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1 Why have time-varying parameters?

Inference on epidemic models is an active topic of research. Moti-
vations are multiple: exploring mechanisms, testing theories, monitoring

control interventions, surveilling upcoming epidemics.

A very typical compartmental model would be:

Infective

Suceptibles ﬁ

Resistent

~

Whith the following definitions:

St + proportion of the population that is susceptible, that can be in-
fected

I+ : proportion of the population that is infected and infective

R; : proportion of the population that is resistent, that is not infective

any more and cannot be infected again
[ : transmission rate

7y ¢ recovery rate

Usually, inference is made for constant values of 3 and +.

However, there are many reasons for 3 to be time-varying:

e Climate forcing is likely to have an impact on immunity and virus

transmission

e Contact patterns evolve according to holidays, school /work periods,

seasonal migrations,...

e Individual awareness to an epidemic can spontaneously decrease, or

at the contrary increase under the influence of preventive measures

e ctc...

2 How to model these time variations?

Fully parametric models for time-varying transmission rates have

been explored:
e sinusoidal
e low-dimensional polynoms, splines,...

+ tractable inference with classic MCMC algorithms

— limiting and arbitrary model choice

”Semi-parametric”’ models, on the other hand, have been used:

e random walk diffusion (Cazelles and Chau 1997, Mathematical Bio-

sciences)

+ very flexible model

— inference implied gaussian approximations (Extended Kalman Filter)

Our proposition

e use a diffusion process for (4's trajectory, typically a geometric Brow-

nian motion to preserve positivity

e apply novel MCMC algorithms to solve the inference problem, with

low-informative priors on the diffusion coefficients
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Going further...

e Try other diffusion processes (Ornstein-Uhlenbeck processes, inte-

grated random walks; ...)

e Chose model from expert knowledge and/or indicators as the Bayes
factor and the DIC.

3 A challenging inference problem

Objective

We want, under the following notations,
Xt dynamic vector of compartments populations
6 : static parameters
(B¢ : dynamic parameters
g(.ly) : observation process model
n : number of observations (y1, .., yn)
N : number of particles

to explore the posterior density p((X¢, G¢,t € [0,T]),0|y1:1)-

Difficulties
e it is a high-dimensional density

e the posterior density and the Kolmogorov forward equation are in-

tractable

Estimating time-varying parameters
with a Particle MCMC algorithm
(Andrieu et al. 2010, JRSS.B)

Initialize 6
Set W/ = 4
for IndIt =1 to Nblterations do
Sample 0* from Q(6, .)
L") =1
fori=1ton—1do
for j =1to N do
Sample (Xgﬂ, ﬁfjr’f) from p(., .]Xg, 0*, ﬁf*’j)
Noting Y7, = h((X},t € [0,t;41])).
set af = g(YZH]yt) and VVZJJrl x ol
end for

L(O%) = L(O7) * (357 W)

Resample (X i'j+1= 55171] ) according to (szﬂ)’ set szﬂ = %
end for
Accept 6 with probability 1 A L(6*)Q(6",0)

L(0)Q(0.,0%)
Sample jmnd from 1, .., NbParticules

‘rand

Keep 0 and ﬁfjj

n

end for

4 Preliminary application: surveilling Influenza outbreaks from Google’s FluTrend data

Google FluTrend Data:
Estimates of Influenza-Like Illnesses cases

(Ginsberg et al. 2008, Nature)
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I  US surveillance data (gathered within 1 to 2 weeks)

B Google FluTrend estimates (computed with a 1-day delay)

A simple model for Influenza:

dS = — (1. Sp1dt
dFy = (BeSeledt — kEy)dt
dly = (kEy — vIp)dt
< d R = yldt
dlog fy = o3dBy
9(ly) =Ny oosy)

Note: FE is the group of individuals who were infected but are
not infectious yet. k1 is the referred to as the latency period.

Informative priors were taken for k and ~y, based on bibliography.

Questions:

e How transmittable is the upcoming strain of influenza?

BiSi
~vT'ot Pop

e Does the effective reproduction rate Ry =

e What is the population immunity to the upcoming strain of in-

fluenza?

vary along time?

a) Validating the algorithm on simulated data

Initial immunity R(0)
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b) 2008-2009 epidemic in France, a ”classic” seasonal epidemic

Initial immunity R(0)
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c) 2009-2010 epidemic in France, the HIN1 pandemic
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Legend:
W Data / simulation values

I Vlean estimate
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