnj

− ∂Qni(βn0)

∂βnj

}}
,

and this suggests that an approximation of the order of ∂
∂βnk

(Q̂ni(β̂n) − Qni(βn0)) for

each k = 1, · · · , pn and i = 1, · · · , n is rewarding. Define

aik =
∂

∂βnk

(Q̂ni(β̂n)−Qni(β̂n)),

bik =
∂

∂βnk

(Qni(β̂n)−Qni(βn0)),

then ∂
∂βnk

(Q̂ni(β̂n)−Qni(βn0)) = aik + bik. By Taylor’s expansion,

aik =
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(β̂n)

∂βnk

=
∂

∂βnk

(q1(m̃ni(β̂n), Yni)(α̂β̂n
(Ui)−αβ̂n

(Ui))
TXi)

= q2(m̃ni(β̂n), Yni)

(
Znik +

∂α̃β̂n
(Ui)

∂βnk

T

Xi

)
(α̂β̂n

(Ui)−αβ̂n
(Ui))

TXi

+ q1(m̃ni(β̂n), Yni)

(
∂α̂β̂n

(Ui)

∂βnk

−
∂αβ̂n

(Ui)

∂βnk

)T

Xi,
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where m̃ni(β̂n) = α̃β̂n
(Ui)

TXi + ZT
niβ̂n and α̃β̂n

(Ui) lies between αβ̂n
(Ui) and α̂β̂n

(Ui).

Using lemma 6, 7 and conditions (A) and (C), with argument similar to the proof of

lemma 13, we then have

|aik| ≤ OP

(
hp+1 +

1√
nh

)
.

Similarly, using Taylor’s expansion and lemma 6, 7, regularity conditions (A) and

(C),

bik =
∂Qni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

=

{
q2(mni(βn0), Yni)(Zni + α′

βn0
(Ui)Xi)

T (Znik + XT
i

∂αβn0
(Ui)

∂βnk

)

+ q1(mni(βn0), Yni)

(
XT

i

∂2αβn0
(Ui)

∂βnk∂βT
n

)}
(β̂n − βn0) + smaller order terms,

which implies that, by Cauchy-Schwarz inequality, together with Theorem 1 and regu-

larity conditions (A) and (C) again,

|bik| ≤ OP

(
pn√
ndh

)
, where dh =

{
1, if nh2p+2 = O(1).

2p+2
2p+3

, if nh2p+3 = O(1).

Hence using the approximations of aik and bik above,∣∣∣∣ 1n
n∑

i=1

∂Qni(βn0)

∂βnj

{
∂Q̂ni(β̂n)

∂βnk

− ∂Qni(βn0)

∂βnk

}∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣q1(mni(βn0), Yni)

(
Znij + XT

i

∂αβn0
(Ui)

∂βnj

)∣∣∣∣ · |aik + bik|

≤ sup
1≤k≤pn,1≤i≤n

|aik + bik| ·
{

E0

(
|q1(mni(βn0), Yni)|

∣∣∣∣Znij + XT
i

∂αβn0
(Ui)

∂βnj

∣∣∣∣)+ oP (1)

}
≤ OP

(
hp+1 +

1√
nh

+
pn√
ndh

)
,

where the second last line follows from mean variance decomposition and conditions (A)

and (C). This shows that

‖K6‖ ≤ OP

(
pn

(
hp+1 +

1√
nh

)
+

√
p4

n

ndh

)
= oP (1)

by the conditions of the Theorem.
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For K7, note that

P

{∥∥∥∥∥
{

1

n

n∑
i=1

∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

}
− In(βn0)

∥∥∥∥∥ ≥ ε

}

≤ 1

n2ε2
E0

pn∑
j,k=1

n∑
i=1

{
∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

− E0

(
∂Qni(βn0)

∂βnj

∂Qni(βn0)

∂βnk

)}2

= O

(
np2

n

n2ε2

)
= O

(
p2

n

n

)
= o(1),

which implies that ‖K7‖ = oP (1). Hence using K4 = K6 + K7,

‖K4‖ ≤ oP (1) + OP

(
pn

(
hp+1 +

1√
nh

)
+

√
p4

n

ndh

)
= oP (1).

Finally consider K5. Define Aj = 1
n

∑n
i=1(aij+bij

) + 1
n

∑n
i=1

∂Qni(βn0)

∂βnj
, where aij and

bij are defined as before, we can then rewrite K5 = {AjAk}. Now

|Aj| ≤ sup
i,j
|aij + bij|+

∣∣∣∣∣ 1n
n∑

i=1

∂Qni(βn0)

∂βnj

∣∣∣∣∣
≤ OP

(
hp+1 +

1√
nh

+

√
p4

n

ndh

)
+ OP (n−1/2),

where the last line follows from the approximations for aij and bij, and mean-variance

decomposition of the term 1
n

∑n
i=1

∂Qni(βn0)

∂βnj
. Hence

‖K5‖ ≤ OP

pn

(
hp+1 +

1√
nh

+

√
p4

n

ndh

)2
 = oP (1),

and the proof completes. �

6 Appendix

Lemma 14 (Lemma A.1) Let C and D be respectively compact sets in Rd and Rp

and f(x, θ) is a continuous function in θ ∈ C and x ∈ D. Assume that θ̂(x) ∈ C

is continuous in x ∈ D, and is the unique maximizer of f(x, θ). Let θ̂n(x) ∈ C be a

maximizer of fn(x, θ). If

sup
θ∈C,x∈D

|fn(x, θ)− f(x, θ)| → 0, then sup
x∈D
|θ̂n(x)− θ̂(x)| → 0, as n→∞.
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Proof: This is Lemma A.1 of Carroll et al. (1997).

Lemma 15 (Lemma A.2) Let (X1, Y1), · · · , (Xn, Yn) be i.i.d. random vectors, where

the Yi’s are scalar random variables. Assume further that E|Y |r <∞ and supx

∫
|y|rf(x, y)dy <

∞ where f denotes the joint density of (X, Y ). Let K be a bounded positive function

with a bounded support, satisfying a Lipschitz condition. Then,

sup
x∈D

∣∣∣∣∣n−1

n∑
i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}

∣∣∣∣∣ = OP

(√
log(1/h)

nh

)
,

provided that n2ε−1h→∞ for some ε < 1− r−1.

Proof: This is a direct result of Mack and Silverman (1982).

Lemma 16 Under conditions of Theorem 1, when nh2p+2 = O(1),∥∥∥∥1

n
∇2Qn(βn0) + In(βn0)

∥∥∥∥ = oP

(
1

pn

)
,∥∥∥∥1

n
∇2Q̂n(βn0) + In(βn0)

∥∥∥∥ = oP

(
1

pn

)
+ OP

(
pn

(
hp+1 +

1√
nh

))
.

Moreover, if h = O(n−1/(2p+3)), then assuming p4
n/n

(2p+2)/(2p+3) = o(1),∥∥∥∥1

n
∇2Qn(βn0) + In(βn0)

∥∥∥∥ = oP

(
1

pnn1/(4p+6)

)
,∥∥∥∥1

n
∇2Q̂n(βn0) + In(βn0)

∥∥∥∥ = oP

(
1

pnn1/(4p+6)

)
+ OP

(
pn

(
hp+1 +

1√
nh

))
.

Proof of lemma 16. First we assume p4
n/n → 0 and nh2p+2 = O(1). Given ε > 0, by

Chebyshev’s inequality,

P
(

pn

∥∥∥∥1

n
∇2Qn(βn0) + In(βn0)

∥∥∥∥ ≥ ε

)
≤ p2

n

n2ε2
E0

pn∑
i,j=1

{
∂2Qn(βn0)

∂βni∂βnj

− E0
∂2Qn(βn0)

∂βni∂βnj

}2

= O

(
np4

n

n2ε2

)
= O

(
p4

n

n

)
= o(1)

which proves the first equation in the lemma. From this, triangle inequality immediately

gives ∥∥∥∥ 1

n
∇2Q̂n(βn0) + In(βn0)

∥∥∥∥ = oP

(
1

pn

)
+ ‖n−1∇2(Q̂n(βn0)−Qn(βn0))‖.
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Note that by Taylor’s expansion,

∇2(Q̂n(βn0)−Qn(βn0)) =
n∑

i=1

∇2q1(m̃ni(βn0), Yni)X
T
i (α̂βn0

(Ui)−αβn0
(Ui)),

where m̃ni(βn) = α̃βn
(Ui) + ZT

niβn, with α̃βn
(Ui) lies between αβn

(Ui) and α̂βn
(Ui).

Expanding the above (details omitted), using lemma 2 and 3, Cauchy-Schwarz inequality

and condition (C), we can obtain

‖n−1∇2(Q̂n(βn0)−Qn(βn0))‖ ≤ OP

(
pn

(
hp+1 +

1√
nh

))
,

and this yields the second equation in the lemma.

Now assume h = O(n−1/(2p+3)) and p4
n/n

(2p+2)/(2p+3). Given ε > 0,

P
(

pnn
1/(4p+6)

∥∥∥∥1

n
∇2Qn(βn0) + In(βn0)

∥∥∥∥ ≥ ε

)
≤ p2

nn
1/(2p+3)

n2ε2
E0

pn∑
i,j=1

{
∂2Qn(βn0)

∂βni∂βnj

− E0
∂2Qn(βn0)

∂βni∂βnj

}2

= O

(
p4

n

n(2p+2)/(2p+3)

)
= o(1)

which proves the third equation. The fourth one follows from similar arguments as

before. �

Proof of lemma 16. In expression (4), we set p = 0, which effectively assumes αβn
(Ui) ≈

αβn
(u) for Ui in a neighborhood of u. Using the same notation as in the proof of lemma

6, we have ᾱni(u) = αβn
(u)TXi + ZT

niβn, β̂
∗

= c−1
n (â0βn

(u) − αβn
(u)) and X∗

i = Xi.

Following the proof of lemma 6, we arrive at equation (19), which in this case is reduced

to

n∑
i=1

q2(X
T
i â0βn

(u) + ZT
niβn, Yni)

(
Znij +

(
∂â0βn

(u)

∂βnj

)T

Xi

)
XiKh(Ui − u) = 0.

Solving for
∂â0βn

(u)

∂βn
from the above equation, which is true for j = 1, · · · , pn, we get the

same expression as given in the lemma.

Hence it remains to show that
∂â0βn

(u)

∂βn
is a consistent estimator of α′

βn
(u). However

this is done by the proof of lemma 6 already, where equation (20) becomes∥∥∥∥∂â0βn
(u)

∂βn

− α̂′
βn

(u)

∥∥∥∥ = OP

(
√

pn

(
h +

1√
nh

))
= oP (1)
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and the proof completes. �

Proof of lemma 9. Since BnB
T
n = Ipn−l, for each v ∈ Rpn−l, we have

(29) ‖BT
n v‖ ≤ ‖v‖.

Following the proof of Theorem 1, we still have ‖BT
n (γ̂n − γn)‖ = OP

(√
pn

n

)
when

nh2p+2 = O(1) (resp. ‖BT
n (γ̂n − γn)‖ = OP

(√
pn

n
· n1/(4p+6)

)
when h = O(n−1/(2p+3))).

Hence under p5
n/n→ 0 (resp. p5

n/n
(2p+1)/(2p+3)), following the proof of Theorem 2,

In(βn0)B
T
n (γ̂n − γn0) =

1

n
∇Q̂n(βn0) + oP

(
1√
n

)
lemma8⇒ In(βn0)B

T
n (γ̂n − γn0) =

1

n
∇Qn(βn0) + oP

(
1√
n

)
Eqn.(29)⇒ BnIn(βn0)B

T
n (γ̂n − γn0) =

1

n
Bn∇Qn(βn0) + oP

(
1√
n

)
⇒ BT

n (γ̂n − γn0) =
1

n
BT

n (BnIn(βn0)B
T
n )−1Bn∇Qn(βn0) + oP

(
1√
n

)
,

where the last line is true since BnIn(βn0)B
T
n has eigenvalues uniformly bounded away

from 0 and infinity, like In(βn0) does. �

Proof of lemma 10. First we assume nh2p+2 = O(1). By Taylor’s expansion and Cauchy-

Schwarz inequality,

1

n2
‖∇2Q̂n(β̂n)−∇2Q̂n(βn0)‖

2 ≤ 1

n2

∥∥∥∇T (∇2Q̂n(β∗
n))
∥∥∥2

· ‖β̂n − βn0‖
2

=
1

n2
OP (n2p3

n) ·OP

(pn

n

)
= OP

(
p4

n

n

)
= oP

(
1

pn

)
,

where β∗
n lies between β̂n and βn0. The second line follows from the result of Theorem

1 and the proof of order for |Î3| in the Theorem.

If h = O(n−1/(2p+3)), then

1

n2
‖∇2Q̂n(β̂n)−∇2Q̂n(βn0)‖

2 ≤ 1

n2

∥∥∥∇T (∇2Q̂n(β∗
n))
∥∥∥2

· ‖β̂n − βn0‖
2

=
1

n2
OP (n2p3

n) ·OP

(pn

n
· n1/(2p+3)

)
= OP

(
p4

n

n
· n1/(2p+3)

)
= oP

(
1

pn

)
,
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where the second line follows from the proof of Theorem 1 again. The last line holds

since we assumed p5
n/n

(2p+2)/(2p+3) → 0. �

Proof of lemma 11. By Taylor’s expansion, expanding Q̂(BT
n γ̂n) at β̂n,

Q̂n(β̂n)− Q̂n(BT
n γ̂n) = ∇T Q̂n(β̂n)(β̂n −BT

n γ̂n)

− 1

2
(β̂n −BT

n γ̂n)T∇2Q̂n(β̂n)(β̂n −BT
n γ̂n)

+
1

6
∇{(β̂n −BT

n γ̂n)T∇2Q̂n(β∗
n)(β̂n −BT

n γ̂n)}(β̂n −BT
n γ̂n)

:= T1 + T2 + T3.

Note T1 = 0 by definition of β̂n. Denote Θn = In(βn0) and Φn = 1
n
∇Qn(βn0). Using

equation (25) and noting that Θn has eigenvalues uniformly bounded away from 0 and

infinity (condition (B)), we have

β̂n − βn0 = Θ−1
n Φn + oP

(
1√
n

)
.

Combining this with lemma 9, under the null hypothesis H0,

β̂n −BT
n γ̂n = Θ−1/2

n {In −Θ1/2
n BT

n (BnΘnB
T
n )−1BnΘ1/2

n }Θ−1/2
n Φn

+ oP (n−1/2).
(30)

But Sn := In − Θ
1/2
n BT

n (BnΘnB
T
n )−1BnΘ

1/2
n is a pn × pn idempotent matrix with rank

pn − (pn − l) = l, it follows by s standard argument that

‖β̂n −BT
n γ̂n‖ = OP

(√
l

n

)
.

Hence using similar argument as in the approximation of order for |Î3| in Theorem 1,

we have

|T3| = OP (np3/2
n ) · ‖β̂n −BT

n γ̂n‖3

= OP

(
np3/2

n · l3/2

n3/2

)
= OP

(
p

3/2
n l3/2

√
n

)
= oP (1).

Hence

Q̂n(β̂n)− Q̂(BT
n γ̂n) = T2 + oP (1).
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Finally by lemma 16 and 10, we have

∥∥∥∥1

2
(β̂n −BT

n γ̂n){∇2Q̂n(β̂n) + nIn(βn0)}(β̂n −BT
n γ̂n)

∥∥∥∥
≤ OP

(
l

n

)
· n
{

oP

(
1
√

pn

)
+ OP

(
pn

(
hp+1 +

1√
nh

))}
= oP

(
l
√

pn

)
+ OP

(
lpn

(
hp+1 +

1√
nh

))
= op(1),

and the conclusion of the lemma follows. �

Proof of lemma 12. Consider

n−1‖∇2Qn(βn)−∇2Qn(βn0)‖
2 =

1

n2

pn∑
i,j=1

(
∂2Qn(β̂n)

∂βni∂βnj

− ∂2Qn(βn0)

∂βni∂βnj

)2

=
1

n2

pn∑
i,j=1

(
pn∑

k=1

∂3Qn(β∗)

∂βni∂βnj∂βnk

(β̂nk − β0k)

)2

≤ 1

n2

pn∑
i,j=1

pn∑
k=1

(
∂3Qn(β∗)

∂βni∂βnj∂βnk

)2

‖β̂nk − β0k‖2,

where β∗ lies between β̂n and βn0. Similar to approximating the order of Î3 in the proof

of Theorem 1, the last line of the above equation is less than or equal to

(31)
1

n2
Op(n

2p3
n)‖β̂n − βn0‖

2.

If nh2p+2 = O(1), then by Theorem 1, we have ‖β̂n − βn0‖ = OP

(√
pn

n

)
. Hence

(31) =
1

n2
OP (n2p3

n)OP

(pn

n

)
= OP

(
p4

n

n

)
= oP (1).

If h = O(n−(2p+3), using similar arguments in the proof of Theorem 1 we have

‖β̂n − βn0‖ ≤ OP

(√
pn/n(2p+2)/(2p+3)

)
. Hence

(31) =
1

n2
OP (n2p3

n)OP

(
pn/n

(2p+2)/(2p+3)
)

= OP (p4
n/n

(2p+2)/(2p+3)) = oP (1). �
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Proof of lemma 13. By Taylor’s expansion,

1

n

∂

∂βnk

(∇Q̂n(βn)−∇Qn(βn))

=
1

n

n∑
i=1

q3(m̃ni(βn), Yni)(Znik +

(
∂α̃βn

(Ui)

∂βnk

)T

Xi)(Zni + α̃′
βn

(Ui)Xi)

×XT
i (α̂βn

(Ui)−αβn
(Ui))

+
1

n

n∑
i=1

q2(m̃ni(βn), Yni)

(
∂α̃′

βn
(Ui)

∂βnk

)
XiX

T
i (α̂βn

(Ui)−αβn
(Ui))

+
1

n

n∑
i=1

q2(m̃ni(βn), Yni)(Zni + α̃′
βn

(Ui)Xi)X
T
i

(
∂α̂βn

(Ui)

∂βnk

−
∂αβn

(Ui)

∂βnk

)
+

1

n

n∑
i=1

q2(m̃ni(βn), Yni)(Znik +

(
∂α̃βn

(Ui)

∂βnk

)T

Xi)(α̂
′
βn

(Ui)− α̂′
βn

(Ui))Xi

+
1

n

n∑
i=1

q1(m̃ni(βn), Yni)

(
∂α̂′

βn
(Ui)

∂βnk

−
α′

βn
(Ui)

∂βnk

)
Xi,

where m̃ni(βn) = α̃βn
(Ui)

TXi +ZT
niβn, with α̃βn

(Ui) lies between α̂βn
(Ui) and αβn

(Ui).

By lemmas 6 and 7, the main order of the above sum comes from the non-tilde version

of individual terms in the sum. Together with regularity conditions (A) and (C),∥∥∥∥1

n

∂

∂βnk

(∇Q̂n(βn)−∇Qn(βn))

∥∥∥∥
≤ O(1) ·

(
sup

i
‖α̂βn

(Ui)−αβn
(Ui)‖+ sup

i

∥∥∥∥∂α̂βn
(Ui)

∂βnk

−
∂αβn

(Ui)

∂βnk
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+ sup

i
‖α̂′

βn
(Ui)− α̂′

βn
(Ui)‖+ sup

i

∥∥∥∥∂α̂′
βn

(Ui)

∂βnk

−
α′

βn
(Ui)

∂βnk

∥∥∥∥)
≤ O(1)oP

(
√

pn

(
hp+1 +

1√
nh

))
,

where the last line follows from lemma 6. Hence

n−1‖∇2Q̂n(βn)−∇2Qn(βn)‖ ≤ oP

(
pn

(
hp+1 +

1√
nh

))
= oP (1)

which follows from conditions on h in the lemma. �
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