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Abstract 
It is often argued that the New Keynesian Phillips curve is at odds with the data because it 
cannot explain inflation persistence — the difficulty of returning inflation immediately to 
target after a shock without any loss of output. This paper explains how a model where newer 
prices are stickier than older prices is consistent with this phenomenon, even though it 
introduces no deviation from optimizing, forwards-looking price setting. The probability of 
adjusting new and old prices is estimated using a novel method that draws only on 
macroeconomic data, and the findings strongly support the premise of the model. 
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1. Introduction

It is often argued that New Keynesian economics cannot explain the persistence of inflation.
The New Keynesian Phillips curve (NKPC) predicts that once the factors giving rise to high
inflation have passed, inflation can return immediately to target without incurring any loss of
output. This surprising and puzzling implication is a consequence of the absence of past infla-
tion rates from the NKPC, making inflation determination a purely forward-looking process.

This paper shows that microfounded models of price stickiness are able to generate intrinsic
inflation persistence, defined as inflation inherited from the past that cannot be avoided without
suffering a temporary reduction in economic activity. To achieve this, it is necessary to find
a theoretical reason why past inflation rates should appear in the Phillips curve with positive
coefficients. The key ingredient is that firms are more likely to change older rather than newer
prices. This is a plausible pricing strategy when individual prices are costly to adjust and there
is base drift in the general price level. Firms are then reluctant to squander resources changing
prices that have been posted only recently, when those that have remained fixed for a long time
are further from profit-maximizing levels. In contrast to this, the widely used Calvo (1983)
price-setting model underlying the NKPC assumes the probability of price adjustment is the
same for all prices, irrespective of age.

Intuitively, the existence of intrinsic inflation persistence depends on two opposing forces.
To see this, consider the case of a temporary cost-push shock lasting for only one period. When
price changes are costly, and with staggering of adjustment times, some firms respond to the
shock by raising their prices; others take no immediate action. After the shock has dissipated
there are two groups of firms and two countervailing effects on inflation. Those firms that did
change price initially now find their relative prices too high and want to reduce their prices in
money terms. This is the “roll-back” effect. But since the price level has risen, those firms that
did not change price initially now want to raise their money prices to maintain desired relative
prices. This is the “catch-up” effect.

When the probability of changing a price is independent of the age of the price, the roll-
back effect exactly cancels out the catch-up effect and inflation stabilizes immediately. But
when older prices are more likely to be changed than newer prices, catch-up dominates roll-
back, resulting in persistent inflation as the price level continues to rise. A policymaker wishing
to counteract this persistent inflation must engineer a downturn in economic activity to reduce
firms’ costs and desired relative prices.

This paper makes three distinct contributions to the literature on inflation and price set-
ting behaviour. First, it demonstrates how the New Keynesian model can be reconciled with
intrinsic inflation persistence by relaxing the assumption of a constant probability of price ad-
justment, an explanation that involves no deviation from the essence of the model since firms
remain optimizing and forward looking. Intrinsic persistence is linked to the shape of the haz-
ard function for price changes (the probability of a firm posting a new price as a function of
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the time since its previous price change). The insight is that upward-sloping hazard functions,
where newer prices are stickier than older prices, imply a positive relationship between current
and past inflation and hence generate persistent inflation. A downward-sloping hazard function
would imply a negative relationship between current and past inflation.

Second, this paper also introduces a methodological innovation in deriving a simple and
tractable expression for the Phillips curves implied by wide range of price-setting models with
differently shaped hazard functions. These Phillips curves bear a close resemblance to the
“hybrid” New Keynesian Phillips curves currently favoured on empirical grounds, but which
are widely thought to have weak theoretical foundations. It is then shown that the slope of the
hazard function determines whether the coefficients on past inflation are positive or negative.
The new expression for the Phillips curve derived here also has applications beyond the scope
of this paper. It is straightforward to apply it in situations where the NKPC is currently valued
for its ease-of-use, but perhaps not for the realism of its assumptions. Given the ubiquity of the
NKPC in modern monetary policy analysis (see for example Woodford (2003)), it is important
to be able to work with a more general model of price setting, while retaining much of the
NKPC’s user-friendliness.1

Third, there is an empirical contribution in estimating the hazard function for price changes
using only macroeconomic data. It is shown how the hazard function can be identified and es-
timated without the need to have observations of individual prices. It turns out that this can be
achieved with surprisingly simple econometric techniques. Using this approach, it is possible
to test whether there exists a hazard function model that is consistent with observed inflation
dynamics when firms set prices in a purely forward-looking manner. The estimated hazard
function can also be compared to those from the burgeoning microeconometric literature. Es-
timates of the hazard function are presented using U.S. data, and these provide strong support
for a model in which newer prices are stickier than older prices.

The problem of inflation persistence was first brought to the attention of economists by
Fuhrer and Moore (1995). There are actually several stylized facts about inflation dynamics
documented by Mankiw (2001) that the New Keynesian Phillips curve cannot explain on its
own, including the cost of disinflation. The NKPC has also been the subject of direct econo-
metric studies in work such as Galı́ and Gertler (1999), Sbordone (2002), Rudd and Whelan
(2005) and Roberts (2005). The extent to which inflation determination is forward looking as
opposed to backward looking is hotly debated, but most studies find that the data support a sig-
nificant backward-looking component, which is conspicuously absent from the standard New
Keynesian model.

Fuhrer and Moore’s own solution to this problem is a relative contracting model where
nominal wages are set with a concern for achieving a real wage that tracks the real wages of
other workers. This creates a role for past inflation, because high inflation is associated with
high wage growth that indicates one cohort of workers pulling away from the others. Holding

1The methodology is applied by Sheedy (2007) to the question of optimal monetary policy.
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other determinants of inflation constant, high inflation in the past makes it more likely that
there will be inflationary wage pressure in the future as the other cohorts of workers try to close
the gap. A widely used alternative theory states that some fraction of firms relies on a rule
of thumb when setting prices (Galı́ and Gertler, 1999). These firms do not maximize profits
when they post a new price, but instead simply take past prices posted by other firms and add
on a correction for recent inflation. Another popular explanation is proposed by Christiano,
Eichenbaum and Evans (2005), who argue that in between those times when actual pricing
decisions are made, firms continually re-index their prices in line with past inflation. A variant
of this hypothesis has also been put forward by Smets and Wouters (2003). While it is possible
to make a case for each of these ideas, what unites them is an essentially arbitrary role assigned
to past inflation in the process of setting prices or wages. Each model resolves the problem of
inflation determination being partially backward looking by assuming that at least some agents
behave in a backward-looking fashion. This paper takes an alternative approach and argues
that inflation can be significantly backward looking even when all agents remain optimizing
and forward looking.

Others account for inflation persistence by arguing that it results from inflation expectations
not being formed rationally (Paloviita, 2004; Roberts, 1997). In a similar vein, a process of
adaptive learning by agents also explains some persistence (Milani, 2005). Furthermore, it
might be the case that time-variation in the average rate of inflation generates apparent inflation
persistence (Cogley and Sbordone, 2005). The importance of these ideas is discussed further
in Woodford (2007).

Pricing models with non-constant hazard functions have been considered in a number of
earlier studies. The Taylor (1980) model was of course the first example of this kind and
assumes that price changes take place at regular intervals. Guerrieri (2001, 2002) argues that the
Taylor model actually fits empirical inflation dynamics better than the NKPC. Goodfriend and
King (1997) show how it is possible to develop a theoretical model of time-dependent pricing
with a general hazard function. The work of Dotsey, King and Wolman (1999) demonstrates
that models of state-dependent pricing imply increasing hazard functions when there is base
drift in the general price level. Some examples of these increasing hazard functions are studied
by Wolman (1999) in the context of time-dependent pricing. Others have argued that a mixture
of the Calvo and Taylor pricing yields a better model of inflation dynamics (Mash, 2004). It
is also shown by Dotsey (2002) that econometric estimates of the “hybrid” NKPC of Galı́ and
Gertler are biased towards detecting rule-of-thumb firms when prices are actually set according
to the Taylor model. On the other hand, Fuhrer (1997) and Whelan (2007) take a different
view and argue that more general time-dependent pricing models imply Phillips curves with
negative coefficients on past inflation. This would suggest that having an increasing hazard
function leads to a worse fit to the data than the NKPC. However, this claim is not supported
by the results of this paper.

In interpreting these results, it is important to have a clear idea of what the models are try-
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ing to explain. Many studies judge success or failure in explaining inflation persistence using
impulse response and autocorrelation functions for inflation. These are the metrics prepon-
derantly used in statistical work on inflation persistence, as can be seen from Gadzinski and
Orlandi (2004) and Altissimo, Bilke, Levin, Mathä and Mojon (2006). But the danger of this
approach is aptly illustrated by Dittmar, Gavin and Kydland (2005), who argue that a model
with entirely flexible prices can explain much of this reduced-form statistical evidence on infla-
tion persistence. Hence this paper focuses on intrinsic inflation persistence, which is identified
with lags of inflation in the Phillips curve having positive coefficients. As the expression for
the Phillips curve derived here is much simpler than those typically found in previous studies,
it can be shown more directly how an upward-sloping hazard function contributes to explaining
intrinsic inflation persistence.

In addition to macroeconomic theorizing about the shape of the hazard function, there is
now a wealth of microeconometric work that addresses this question. Unfortunately, the results
of these studies are somewhat mixed. Götte, Minsch and Tyran (2005) and Cecchetti (1986)
find strong support for an upward-sloping hazard function. Fougère, Le Bihan and Sevestre
(2005) also find some support for increasing hazard functions for the majority of goods and ser-
vices. On the other hand, work by Campbell and Eden (2005), Dias, Marques and Santos Silva
(2005) and others find strong evidence in favour of mainly downward-sloping hazards. Other
studies such as Baumgartner, Glatzer, Rumler and Stiglbauer (2005) suggest that the hazard
function is decreasing but punctuated by spikes. Nakamura and Steinsson’s (2007) estimated
hazard function is largely flat but with a large spike after one year. These studies differ con-
siderably in their econometric methodology, the range of goods and services they include, and
the countries and time periods they cover. Some of these estimates of the hazard function slope
may be biased downward as a result of not controlling adequately for heterogeneity (Álvarez,
Burriel and Hernando, 2005).

Nonetheless, it is very important to be able to check the consistency of estimated hazard
functions at the micro level with those derived from macroeconomic data, and estimates based
on macro data are extremely rare in the literature. The estimation method proposed here is new,
and the only other attempt based on macroeconomic data is Jadresic (1999). But because the
estimation technique used by Jadresic is based on ordinary least squares, its validity rests on
the very strong assumption of perfect foresight, rather than just on rational expectations as is
needed in this paper.

The plan of the paper is as follows. The assumptions of the model are set out in section 2
and a simple expression for the implied Phillips curve is derived in section 3. This is then used
to derive analytical results linking the shape of the hazard function to the extent of intrinsic
inflation persistence. Section 4 describes the estimation procedure for the hazard function and
presents estimates obtained using U.S. macroeconomic data. It goes on to assess how well the
model can account for inflation dynamics and to compare the results with those obtained in the
microeconometric literature. Finally, section 5 draws some conclusions.
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2. The model

2.1 Firms’ costs and demand

The economy contains a continuum of firms on the unit interval Ω ≡ [0, 1]. Each firm produces
a differentiated good that is an imperfect substitute for the products of other firms. The output
of firm ı ∈ Ω at time t is denoted by Yt(ı). Firm ı can produce output Yt(ı) at total real cost
C

(
Yt(ı); Y∗t

)
, given by

C
(
Yt(ı); Y∗t

)
≡

1
1 + ηcy

Yt(ı)1+ηcy

Y∗t
ηcy

(1)

where the parameter ηcy > 0 is the elasticity of real marginal cost with respect to the firm’s
own output, and Y∗t denotes the common Pareto-efficient level of output for all firms, which
corresponds to the level of output where real marginal cost is equal to one. Efficient output Y∗t
depends on factors such as technology and household preferences, though it is not modelled
here explicitly.2 Firms take efficient output as exogenously given.

Firms’ customers (households, government or other firms) allocate their spending between
different goods to minimize the cost of buying some quantity of a basket of goods. Aggregate
output Yt is defined using a Dixit-Stiglitz aggregator:

Yt ≡

(∫
Ω

Yt(ı)
ε−1
ε dı

) ε
ε−1

(2)

The parameter ε > 1 is the elasticity of substitution between different products. If Pt(ı) is the
money price of firm ı’s product then expenditure minimization by its customers implies that it
faces the following demand function at time t,

Yt(ı) =

(
Pt(ı)
Pt

)−ε
Yt , Pt ≡

(∫
Ω

Pt(ı)1−εdı
) 1

1−ε

(3)

where Pt is the corresponding price index for the basket of goods (2).
Using the demand function in (3) and the cost function in (1), let the level of real profits

earned by firm ı at time t if its relative price is %t(ı) ≡ Pt(ı)/Pt be denoted by z
(
%t(ı); Yt,Y∗t

)
=

%t(ı)1−εYt − C
(
%t(ı)−εYt; Y∗t

)
. By substituting in the functional form from equation (1) and by

defining the output gap Yt ≡ Yt/Y∗t to be ratio of actual aggregate output to efficient output,
real profits are given by:

z
(
%t(ı); Yt,Y∗t

)
=

{
%t(ı)1−ε −

1
1 + ηcy

%t(ı)−ε(1+ηcy)Y
ηcy
t

}
Yt (4)

2See section 4.1 below for an example of how (1) can be derived.

5



2.2 Price stickiness

Instead of choosing relative prices directly, firms post prices in terms of money, and these
money prices are not adjusted at every possible point in time. The frequency of price adjust-
ment is modelled using the framework of time-dependent pricing, where a firm’s probability of
choosing a new price depends on the time elapsed since its previous price change.

Let At ⊂ Ω denote the set of firms that post new prices at time t. The duration of price
stickinessDt(ı) ≡ min

{
i ≥ 0

∣∣∣ ı ∈ At−i

}
for firm ı at time t is the time elapsed since its current

price was posted. A particular model of time-dependent pricing is defined by a hazard function:
a relationship between the probability of price adjustment and the duration of price stickiness.
The hazard function is represented by a sequence of probabilities {αi}

∞
i=1, with αi denoting the

probability of a firm posting a new price if its previous price change occurred i periods ago.
The hazard function is formally defined by:

αi ≡ �
(
At

∣∣∣ Dt−1 = i − 1
)

(5)

Every hazard function is associated with a corresponding survival function, a sequence {ςi}
∞
i=0,

where ςi denotes the probability that a price posted at time t will still be in use at time t + i.
There is a simple relationship between the hazard and survival functions:

ςi =

i∏
j=1

(1 − α j) , ς0 = 1 (6)

Some weak restrictions need to be imposed on the hazard function:

Assumption 1 The hazard function {αi}
∞
i=1 is a sequence of well-defined probabilities 0 ≤

αi ≤ 1, which satisfies the following restrictions:

(i) There is some non-zero probability of price stickiness: α1 < 1
(ii) The probability of price adjustment is never exactly zero: αi ≥ α > 0 for all i = 1, 2, . . ..

Instead of specifying the entire hazard function {αi}
∞
i=1 directly, this paper presents a new

class of hazard functions where the shape is modelled parsimoniously using a small set of
parameters. There is one parameter α to control the overall level of the hazard function and
a set of n parameters {ϕi}

n
i=1 to control its slope. Greater flexibility in specifying the shape

of the hazard function is obtained by increasing n. Using these parameters, the sequence of
price-adjustment probabilities {αi}

∞
i=1 is generated by the following recursion:3

αi = α +

min{i−1,n}∑
j=1

ϕ j

 i−1∏
k=i− j

(1 − αk)


−1

(7)

3Note that if the maximum duration of price stickiness m ≡ min{ i | αi+1 = 1 } implied by (7) is finite, then
the terms of the hazard function corresponding to prices older than m periods can be set to one without loss of
generality.
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Although the recursion (7) for the hazard function is non-linear, it is equivalent to a linear
recursion for the corresponding survival function {ςi}

∞
i=0:

ςi = (1 − α)ςi−1 −

min{i−1,n}∑
j=1

ϕ jςi−1− j , ς0 = 1 (8)

The equivalence of (7) and (8) can be demonstrated using (6). It may be helpful to consider
some examples of what (7) and (8) can be used to model.

Example 1 (All prices are equally sticky) The Calvo (1983) pricing model assumes that the
probability of price adjustment is independent of the duration of price stickiness. In other
words, the hazard function is constant with αi = α for some 0 < α < 1. Hence Calvo pricing is
equivalent to the trivial case of a recursion with n = 0 in (7). The corresponding recursion for
the survival function in (8) is first order implying that ςi = (1 − α)i.

The simplest non-trivial example of a hazard function generated recursively using (7) is:

Example 2 (Newer prices are stickier than older prices) A hazard function that is upward
sloping everywhere can be generated using a first-order recursion in (7). By setting n = 1,
choosing 0 < α < 1 and a parameter ϕ between 0 and (1−α)2/4, a well-defined hazard function
is obtained with αi > αi−1 for all i. The corresponding recursion for the survival function in (8)
is second order with ςi = (1 − α)ςi−1 − ϕςi−2.

A graphical illustration of the hazard and survival functions implied by Examples 1 and 2
is shown in Figure 1.

The formula (7) for {αi}
∞
i=1 makes it clear that α1 is always equal to α, so the parameter

α always controls the initial level of the hazard function, the probability of adjusting a price
posted one period ago. In Example 2, a positive value of the new parameter ϕ implies a pos-
itively sloped hazard function. The result given below shows that this principle extends to all
the hazard functions generated by the recursion (7). Hence the parameters {ϕi}

n
i=1 are referred

to as slope parameters, with positive values associated with positively sloped hazard functions
and negative values with negatively sloped hazards.

Proposition 1 Suppose that the hazard function {αi}
∞
i=1 defined in (5) is generated by the

recursion (7) using parameters α and {ϕi}
n
i=1. Then the slope of the hazard function ∆αi+1 is

connected to the signs of the parameters {ϕi}
n
i=1 as follows:

(a) Flat hazard : ϕi = 0 for all i = 1, . . . , h ⇐⇒ αi+1 = αi = α for all i = 1, . . . , h
(b) Upward-sloping hazards :

i. ϕi ≥ 0 for all i = 1, . . . , h =⇒ αi+1 ≥ αi for all i = 1, . . . , h
ii. ϕ j > 0 for some j = 1, . . . , h ⇐= αi+1 > αi for all i = 1, . . . , h

iii. ϕh > 0 =⇒ α j+1 > α j for some j = 1, . . . , h
(c) Downward-sloping hazards :
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i. ϕi ≤ 0 for all i = 1, . . . , h ⇐= αi+1 ≤ αi for all i = 1, . . . , h
ii. ϕi < 0 for all i = 1, . . . , h =⇒ α j+1 < α j for some j = 1, . . . , h

iii. ϕ j < 0 for some j = 1, . . . , h ⇐= αh+1 < αh

Proof. See appendix A.2. �

The use of the recursion (7) to generate the hazard function raises two technical questions.
First, whether every hazard function satisfying the weak restrictions in Assumption 1 can be
represented by a recursion of the form (7). Secondly and conversely, whether every recursion
(7) generates a hazard function satisfying Assumption 1. In brief, the respective answers are
yes, approximately; and no, but restrictions on α and {ϕi}

n
i=1 can be found to check whether

Assumption 1 is satisfied or not. These answers are justified formally by Propositions 2 and 3
below.

Proposition 2 If a given hazard function {αi}
∞
i=1 satisfies all the requirements of Assumption

1 then:

(i) There exists a parameter α and a sequence {ϕi}
n
i=1 of some length n (possibly infinite)

such that these parameters exactly generate the original hazard function {αi}
∞
i=1 using the

recursion (7).
(ii) If n = ∞ then the sequence of parameters {ϕi}

∞
i=1 is such that limi→∞ ϕi = 0.

(iii) If {α[h]
i }
∞
i=1 is the hazard function generated by (7) but using only the first h terms of the

sequence {ϕi}
n
i=1, then the first h + 1 terms of {α[h]

i }
∞
i=1 agree exactly with those of {αi}

∞
i=1.

Proof. See appendix A.3. �

Informally, Proposition 2 states that although high-order recursions are needed to repres-
ent every possible hazard function, the magnitude of the extra parameters required eventually
becomes very small, so relatively low-order recursions can approximate a wide range of differ-
ently shaped hazard functions.

The second result concerns the restrictions on the parameters necessary and sufficient for the
hazard function to satisfy Assumption 1. An illustrative result applying to first-order recursions
(n = 1) is given below.4

Proposition 3 Suppose the hazard function {αi}
∞
i=1 is generated from parameters α and ϕ us-

ing (7) when n = 1. Then the resulting hazard function is well defined and satisfies Assumption

1 if and only if:

0 < α < 1 , −
1
4
< −α(1 − α) ≤ ϕ ≤

1
4

(1 − α)2 <
1
4

(9)

Proof. See appendix A.4. �

4A general result can be derived that applies to all orders of recursion, though it is more complicated to use.
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2.3 Profit-maximizing, forward-looking price setting

When firms anticipate that the prices they set are likely to be in use for several periods, it is
necessary to balance maximizing profits today with profits in the future when selecting the best
price. Suppose that at time t a firm posts a new money price, referred to as a reset price and
denoted by Rt. If this price is still in use at time τ ≥ t then the firm’s relative price will be Rt/Pτ

and it will earn profits z
(
Rt/Pτ; Yτ,Y∗τ

)
in real terms at that time, where the profit function is

specified in equation (4). Future profits are discounted by financial markets using risk-free
nominal interest rates.5 Future profits also have to be discounted using the survival function
{ςi}

∞
i=0 because a new price might be posted before some of these profits are actually realized.

The objective function of a firm choosing a reset price at time t is

Ft ≡ max
Rt

∞∑
τ=t

ςτ−t�t

 τ∏
s=t+1

Πs

Is

 z ( Rt

Pτ

; Yτ,Y∗τ

) (10)

whereΠt ≡ Pt/Pt−1 is the gross inflation rate between periods t−1 and t, It is the gross nominal
interest rate also between t − 1 and t, and �t[·] is the mathematical expectation operator condi-
tional on all information available at time t. The first-order condition for the profit-maximizing
reset price is obtained by differentiating (10) with respect to Rt,

∞∑
τ=t

ςτ−t�t

 τ∏
s=t+1

1
Is

 z% ( Rt

Pτ

; Yτ,Y∗τ

) = 0 (11)

where z%
(
%t(ı); Yt,Y∗t

)
is the derivative of the profit function (4) with respect to the firm’s own

relative price:

z%
(
%t(ı); Yt,Y∗t

)
= (1 − ε)

{
1 −

ε

ε − 1
%t(ı)−(1+εηcy)Y

ηcy
t

}
%t(ı)−εYt (12)

Now let xt ≡ CY
(
Yt,Y∗t

)
denote the level of real marginal cost in a firm producing out-

put equal to the economy-wide average Yt. An expression for firm-specific real marginal cost
CY

(
Yt(ı); Y∗t

)
is obtained from (1), which shows that xt is an increasing function of the current

output gap Yt ≡ Yt/Y∗t :

CY
(
Yt(ı); Y∗t

)
=

(
Yt(ı)
Y∗t

)ηcy

, xt = Y
ηcy
t (13)

The profit-maximizing reset price Rt is obtained by combining equations (11)–(13),

Rt = Pt

 ε
ε−1

∑∞
τ=t ςτ−t�t

[(∏τ
s=t+1

(
GsΠ

ε
s

Is

)
Π

(1+εηcy)
s

)
xτ

]
∑∞
τ=t ςτ−t�t

[∏τ
s=t+1

GsΠ
ε
s

Is

] 
1

1+εηcy

(14)

5Discounting profits using a more general stochastic discount factor would not change the results presented
here.
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where Gt ≡ Yt/Yt−1 denotes the gross growth rate of aggregate real output. The optimal reset
price is a weighted average of current and future real marginal costs and inflation rates. Note
that all firms choosing a reset price at the same time have an incentive to pick the same value
of Rt appearing in (14).

2.4 Aggregation

Denote the distribution of the duration of price stickiness at time t using the sequence {θit}
∞
i=0,

where θit ≡ � (Dt = i) is the proportion of firms using a price set i periods ago. The definition
of the hazard function implies this distribution evolves over time according to:

θ0t =

∞∑
i=1

αiθi−1,t−1 , θit = (1 − αi)θi−1,t−1 i = 1, 2, . . . (15)

If the hazard function satisfies Assumption 1 then the scope for time-variation in the distribu-
tion {θit}

∞
i=0 is transitory: there is a unique stationary distribution to which the economy must

converge.

Proposition 4 Suppose that the hazard function {αi}
∞
i=1 satisfies all the requirements of As-

sumption 1 and that the evolution over time of the distribution of the duration of price stickiness

is given by (15).
(i) There exists a unique stationary distribution {θi}

∞
i=0 to which the economy converges from

any starting point.

(ii) Now suppose the hazard function is generated by the recursion in (7) and assume that the

economy has converged to the unique stationary distribution. Then the distribution of the

duration of price stickiness is proportional to the survival function, and the unconditional

probability of price adjustment αe ≡
∑∞

i=1 αiθi−1 and the unconditional expected duration

of price stickinessDe ≡
∑∞

i=1 iθi−1 are given by:

θi =

α +

n∑
j=1

ϕ j

 ςi , αe = α +

n∑
i=1

ϕi , De =
1 −

∑n
i=1 iϕi

α +
∑n

i=1 ϕi
(16)

Proof. See appendix A.5. �

In what follows, the economy is assumed to have converged to the unique stationary distri-
bution {θi}

∞
i=0, so � (Dt = i) = θi for all t. The price level Pt defined in (3) can then be written

in terms of a time-invariant weighted average of past reset prices:

Pt =

 ∞∑
i=0

θiR1−ε
t−i


1

1−ε

(17)
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3. Inflation dynamics

For given stochastic processes for real marginal cost {xt}, the growth rate of real output {Gt} and
the nominal interest rate {It}, equations (14) and (17) determine the inflation rate {Πt}. But as it
is not generally possible to solve this system of non-linear equations analytically, the following
section shows instead how a log-linear approximation to the solution can be found.

3.1 Steady state and log linearization

First note that equations (14) and (17) are homogeneous of degree zero in all prices expressed
in money terms. These equations can then be recast in terms of the gross inflation rate Πt ≡

Pt/Pt−1 and the relative reset price rt ≡ Rt/Pt as follows:

rt =


ε
ε−1

∑∞
τ=t ςτ−t�t

[(∏τ
s=t+1

GsΠ
ε+(1+εηcy)
s
Is

)
xτ

]
∑∞
τ=t ςτ−t�t

[∏τ
s=t+1

GsΠ
ε
s

Is

]


1
1+εηcy

, 1 =

∞∑
i=0

θir1−ε
t−i

 i−1∏
j=0

Πε−1
t− j

 (18)

It is straightforward to check that given a trend inflation rate (Πt = Π̄), a trend rate of output
growth (Gt = Ḡ) and a steady-state nominal interest rate It = Ī, (18) implies a well-defined
steady state for the relative reset price (rt = r̄) and real marginal cost (xt = x̄). For simplicity,
the model is log-linearized around a steady state with zero inflation (Π̄ = 1) and zero real output
growth (Ḡ = 1), which leads to a steady state with r̄ = 1 and 0 < x̄ < 1.6 The steady-state real
interest rate is assumed positive and is represented by Ī/Π̄ = β−1, where β is a discount factor
satisfying 0 < β < 1.

In what follows, log deviations of variables from their steady-state values are denoted by
sans serif letters. For variables that are indeterminate in the steady state, the sans serif letter
simply denotes the logarithm. The equations in (18) can be log-linearized around the steady
state defined above,

Rt =

∞∑
i=0

(
βiςi∑∞

j=0 β
jς j

)
�t

[
Pt+i + ηcxxt+i

]
, Pt =

∞∑
i=0

θiRt−i (19)

where the parameter ηcx ≡ 1/(1+εηcy) represents the sensitivity of an individual firm’s marginal
cost to average real marginal cost xt when it keeps its price constant.

3.2 The Phillips curve

The conventional approach to deriving the Phillips curve implied by a model of time-dependent
pricing is to combine the two equations in (19), eliminate the reset price Rt, and recast the
equation in terms of inflation πt ≡ Pt − Pt−1 and real marginal cost xt. This has a number

6This steady state is chosen for simplicity in many New Keynesian models. It is not difficult to extend the
results in this paper to cases where Π̄ , 1 or Ḡ , 1.
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of drawbacks. First, the resulting equation has a complicated autoregressive distributed lag
structure in inflation, real marginal cost, and conditional expectations of both variables subject
as many different information sets as the maximum duration of price stickiness. This makes
intrinsic inflation persistence very difficult to characterize, as any inflation persistence implied
by this Phillips curve could derive from either the lags of inflation, the lags of real marginal
cost, the lagged expectations of both, as well as from persistence in real marginal cost itself.
Furthermore, because of the presence of expectations of the same variable conditional on many
different information sets, and the need for as many lags and leads of each variable as the max-
imum duration of price stickiness, the Phillips curve equation is extremely difficult to estimate
using the limited-information techniques such as GMM that have proved so popular for the
New Keynesian Phillips curve.

This paper considers an simpler alternative expression for the Phillips curve which circum-
vents these problems of interpretation and estimation. The key to obtaining a simple Phillips
curve is to exploit the recursive parameterization of the hazard function {αi}

∞
i=1 in (7), which

Proposition 2 shows can be used quite generally. With this parameterization, equation (8) char-
acterizes the survival function {ςi}

∞
i=0, which implies that the equation for the profit-maximizing

reset price in (19) can be replaced by the following recursive equivalent:

Rt = β(1 − α)�tRt+1 −

n∑
i=1

βi+1ϕi�tRt+1+i +

1 − β(1 − α) +

n∑
i=1

βi+1ϕi

 (Pt + ηcxxt) (20)

To apply the same approach to the price level equation, note that the result in equation (16)
of Proposition 4 shows that the recursive parameterization of the hazard function implies a
recursion for the stationary distribution of the duration of price stickiness {θi}

∞
i=0:

θi = (1 − α)θi−1 −

min{i−1,n}∑
j=1

ϕ jθi− j−1 , θ0 = α +

n∑
j=1

ϕ j (21)

Hence the price level equation in (19) can be replaced by the following recursive equivalent:7

Pt = (1 − α)Pt−1 −

n∑
i=1

ϕiPt−1−i +

α +

n∑
i=1

ϕi

 Rt (22)

Solving equations (20) and (22) instead of those in (19) yields a much simpler expression for
the Phillips curve.

Theorem 1 Suppose that the hazard function {αi}
∞
i=1 satisfies Assumption 1 and is generated

by the n-th order recursion (7) with parameters α and {ϕi}
n
i=1. If the profit-maximizing reset

price Rt is given by equation (20) and the price level Pt by (22), and 0 < β < 1 and ηcx > 0,

then the Phillips curve relationship between inflation πt = Pt − Pt−1 and real marginal cost xt

7The translation of the equations in (19) into recursive versions (20) and (22) is essentially equivalent to finding
autoregressive representations of invertible moving-average processes.
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is:

πt =

n∑
i=1

ψiπt−i +

n+1∑
i=1

δi�tπt+i + κxxt (23)

Inflation πt depends on current real marginal cost xt, n lags of inflation and n + 1 values

of expected future inflation, where n is the order of the recursion that generates the hazard

function in (7). Note that real marginal cost can be replaced by the output gap using xt = ηcyyt,

a log-linearized version of (13). The coefficients of lagged inflation {ψi}
n
i=1 and future inflation

{δi}
n+1
i=1 depend on the parameters α, {ϕi}

n
i=1 and β. The coefficient κx on real marginal cost

depends on ηcx in addition to these.

The signs of the coefficients on lagged inflation are determined by the hazard function slope

parameters {ϕi}
n
i=1:

(a) Flat hazard : ϕi = 0 for all i = 1, . . . , n ⇐⇒ ψi = 0 for all i = 1, . . . , n
(b) Upward-sloping hazards :

i. ϕi > 0 for all i = 1, . . . , n =⇒ ψi > 0 for all i = 1, . . . , n
ii. ϕi > 0 for some i and ϕ j = 0 for all j , i =⇒ ψ j > 0 for all j = 1, . . . , i

iii. ϕ j > 0 for some j = 1, . . . , n ⇐= ψi > 0 for some i = 1, . . . , n
(c) Downward-sloping hazards :

i. ϕi < 0 for all i = 1, . . . , n =⇒ ψi < 0 for all i = 1, . . . , n
ii. ϕi < 0 for some i and ϕ j = 0 for all j , i =⇒ ψ j < 0 for all j = 1, . . . , i

iii. ϕ j < 0 for some j = 1, . . . , n ⇐= ψi < 0 for some i = 1, . . . , n
There are also n + 1 restrictions linking the coefficients of past inflation {ψi}

n
i=1 and the discount

factor β to the coefficients of future inflation {δi}
n+1
i=1 . These hold for all hazard functions:

δ1 = β + (1 − β)
n∑

j=1

β jψ j , δi = −

βiψi−1 − (1 − β)
n∑

j=i

β jψ j

 i = 2, . . . , n + 1 (24)

Proof. See appendix A.6. �

The key insight here is that the presence of lags of inflation in (23) is perfectly consistent
with purely forward-looking firms whenever the hazard function is not flat, that is, whenever a
non-trivial recursion (7) is used with n ≥ 1. And more importantly, these lags of inflation have
positive coefficients when the hazard function is upward sloping.

The intuition for these findings can be understood by considering the effects of a shock
that initially increases inflation. Because price-adjustment times are staggered, only a subset of
firm increases their prices to begin with. Since all firms that subsequently change price at the
same time choose a common reset price, those firms that did not change price at the first onset
of the shock have further to catch up than those that have already responded to the shock. So
if a larger proportion of subsequent price changes come from those firms that made no price
change initially then the rate of inflation will be higher in the periods after the arrival of the
shock. This is precisely what happens when the hazard function is upward sloping: newly set
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prices are less likely to be changed than those that have been left fixed for a long time. The
extra inflation persistence created in this case relative to a flat hazard function is captured by
the presence of lagged inflation rates with positive coefficients.

One simple illustration of the results of Theorem 1 is given by a comparison of the Phillips
curves implied by Examples 1 and 2. In Example 1, the hazard function is completely flat,
which is the key assumption of the Calvo (1983) model of sticky prices. Such a hazard function
can be generated by the trivial case of a recursion with n = 0 in (7). In this special case,
Theorem 1 simply reproduces the well-known result that the Calvo pricing model implies the
New Keynesian Phillips curve,

πt = β�tπt+1 +

(
α(1 − β(1 − α))ηcx

1 − α

)
xt (25)

where α is the constant probability of price adjustment.8 The NKPC states that inflation de-
pends only on the current level of real marginal cost and expected inflation one period in the
future, and it has attracted criticism because it lacks any role for past inflation. A popular al-
ternative empirical specification, which nests the NKPC, is the so-called hybrid New Keynesian
Phillips curve (HNKPC):

πt = bpπt−1 + b f�tπt+1 + bxxt (26)

This alternative Phillips curve postulates that past inflation is an explicit determinant of current
inflation, but it has proved more difficult to find a readily acceptable theoretical foundation for
bp > 0 in (26).

Now consider the upward-sloping hazard function of Example 2 again. It is generated by a
first-order hazard function recursion using two parameters α and ϕ, with the former controlling
the level of the hazard function and the latter its slope. According to Theorem 1, the Phillips
curve in this case takes the form:

πt = ψπt−1 + β(1 + (1 − β)ψ)�tπt+1 − β
2ψ�tπt+2 + κxxt (27)

Current inflation now depends directly on past inflation, along with real marginal cost and
expected inflation one and two periods in the future. Apart from the second future inflation
term, (27) has the same form as the hybrid New Keynesian Phillips curve (26), but unlike the
latter, it has a clear theoretical foundation.

The coefficient ψ determines the weight attached to past inflation relative to expected future
inflation in influencing current inflation. When β is close to one, the weights on past and
future inflation are approximately ψ and 1 − ψ respectively. A positive value of ψ means that
current inflation depends positively on lagged inflation and that the weight on future inflation is
reduced, though remaining positive if ψ < 1. While expected inflation two periods in the future

8See Woodford (2003) for a detailed derivation of the NKPC and further discussion.
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then has a negative coefficient, it should not be interpreted as implying that higher expected
inflation two periods ahead lowers inflation today. This is because the Phillips curve (27) at
time t + 1 implies that a rise in inflation in period t + 2 creates a similar amount of inflationary
pressure in period t + 1. The sum of the coefficients on both future inflation terms is positive
if ψ < 1, so in this case the expected inflation in period t + 2 would still raise inflation today,
albeit by less than when ψ = 0. Therefore the negative coefficient on expected inflation two
periods in the future should be interpreted only as a reduction in the overall weight attached to
future inflation.

The coefficient ψ of lagged inflation and the coefficient κx of real marginal cost are obtained
from the following functions of the parameters α, ϕ, β and ηcx:

ψ =
ϕ

(1 − α) − ϕ(1 − β(1 − α))
, κx =

(α + ϕ)(1 − β(1 − α) + β2ϕ)ηcx

(1 − α) − ϕ(1 − β(1 − α))
(28)

For the underlying hazard function to be well defined, the inequalities in (9) involving the
parameters α and ϕ must be satisfied. These guarantee that κx is always positive, and that the
sign of ψ depends only on the sign of ϕ. As Proposition 1 shows that ϕ > 0 implies a hazard
function that is positively sloped everywhere, it is seen that this type of hazard function leads
to a Phillips curve in which lagged inflation has a positive coefficient ψ > 0. The magnitude of
this coefficient is increasing in the hazard-function slope parameter ϕ.

The principle that a positively sloped hazard function is associated with positive coefficients
of lagged inflation generalizes to richer models with more parameters. This is because the same
set of parameters {ϕi}

n
i=1 controls both the slope of the hazard function according to Proposition

1, and the signs of the coefficients of lagged inflation in the Phillips curve (23) according to
Theorem 1. This is the key theoretical result contained in this paper, which is stated below
formally:

Corollary 1 Suppose firms maximize profits (10) when they set prices and that the hazard

function for price adjustment {αi}
∞
i=1 satisfies Assumption 1.

(i) There exists a class of hazard functions that are everywhere upward sloping and which

imply that all the coefficients of past inflation in the Phillips curve (23) are positive.

(ii) If one or more of the coefficients of lagged inflation in the Phillips curve (23) is positive

then the hazard function must have one or more upward-sloping sections.

Proof. These claims follow immediately from Propositions 1 and 2 together with Theorem
1. �

Thus by constructing a hazard function using (7) with all the ϕi parameters positive, it is pos-
sible to explain any number of positive coefficients of lagged inflation. In fact, as Proposition 1
and Theorem 1 show, an appropriate choice of signs for the parameters {ϕi}

n
i=1 can generate es-

sentially any pattern of signs for the sequence of coefficients of past inflation. Therefore, on its
own, the hypothesis of time-dependent pricing with forward-looking, profit-maximizing firms
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has no implications for the signs of the coefficients of past inflation. But when combined with
a hypothesis about the shape of the hazard function, there are clear implications for the signs of
these coefficients. Corollary 1 shows that there are hazard functions which are upward sloping
everywhere that imply Phillips curves in which every coefficient of lagged inflation is positive.
This sufficiency result is complemented by a corresponding necessity result. If at least one of
the coefficients of lagged inflation is positive and firms are forward-looking profit maximizers
then the hazard function must be positively sloped somewhere. It follows immediately that
if the hazard function were everywhere downward sloping then all the coefficients on lagged
inflation would be unambiguously negative.

4. Estimating the hazard function

The analysis in section 3 demonstrates that the shape of the hazard function is systematically
related to inflation dynamics. By exploiting this insight it is possible to devise a method for
estimating the hazard function that requires only macroeconomic data and simple econometric
techniques. No individual price observations are needed. This method is used to answer the
question of whether a hazard function model can be found that is quantitatively as well as
qualitatively consistent with the behaviour of inflation. The results are also compared with
those derived from the more conventional microeconometric approach.

4.1 Estimation method and specification issues

An observable proxy for real marginal cost

It is first necessary to find some observable proxy for the driving variable xt in the Phillips
curve (23), that is, for the level of real marginal cost in the average firm. One solution is to
replace it with the output gap yt, which then in practice could be equated with the deviation of
aggregate output from some trend. This approach is eschewed here for a number of reasons.
First, the link between average real marginal cost and the output gap derived in section 3.1 may
change in the presence of features such as sticky wages or risk-sharing employment contracts
from which this paper has abstracted. Second, there are many different detrending procedures
for aggregate output and thus a range of “output gap” measures to choose from. It is difficult
to know which statistical detrending procedure, if any, delivers a measure consistent with the
theoretical concept of the output gap required by the model.

An alternative approach that has become popular in work on the New Keynesian Phillips
curve is to use (real) unit labour costs in place of real marginal cost (Galı́ and Gertler, 1999;
Sbordone, 2002). Unit labour costs have the advantage of being readily measurable without
the need for detrending. Justifying the substitution of unit labour costs for real marginal cost
requires a few more assumptions beyond those introduced in section 2.1. Assume each firm
ı ∈ Ω in the economy faces a Cobb-Douglas production function Yt(ı) = AtHt(ı)ηyh . Firm ı
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produces output Yt(ı) by using Ht(ı) hours of a homogeneous labour input. The term At captures
exogenous technological progress, and the parameter ηyh measures the elasticity of output with
respect to hours and is assumed to satisfy 0 < ηyh ≤ 1. Firms can hire as many hours of labour
as they want at real wage wt.

It is not difficult to show that the Cobb-Douglas production function and the assumption
that firms are wage takers implies that the total real cost function C

(
Yt(ı); Y∗t

)
takes the form

given in equation (1), with parameter ηcy = (1 − ηyh)/ηyh measuring the elasticity of firms’ real
marginal cost with respect to their own output. If Ht is the total number of hours supplied by all
workers then the combination of the labour market equilibrium condition, the individual Cobb-
Douglas production functions for each firm and the demand curves in (3) implies an aggregate
production function Yt = At(Ht/∆t)ηyh , where ∆t is an index of relative-price dispersion.

Average real marginal cost is defined by xt ≡ CY
(
Yt,Y∗t

)
, and given the aggregate production

function and (13) it follows that xt = (wtHt)/(ηyhYt∆t). Hence if �t ≡ wtHt/Yt is the labour share
of income then xt = �t/(ηyh∆t). Since the first-order terms of a Taylor expansion of ∆t around
the steady state defined in section 3.1 are all zero, the log deviation xt of real marginal cost from
its steady-state value is equal to the log deviation st of the labour share, ignoring second- and
higher-order terms. In the data, unit labour costs are defined as labour compensation divided
by output, so when expressed in real terms this measure is equivalent to the labour share of
income, and hence to real marginal cost, under the assumptions made in this section.

Identification

The approach to identifying the hazard function {αi}
∞
i=1 using macroeconomic data relies on the

connection between the coefficients {ψi}
n
i=1, {δi}

n+1
i=1 and κx appearing in the Phillips curve (23)

and the hazard function parameters α and {ϕi}
n
i=1.

Suppose first that the Phillips curve coefficients are identified. There are 2(n + 1) of these
coefficients, and n + 3 underlying parameters to be identified, namely α, {ϕi}

n
i=1, β and ηcx. A

result of Theorem 1 is that each inflation coefficient ψi or δi is a function of α, {ϕi}
n
i=1 and the

discount factor β. But the mapping between the coefficients and the parameters is non-linear,
and it turns out that if any subset of size n of {ψi}

n
i=1 and {δi}

n+1
i=1 is known then the remaining

n + 1 coefficients can be inferred given the value of β. So in total, the Phillips curve coefficients
provide only n + 2 independent pieces of information about the parameters and thus an extra
restriction is needed.

This extra information is provided by a calibration of the elasticities ε and ηcy, which pins
down ηcx = 1/(1 + εηcy). The equations in (18) imply ε/(ε − 1)x̄ = 1, where x̄ is steady-state
real marginal cost. It follows that the model generates an average markup on marginal cost of
1/(ε − 1). By combining this result with the analysis from the previous sub-section, the model
is seen to imply an average labour share of income of (ε− 1)/(ε(1 + ηcy)). The average markup
is set to 20%, which implies a price elasticity of demand ε = 6. With the average labour
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share equal to 67%, an elasticity of real marginal cost with respect to output of ηcy = 0.25 is
required. It follows that ηcx = 0.4. As a robustness check, the special case of ηcx = 1 is also
considered. This was originally the only case considered in Galı́ and Gertler’s (1999) work on
the New Keynesian Phillips curve. The subsequent study by Galı́, Gertler and López-Salido
(2001) considers both ηcx = 1 and 0 < ηcx < 1. From the results derived earlier, it is apparent
that ηcx = 1 requires ηcy = 0, which is equivalent to no diminishing returns to labour in the
short run. This seems implausible, so ηcx = 0.4 is the preferred choice here.

Even if the hazard function parameters α and {ϕi}
n
i=1 are identified, there is no guarantee

that their estimated values will automatically imply a well-defined hazard function. Theorem
1 reveals that a hazard function satisfying Assumption 1 generated by (7) using α and {ϕi}

n
i=1

necessarily implies a Phillips curve of the form (23) for some coefficients {ψi}
n
i=1, {δi}

n+1
i=1 and κx.

But the converse is not true for the hazard function parameters recovered from any arbitrary set
of Phillips curve coefficients. However, once the parameters are estimated, it is possible to test
whether the implied hazard function is well defined or not.

The foregoing discussion assumes that the coefficients in the Phillips curve (23) are them-
selves identified. Suppose the Phillips curve equation (23) holds with an error term νt ∼

IID(0, σ2
ν), and that real marginal cost xt is replaced by the observable labour share of in-

come st (real unit labour cost) as explained earlier. If the expected future inflation rates are
replaced by their realized values then the Phillips curve equation becomes πt =

∑n
i=1 ψiπt−i +∑n+1

i=1 δiπt+i + κxst + υt, where υt ≡ νt −
∑n+1

i=1 δiei
t+i is a composite error term that depends on the

i-step ahead prediction errors ei
t ≡ πt − �t−iπt.

At time t, the variables { st , πt , . . . , πt+n+1 } are endogenous and non-predetermined,
so instruments are required to achieve identification of all the coefficients. Let zt−1 be a q × 1
vector of observable variables that are known by firms at time t − 1. If firms do not make
predictable errors when forecasting inflation then υt should be uncorrelated with zt−1, implying
the following moment conditions involving the coefficients {ψi}

n
i=1, {δi}

n+1
i=1 and κx:

�

πt −

n∑
i=1

ψiπt−i −

n+1∑
i=1

δiπt+i − κxst

 zt−1

 = 0 (29)

Identification of the hazard function parameters α and {ϕi}
n
i=1 and the discount factor β therefore

requires there to be at least n + 2 variables in zt−1 that have predictive power for the current and
future endogenous variables appearing in (23). However, since the underlying theory itself
implies that inflation is given by (23), n lags of inflation can always be included in zt−1. This
leaves only two other variables to be found with the necessary predictive power.

Econometric technique

A limited-information approach is employed here to estimating the hazard function using a
single Phillips curve equation. In particular, a generalized method of moments (GMM) estim-
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ator is applied using the moment conditions in (29).9 The methodology mirrors that used by
Galı́ and Gertler (1999) to estimate the New Keynesian Phillips curve.10

The hazard function parameters α and {ϕi}
n
i=1 are estimated using the moment conditions

in (29) and the link with the Phillips curve coefficients {ψi}
n
i=1, {δi}

n+1
i=1 and κx provided by The-

orem 1. This means that the coefficients appearing in the moment conditions (29) are actually
non-linear functions of the estimated parameters, and so the issue of the normalization of the
moment conditions must be addressed. In small samples, the choice of normalization can affect
the results. Rather than taking the moment conditions as they are in (29), these conditions are
multiplied by a function of the parameters that ensures the resulting Phillips curve coefficients
are bounded whenever the set of parameters α and {ϕi}

n
i=1 is bounded.11 The alternative normal-

ization that leaves (29) unchanged, which imposes a coefficient of one on current inflation, is
used as a robustness check. An equivalent pair of normalizations is also considered by Galı́ and
Gertler (1999), who claim that the bounded normalization is shown by simulation studies to
have better small-sample properties than the normalization with a coefficient of one on current
inflation. So the bounded normalization is the preferred specification here and is denoted by
N(1). The alternative normalization on current inflation is denoted by N(2).

The GMM estimator applied in this paper uses a four-lag Newey-West estimator of the
optimal weighting matrix for the moment conditions. For each weighting matrix, the numer-
ical minimization algorithm for the criterion function is iterated until convergence because the
coefficients in the moment conditions are non-linear functions of the parameters. The resulting
estimates are then used to update the weighting matrix, and the process is repeated until the
weighting matrix converges itself. Robust standard errors of the parameter estimates are also
obtained using a four-lag Newey-West estimator of the variance-covariance matrix.12

Data

Quarterly U.S. data from 1960:Q1 to 2003:Q4 are used.13 Inflation is measured by the annu-
alized percentage change in the GDP deflator between consecutive quarters. Real unit labour
costs are given by unit labour costs in the business sector divided by the GDP deflator, and
expressed as a percentage deviation from their average value. The GMM estimation procedure
requires that instruments be found for the current and future endogenous variables appearing in
the Phillips curve. The lags of the following variables were selected for this role in addition to
lags of inflation and unit labour costs themselves: the spread between ten-year Treasury Bond

9The estimation is performed using Cliff’s (2003) GMM package for MATLAB.
10The alternative of full-information maximum likelihood estimation is not pursued here since it would require

a complete model of the data-generating process, and would be less robust than GMM if this were misspecified.
For maximum likelihood estimation of the NKPC, see Lindé (2005) and Kurmann (2004).

11The requisite factor is the expression in the denominators of the coefficients {ψi}
n
i=1, {δi}

n+1
i=1 and κx, as given in

the block of equations (A.4) from the proof of Theorem 1.
12For more details on different GMM estimation methods, see Mátyás (1999).
13The source of the data is the Federal Reserve Economic Data (FRED) database, which is available online at

research.stlouisfed.org/fred2.
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and three-month Treasury Bill yields, quadratically detrended log real GDP, the rate of wage
inflation (annualized percentage change in compensation per hour in the business sector), and
the rate of commodity-price inflation as measured by the percentage change between consec-
utive quarters of a futures-price index. These are very similar to the instruments used in the
original Galı́ and Gertler (1999) study of the NKPC. Based on their statistical significance in
a predictive regression for future inflation, six lags of inflation and commodity-price inflation
are selected as instruments, together with two lags of each of the other variables.

4.2 Estimation results

To establish a benchmark with which later results can be compared, the hazard function is
first estimated when it is constrained to be flat, as in Example 1. This is the Calvo pricing
model underlying the standard New Keynesian Phillips curve. It is obtained by imposing n = 0
in the hazard function recursion (7). There are just two parameters to estimate: the constant
probability of price adjustment α and the discount factor β. The parameter ηcx is calibrated as
discussed in section 4.1. Estimates are presented in Table 1 for all pairings of the calibrated
values of ηcx and the normalizations of the moment conditions detailed in section 4.1. The
preferred specification is ηcx = 0.4 and N(1).

The constant probability of price adjustment is found to be 0.405 per quarter under the
preferred specification ηcx = 0.4 andN(1). This is quite high, though by no means inconsistent
with the micro-level evidence on price adjustment. As (25) shows, the coefficient of future
inflation is determined entirely by the discount factor β. The estimates of β are not significantly
different from one in any specification. The coefficient of unit labour costs st (the labour share)
is positive and significant at the 5% level when the preferred normalizationN(1) is used. Notice
that the standard errors tend to be larger when normalization N(2) is used. As the hazard
function is constrained to be flat, the estimates of the expected probability of price adjustment
αe are identical to the parameter α itself. The expected duration of price stickiness De is
calculated using (16) and is found to be 2.469 quarters under the preferred specification. Under
the alternative specifications, the expected duration is estimated to be noticeably longer. Finally,
none of the J-statistics reports a rejection of the over-identifying moment conditions.14

The estimated hazard and survival functions for the Calvo model are plotted in Figure 2.
These are derived from the estimated parameters under the preferred specification in Table 1.
The hazard function is of course necessarily flat and the survival function decays at a con-
stant geometric rate, as was first seen for Example 1 in Figure 1. The thick and thin bars in
Figure 2 represent one-standard-deviation and two-standard-deviations bands around the point
estimates.

The aim is now to use macroeconomic data to estimate the shape of the hazard function,
imposing as few a priori restrictions as possible on what shapes are admissible. A first step

14The J-statistic is the Hansen test of over-identifying restrictions derived from surplus moment conditions. See
Mátyás (1999) for further details.
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towards this goal is taken by estimating a hazard function with both a level parameter α and
one slope parameter ϕ1. This is done by considering hazard functions in the class generated
by first-order recursions, as illustrated by Example 2. This allows monotonically increasing
hazard functions to be accommodated, and these have been seen to generate Phillips curves in
which lagged inflation has a positive coefficient.

The estimation results for the parameters α, ϕ1 and β of the first-order recursive model are
displayed in Table 2. What is immediately apparent is that the estimates of ϕ1 are positive and
statistically significant at the 5% level for all specifications. This represents a strong rejection of
the Calvo model, which is equivalent to the null hypothesis ϕ1 = 0 within this class of models.
By invoking the results of Proposition 1, the point estimates of ϕ1 imply a hazard function that
is increasing everywhere. The parameter α now needs to be interpreted differently from the
Calvo model results in Table 1. Here it is merely the probability of a firm changing a price that
was posted at some time during the previous quarter. The estimates of α in Table 2 are much
lower than those in Table 1, and are not significantly different from zero in any case. In the
other columns of Table 2, the estimates of β are quite low but insignificantly different from one.
The J-statistics fail to reject the over-identifying restrictions in any specification.

As discussed in section 4.1, the restrictions on the parameters α and ϕ1 needed to ensure
that the implied hazard function is well defined are not imposed at the estimation stage. The
rationale for doing this is to allow these theoretical restrictions to be tested and thus assess
whether inflation dynamics are consistent with a well-defined hazard function model. Propos-
ition 3 shows that for the first-order model, the restrictions are given by the inequalities in (9).
The first of these is 0 < α < 1. The estimate from the preferred specification passes this test,
and while the point estimates under the alternative specifications fail to do so, none of the viol-
ations is statistically significant. The next condition from (9) to check is given as (1−α)2/4−ϕ1

in a column of Table 2. According to (9), this should be positive if the hazard function is to be
well defined everywhere. There are small and statistically insignificant violations of this con-
dition in three out of the four specifications considered in Table 2. The third condition required
by (9) is automatically satisfied because all the point estimates of ϕ1 are positive.

Plots of the implied hazard and survival functions for the estimated first-order recursive
model are shown in Figure 3. As usual, these are plotted for the parameters estimated under the
preferred specification, that is, the first row of Table 2. The hazard function is upward sloping
because the point estimate of ϕ1 is positive. The one- and two-standard-deviation bands in
Figure 3 imply that the estimated hazard function starts at a point insignificantly different from
zero (given by the parameter α) for prices that have been changed very recently, and rises to
a point insignificantly different from one for prices that have been left fixed for six or seven
quarters. Because the estimated parameters fail to satisfy all the inequalities in (9), the point
estimate of the hazard function is not well defined beyond seven quarters. The bands also
become very wide as the duration of price stickiness increases.15 In spite of the wide bands,

15This should not be surprising. Once the proportion of firms using a price of a particular age shrinks to zero
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hypotheses about the slope of the hazard function can be tested directly using the sign of the
parameter ϕ1 as discussed above.

The coefficients of the implied Phillips curve for the first-order model are given in Table
3. The key point to note is that the significantly positive ϕ1 parameter from Table 2 trans-
lates into a significantly positive coefficient on inflation lagged one quarter. Thus the estimated
hazard function shown in Figure 3 implies a non-negligible amount of intrinsic inflation per-
sistence, comparable in magnitude to that found by Galı́ and Gertler (1999) for a model with
backward-looking firms. The parameter estimates also imply a significantly negative coeffi-
cient on expected inflation two quarters in the future, but the coefficient on inflation one quarter
ahead remains significantly positive. As has been discussed, this negative coefficient should
be interpreted merely as a reduction of the weight attached to future inflation in determining
current inflation. In the preferred specification, the coefficient on unit labour costs is positive
and statistically significant at the 5% level.

It is interesting to note that the estimated first-order model is able to generate intrinsic
inflation persistence without requiring noticeably more price stickiness than is found in the
estimated Calvo model. While the expected probability of price adjustment αe is estimated
to be larger in the Calvo model, Tables 1 and 2 show that the average duration De of price
stickiness is 2.198 quarters for the first-order model and 2.469 quarters for the Calvo model.
Inspection of the hazard functions in Figures 2 and 3 shows that the hazard function for the
first-order model is above that of the Calvo model for all prices except those posted in the
previous quarter.

On the basis of the results for the first-order recursive model, a flat hazard function is clearly
rejected by the data in favour of an alternative with a monotonically increasing hazard function.
This new model offers a more promising account of inflation dynamics. However, restricting
attention to hazard functions generated by a first-order recursion in (7) still imposes essentially
arbitrary limitations on the range of allowed hazard function shapes. For this reason, it is
desirable to consider higher-order models. Proposition 2 shows that if the true hazard function
satisfies Assumption 1 and if n is made sufficiently large then a recursion of the form (7) is able
to approximate the model as accurately as is required. But econometric practicalities put some
limits on the maximum order of model that can be estimated because the number of terms in
the Phillips curve (23) rises in step with the order of the recursion.

Starting from n = 2, progressively higher orders of recursion (7) were estimated. The extra
parameter ϕ2 introduced by the second-order model turns out to be statistically insignificant.
More success is had with the cases n = 3 and n = 4 where both ϕ3 and ϕ4 are highly significant.
Beyond that, no additional statistically significant slope parameters are found, with models up
to n = 8 being estimated. The full set of results is not reported here owing to limited space, but
the fourth-order model is presented as typical of these findings. The estimates of the parameters

the probability of such a price being changed ceases to be identified. The Calvo model avoids this problem by
asserting the probability is the same for prices of all ages.
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α, {ϕi}
4
i=1 and β are displayed in Table 4.

The initial probability of price adjustment α is estimated to be low and insignificantly dif-
ferent from zero in all specifications. The slope parameters ϕ1 and ϕ4 are found to be signi-
ficantly positive; ϕ2 is insignificantly different from zero, and ϕ3 is significant and negative.
The mixture of positives and negatives suggests that the implied hazard function is no longer
monotonic. This is confirmed by the plots of the hazard and survival functions in Figure 4. The
point estimate of the hazard function begins at a point insignificantly different from zero for
prices that have just been set, and begins to rise during the first and second quarters of a spell
of price stickiness. It falls back in the third quarter and then rises again in the fourth quarter. At
the beginning of the second year of price stickiness the hazard function rises sharply, but again
falls back somewhat after the middle of the second year. Finally, it rises very sharply again
after around two years of price stickiness, reaching a level not significantly different from one.
These results suggest that firms are more likely to make a price adjustment around the first and
second anniversaries of their previous price change: a feature that also finds some support in the
micro evidence. After a duration of two years, the hazard function is estimated too imprecisely
to draw any firm conclusions.

As is the case with the estimated first-order model, the point estimate of the fourth-order
hazard function in Figure 4 is well defined for most, but not all, durations of price stickiness.
The most prominent failure is in the fourth quarter where the point estimate dips below zero,
but this deviation is not statistically significant. The estimates of the hazard function after the
eighth quarter are much too loose to be able to detect any statistically significant deviation here
either. Therefore, the estimated fourth-order model is very close to implying a well-defined
hazard function, and no statistically significant failure to meet this requirement can be found.

The implied Phillips curve for the estimated fourth-order model is exhibited in Table 5. The
first and the fourth lags of inflation now have significantly positive coefficients, the second lag’s
coefficient is a small and insignificant positive number, and the third lag has a negative coef-
ficient that is statistically significant. Overall, the positive coefficients on the lags of inflation
clearly dominate. Thus the hazard function in Figure 4 provides a rationale for why inflation
rates one quarter ago and one year ago contribute positively to intrinsic inflation persistence.
Among the coefficients on future inflation there is a mixture of positives and negatives. In the
preferred specification, the coefficient of unit labour costs remains positive and significant at
the 10% level.

The conclusions drawn from these results are: that a flat hazard function is resoundingly
rejected; that hazard functions with upward sloping sections are found; that these can justify
the quantitative importance of the positive coefficients of lagged inflation found for estimated
Phillips curves; that although the estimated hazard functions are not well defined for all dura-
tions of price stickiness, no statistically significant rejection of a well-defined hazard function
is found.
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4.3 Comparison with the microeconometric evidence

There are now many studies that estimate the hazard function for price adjustment using mi-
croeconomic data on individual prices (Baumgartner et al., 2005; Campbell and Eden, 2005;
Cecchetti, 1986; Dias et al., 2005; Fougère et al., 2005; Götte et al., 2005; Nakamura and
Steinsson, 2007). There are a range of findings in this literature. Papers such as Götte et al.
(2005) and Cecchetti (1986) find strong evidence in favour of an upward-sloping hazard func-
tion. Both papers use a small number of goods, but have data spanning several decades. Others
such as Campbell and Eden (2005) and Dias et al. (2005) find strong evidence that the hazard
function is downward sloping. Some studies such as Baumgartner et al. (2005) agree that the
hazard function is generally downward sloping, but find that the negative slope is interrupted
by sharp spikes at regular intervals. This group of studies uses data on a very large number of
goods, but these data are drawn from a relatively small number of years in the last decade.

It is argued that some of the findings of downward-sloping hazards can be explained as
the result of a heterogeneity bias (Álvarez et al., 2005). Many studies include a wide range
of products that have different degrees of price stickiness. Heterogeneity biases estimates of
the hazard function slope downward because goods with more flexible prices are less likely
to be found to have long spells of price stickiness.16 As a result of this criticism, studies
such as Nakamura and Steinsson (2007) and Fougère et al. (2005) take careful steps to control
for heterogeneity. Nakamura and Steinsson (2007) allow the level of each product’s hazard
function to be different. They find that the estimated hazard function is then largely flat, with a
large spike after one year. Fougère et al. (2005) allow both the level and the slope of the hazard
function to differ across products. The results are now mixed, with a range of increasing and
decreasing hazards found for different goods and different types of retail outlet. But increasing
hazard functions are in the majority.

If the results based on macro data from section 4 are compared only with those microecono-
metric studies that span several decades including times of high as well as low inflation, then
there is no contradiction between the micro and macro evidence. However, the micro studies
in this group draw on a rather narrow range of goods, though on the other hand this narrow
range may also be a virtue if the heterogeneity bias is thought to be a serious problem. Evid-
ence from the more comprehensive micro studies working with data from the 1990s and 2000s
does present a prima facie contradiction to the macro-data estimates of hazard functions for the
period 1960–2003 derived in this paper. There are two points to bear in mind here. First, it
remains to be seen how robust the finding of a downward-sloping hazard function is once het-
erogeneity is properly controlled for. Second, the theoretical case for an upward-sloping hazard
function is strongest in periods of higher inflation, hence the hazard function slope may not be
a structural feature of the economy. Thus the failure to find a positive slope using data only

16See Heckman and Singer (1984) and Kiefer (1988) for more discussion of the problem of heterogeneity in
duration analysis.
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from a period of low and stable inflation may not be surprising.17 Finally, it should be noted
that hazard function “spikes” found in the microeconometric literature are of course evidence
for a sharply upward-sloping section of the hazard function, and thus contribute to explaining
intrinsic inflation persistence. The fact that the spikes also imply a sharply downward-sloping
section does not offset this effect because the existence of a spike at some duration implies that
much fewer price spells survive beyond that duration to where the hazard function is actually
downward sloping.

5. Conclusions

This paper has studied the link between intrinsic inflation persistence and the price-setting be-
haviour of firms. Intrinsic inflation persistence refers to inflation that occurs purely as a result
of past pricing decisions and cannot be explained by current and expected future fundamentals
such as unit labour costs, output gaps, monetary policy, or cost-push shocks. When intrinsic
inflation persistence is present in an economy, it is not possible for the central bank to bring in-
flation immediately back to target without some loss of output, even if the shocks that gave rise
to the inflation have dissipated. Most empirical studies conclude that inflation determination is
not a purely forward-looking process and that inflation contains a significant backward-looking
component, though the reasons for the existence of this intrinsic inflation persistence are con-
sidered to be a puzzle. But the results of this paper show that there is no contradiction between
such persistence and profit-maximizing, forward-looking price setting by firms.

What turns out to be important for intrinsic inflation persistence is not how much price
stickiness there is on average, but whether there are systematic differences between the sticki-
ness of prices of different ages. In particular, newer prices need to be stickier than older prices
in order to explain this persistence. If older prices are more likely to be adjusted then the
“catch-up” effect of firms whose prices have remained fixed for a long time has a larger impact
on current inflation than the “roll-back” effect of firms who have recently adjusted their prices
after a shock, leading to sustained rises in the price level even following temporary shocks.

In terms of the hazard function for price changes, the most important feature influencing
intrinsic inflation persistence is the slope, not the level. The level could be very high or very
low, representing the extremes of price flexibility or stickiness, but as long as the hazard func-
tion remains flat there can be no intrinsic persistence. To provide a rationale for the type of
intrinsic inflation persistence described above, where high inflation in the past makes it harder
to achieve low inflation today without sacrificing output, it is necessary that the hazard func-
tion is predominantly upward sloping. If the hazard function were predominantly downward
sloping then a perverse result is obtained whereby the higher inflation has been in the past, the

17A preliminary subsample analysis (not reported here) suggests that macro-based estimates of the hazard func-
tion using only data from the mid 1980s to 2000s find a hazard function that is initially downward sloping and
followed by less steeply upward-sloping sections.
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easier it is to achieve low inflation today without cost.
In order to study the link between the hazard function for price changes and intrinsic in-

flation persistence, a methodological innovation is introduced that shows how essentially all
hazard functions have a recursive representation. This allows much simpler expressions to be
obtained for the Phillips curves implied by non-constant hazard models of price setting. The
resulting class of simple Phillips curves closely resembles the “hybrid” New Keynesian Phil-
lips curves widely used in empirical work and policy analysis, but which are thought to have
weak theoretical foundations because they introduce lags of inflation arbitrarily that are not
present in the standard New Keynesian model. But there is nothing arbitrary about these lags:
they are simply the implication of profit-maximizing behaviour by firms when the likelihood
of adjusting prices depends on the amount of time elapsed since the previous price change. By
using this new class of Phillips curves, intrinsic inflation persistence can be precisely defined in
terms of the coefficients of lagged inflation. It is shown analytically how positively sloped haz-
ard functions imply positive values of these coefficients and negatively sloped hazards imply
that these coefficients have negative values.

By building on these insights, this paper then sets out a method for estimating the haz-
ard function for price changes without needing microeconomic data on individual prices. The
hazard function can be identified and estimated using only macroeconomic time-series on in-
flation and unit labour costs and simple econometric techniques. The results of this exercise
strongly reject the flat hazard function underlying the standard New Keynesian Phillips curve.
The point estimates suggest that the hazard function is predominantly upward sloping, start-
ing from a probability of price adjustment not significantly different from zero for prices that
have been changed very recently, rising to a probability not significantly different from one
for prices that have remained sticky for eight or more quarters. In between, the hazard func-
tion initially rises and then falls back during the first year of price stickiness. There is then a
sudden increase in the probability of price adjustment towards the end of the first year and the
beginning of the second year. A similar sudden rise is also found towards the end of the second
year. No statistically significant rejection of a well-defined hazard function is found. Therefore,
in summary, an upward-sloping hazard function model offers a significantly better account of
empirical inflation dynamics without introducing any arbitrary backward-looking behaviour.
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Table 1
Estimates of the Calvo pricing model (n = 0)

Specification§ α β αe] De] J-stat‡ Etπt+1
\ xt

\

ηcx = 0.4 0.405** 0.966** 0.405** 2.469** 17.223 0.966** 0.116**

N(1) (0.053) (0.028) (0.053) (0.322) [0.575] (0.028) (0.040)

ηcx = 0.4 0.217** 0.985** 0.217** 4.601** 14.804 0.985** 0.025
N(2) (0.106) (0.024) (0.106) (2.246) [0.735] (0.024) (0.028)

ηcx = 1.0 0.226** 0.975** 0.226** 4.432** 15.873 0.975** 0.071**

N(1) (0.046) (0.026) (0.046) (0.895) [0.666] (0.026) (0.033)

ηcx = 1.0 0.142* 0.985** 0.142* 7.064* 14.804 0.985** 0.025
N(2) (0.073) (0.024) (0.073) (3.637) [0.735] (0.024) (0.028)

Notes: Estimation of the parameters α and β is by GMM using U.S. quarterly data 1960:Q1–
2003:Q4. The moment conditions are given in (29) and the data are described in section 4.1.
The estimators of the parameters and the GMM weighting matrix are sequentially iterated until
convergence. A four-lag Newey-West estimator of the optimal weighting matrix and the standard
errors is used. Standard errors are given in parentheses, and are calculated using the delta method
for non-linear functions of the estimated parameters.

* Statistically significant at the 10% level.
** Statistically significant at the 5% level.
§ Each specification is a calibrated value of the parameter ηcx and a choice of either normalization
N(1) or N(2). See section 4.1 for further details.

] The expected probability of price adjustment αe and the expected duration of price stickiness De

are inferred from the estimated parameters using equation (16).
‡ This is the Hansen test of over-identifying moment conditions. The p-value is in brackets.
\ These are the implied coefficients of the New Keynesian Phillips curve in (25).
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Table 2
Estimates of the first-order recursive model (n = 1)

Specification§ α ϕ1 β αe] De] 1
4 (1 − α)2 − ϕ1

¶ J-stat‡

ηcx = 0.4 0.132 0.222** 0.899** 0.354** 2.198** −0.034 11.589
N(1) (0.104) (0.063) (0.075) (0.057) (0.303) (0.031) [0.868]

ηcx = 0.4 −0.205 0.406** 0.913** 0.201 2.955** −0.043 9.578
N(2) (0.267) (0.155) (0.130) (0.128) (1.361) (0.048) [0.945]

ηcx = 1.0 −0.048 0.265** 0.926** 0.217** 3.389** 0.010 10.862
N(1) (0.107) (0.081) (0.067) (0.047) (0.693) (0.038) [0.900]

ηcx = 1.0 −0.340 0.471** 0.913** 0.131 4.032* −0.022 9.578
N(2) (0.231) (0.163) (0.130) (0.088) (2.129) (0.048) [0.945]

Notes: Estimation of the parameters α, ϕ1 and β is by GMM using U.S. quarterly data 1960:Q1–2003:Q4.
See the notes to Table 1 for further details.

¶ This value should be positive to ensure that the upward-sloping hazard functions generated by a first-order
recursion are well defined. See Proposition 3 and equation (9) for more details.

Table 3
Implied Phillips curve for the estimated first-order

recursive model (n = 1)

Specification§ πt−1 Etπt+1 Etπt+2 xt

ηcx = 0.4 0.271** 0.923** −0.219** 0.069**

N(1) (0.051) (0.056) (0.036) (0.031)

ηcx = 0.4 0.326** 0.939** −0.272** 0.015
N(2) (0.049) (0.093) (0.061) (0.024)

ηcx = 1.0 0.255** 0.944** −0.219** 0.053*

N(1) (0.053) (0.051) (0.041) (0.028)

ηcx = 1.0 0.326** 0.939** −0.272** 0.015
N(2) (0.049) (0.093) (0.061) (0.024)

Notes: This table reports the coefficients of the Phillips curve
(27) implied by the parameter estimates in Table 2 for each
specification. Standard errors are given in parentheses and are
calculated using the delta method. See the notes to Tables 1
and 2 for more details about the estimation method.
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Table 4
Parameter estimates of the fourth-order recursive model (n = 4)

Specification§ α ϕ1 ϕ2 ϕ3 ϕ4 β αe] De] J-stat‡

ηcx = 0.4 0.148 0.165** −0.013 −0.202** 0.187** 0.866** 0.285** 2.528** 6.110
N(1) (0.110) (0.073) (0.066) (0.079) (0.048) (0.072) (0.069) (0.432) [0.978]

ηcx = 0.4 0.072 0.205** −0.029 −0.171** 0.177** 1.045** 0.254** 2.577** 4.671
N(2) (0.163) (0.086) (0.067) (0.077) (0.058) (0.067) (0.093) (0.599) [0.995]

ηcx = 1.0 0.001 0.187** −0.029 −0.208** 0.221** 0.876** 0.173** 3.536** 5.896
N(1) (0.107) (0.084) (0.071) (0.089) (0.055) (0.074) (0.051) (0.725) [0.981]

ηcx = 1.0 −0.058 0.233** −0.036 −0.171** 0.207** 1.045** 0.175** 3.000** 4.671
N(2) (0.159) (0.097) (0.072) (0.084) (0.068) (0.067) (0.068) (0.932) [0.995]

Notes: Estimation of the parameters α, {ϕi}
4
i=1 and β is by GMM using U.S. quarterly data 1960:Q1–2003:Q4. See the

notes to Table 1 for further details.

29



Table 5
Implied Phillips curve for the estimated fourth-order recursive model (n = 4)

Specification§ πt−1 πt−2 πt−3 πt−4 Etπt+1 Etπt+2 Etπt+3 Etπt+4 Etπt+5 xt

ηcx = 0.4 0.183** 0.008 −0.182** 0.222** 0.889** −0.136** −0.004 0.119** −0.108** 0.048*

N(1) (0.067) (0.065) (0.080) (0.058) (0.061) (0.058) (0.046) (0.058) (0.047) (0.028)

ηcx = 0.4 0.207** 0.012 −0.172** 0.184** 1.034** −0.228** −0.014 0.195** −0.229** 0.025
N(2) (0.064) (0.070) (0.074) (0.057) (0.050) (0.071) (0.077) (0.091) (0.086) (0.023)

ηcx = 1.0 0.181** 0.005 −0.179** 0.220** 0.898** −0.138** −0.002 0.122** −0.114** 0.041
N(1) (0.067) (0.065) (0.080) (0.058) (0.063) (0.059) (0.048) (0.060) (0.050) (0.027)

ηcx = 1.0 0.207** 0.012 −0.172** 0.184** 1.034** −0.228** −0.014 0.195** −0.229** 0.025
N(2) (0.064) (0.070) (0.074) (0.057) (0.050) (0.071) (0.077) (0.091) (0.086) (0.023)

Notes: This table reports the coefficients of the Phillips curve (23) implied by the parameter estimates in Table 4 for each specification.
Standard errors are given in parentheses and are calculated using the delta method. See the notes to Tables 1 and 4 for more details
about the estimation.
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Figure 1
Comparison of the hazard and survival functions implied by Examples 1 and 2
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Notes: The hazard function sequences {αi}
∞
i=0 are generated by equation (7). Example 1 sets n = 0 and

α = 0.25; Example 2 uses n = 1, α = 0 and ϕ = 0.25. The corresponding survival function sequences
{ςi}

∞
i=0 are obtained from (8).
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Figure 2
Estimated hazard function and survival function for the Calvo pricing model (n = 0)
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Notes: The hazard and survival functions are calculated from (7) and (8) using the estimated parameters
from Table 1 under the preferred specification ηcx = 0.4 andN(1). In the graphs, the point estimate is shown
as a cross in the middle of a darkly shaded thick bar that represents a one-standard-deviation band around
the point estimate, which is itself surrounded by a lightly shaded thin bar giving the two-standard-devations
band. The standard deviation is calculated using the delta method.
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Figure 3
Estimated hazard function and survival function for the first-order recursive model (n = 1)

Hazard function

Quarters (i)
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Notes: The hazard and survival functions are calculated from (7) and (8) using the estimated parameters
from Table 1 under the preferred specification ηcx = 0.4 andN(1). In the graphs, the point estimate is shown
as a cross in the middle of a darkly shaded thick bar that represents a one-standard-deviation band around
the point estimate, which is itself surrounded by a lightly shaded thin bar giving the two-standard-devations
band. The standard deviation is calculated using the delta method.
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Figure 4
Estimated hazard function and survival function for the fourth-order recursive model

(n = 4)
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Notes: The hazard and survival functions are calculated from (7) and (8) using the estimated parameters
from Table 1 under the preferred specification ηcx = 0.4 andN(1). In the graphs, the point estimate is shown
as a cross in the middle of a darkly shaded thick bar that represents a one-standard-deviation band around
the point estimate, which is itself surrounded by a lightly shaded thin bar giving the two-standard-devations
band. The standard deviation is calculated using the delta method.
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A. Technical appendix

A.1 Proof of Lemma 1

Let g be a number lying strictly between (1 − d) and 1, which must satisfy 0 < g < 1. The
definition of g then implies that ςi+1 ≤ gςi and hence ςi ≤ g

iς0 for all i ≥ 0. Now let x be any
number strictly between 1 and g−1.

(i) The constant x is defined so that 1 < x < g−1 which implies 0 < gx < 1 and hence that∑∞
i=0 g

i|z|i converges for all z in the disc Dx. By applying the triangle inequality to the function
ς(z) it follows that |ς(z)| ≤ ς0/(1 − gx) if z ∈ Dx, and therefore that ς(z) is analytic on Dx.

(ii) Construct a new function G(z) ≡ (1 − gz)ς(z), which inherits the property that it is
analytic onDx from ς(z). Using the definition of ς(z), G(z) can be written as the sum of G0(z) ≡
ς0 and G1(z) ≡ −

∑∞
i=1(gςi−1 − ςi)zi. Now take any z ∈ Dx. Since |z|i ≤ xi and ςi ≤ gςi−1 the

triangle inequality and some algebraic manipulations show that |G1(z)| ≤ gxς0−
∑∞

i=1(1−gx)xiςi.
Because 0 < gx < 1 and |G0(z)| = ς0, it is established that |G1(z)| < |G0(z)| for all z ∈ Dx.

As a constant function, G0(z) must be analytic, and G1(z) inherits the property from G(z).
Since G(z) = G0(z) + G1(z), Rouché’s Theorem implies that G(z) and G0(z) have the same
number of zeros onDx.18 Since G0(z) clearly has no zeros on this set, neither has G(z). Because
its definition ensures that G(z) inherits any roots of ς(z) = 0, this precludes ς(z) having a zero
in Dx as well.

A.2 Proof of Proposition 1

When deriving the following results, it is convenient to assume n = ∞ in (7) and set any
superfluous ϕi parameters to zero.

(a) This follows immediately from equation (7) by induction.
(b) i. Suppose that the first h recursive parameters are non-negative. Equation (7) then

clearly implies α2 ≥ α1. Now suppose that α1 ≤ α2 ≤ · · · ≤ αi−1 ≤ αi has already been
established for some i ≤ h. The slope of the hazard function can be obtained from (7):

αi+1 − αi =

i−1∑
j=1

ϕ j(αi − αi− j)

 i∏
k=i− j

(1 − αk)


−1

+ ϕi

 i∏
k=1

(1 − αk)

−1

(A.1)

Given the initial supposition, the second term is unambiguously positive, and assuming the
truth of the induction step, the first term must be non-negative. Hence αi+1 ≥ αi, and so the
claim is proved by induction.

ii. Now suppose that αi+1 > αi, but ϕi ≤ 0 for all i = 1, . . . , h. By making use of (A.1)
this leads to a contradiction, thus proving the claim.

iii. This follows from the result in part (c)i. below.

18I am indebted to Graham Brightwell for suggesting this use of Rouché’s Theorem. See any text on complex
analysis, such as Gamelin (2001), for further details about the theorem.
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(c) i. Define the terms of the sequence {φi}
∞
i=1 to be φ1 ≡ 1 − α and φi ≡ −ϕi−1 for i ≥ 2.

With these definitions, the survival function recursion (8) reduces to ςi =
∑i

j=1 φ jςi− j, which can
be flipped around to yield φi = ςi−

∑i−1
j=1 φ jςi− j since ς0 = 1. Now define another sequence {ai}∞i=1

using a1 ≡ 1 − α and ai ≡ αi−1 − αi for i ≥ 2. With these definitions and equation (6) it follows
that ςi =

∏i
j=1

(∑ j
k=1 ak

)
. Next, define some sets Ji ≡

{
(`1, . . . , `i)

∣∣∣∣ ` j ∈ N , 1 ≤ ` j ≤ j
}
,

and use these to reverse the order of summation and multiplication in the expression for φi,
resulting in ςi =

∑
(`1,...,`i)∈Ji

∏i
h=1 a`h

Now construct new sets J∗i ≡ Ji\
(⋃i−1

j=1

(
J∗j × Ji− j

))
recursively from the sets Ji. The

recursion is initialized with J∗1 ≡ J1 ≡ { (1) }. It is straightforward to check that these
definitions lead to well-defined sets since J∗j is always a subset of J j.

It is claimed that φi =
∑

(`1,...,`i)∈J∗i

∏i
h=1 a`h . By looking at the definitions of J∗1 , a1 and φ1,

this claim is certainly true for i = 1. Suppose it has already been proved for i = 1, . . . , j − 1.
Given the induction step and the earlier expression for ς j:

φ j =

 ∑
(`1,...,` j)∈J j

j∏
h=1

a`h

 − j−1∑
k=1

 ∑
(`1,...,` j)∈(J∗k×J j−k)

j∏
h=1

a`h

 (A.2)

It follows that φ j =
∑

(`1,...,` j)∈J j\
(⋃ j−1

k=1(J∗k×J j−k)
) (∏ j

h=1 a`h

)
if the sets J∗k × J j−k and J∗l × J j−l are

disjoint for all k , l, which would prove the earlier claim.
Now suppose for contradiction that (J∗k × J j−k) ∩ (J∗l × J j−l) , ∅, and without loss of

generality take k > l. Hence there is a vector (`1, . . . , ` j) ∈ N j such that (`1, . . . , `k) ∈ J∗k ,
(`1, . . . , `l) ∈ J∗l , and (`l+1, . . . , ` j) ∈ J j−l. This implies that (`l+1, . . . , `k) ∈ Jk−l and hence
(`1, . . . , `k) ∈ J∗l ×Jk−l. But this contradicts the recursive definition ofJ∗k , establishing that the
original sets must be disjoint and hence confirming that the earlier expression for φi is correct
for all i by induction.

Now consider the case where the hazard function {αi}
∞
i=1 is non-increasing for the first h

periods. Using the earlier definition this implies ai ≥ 0 for i = 1, . . . , h + 1. Then the expression
for φi confirms that φi ≥ 0 for these i values. Since ϕi = −φi+1, the claim is proved.

ii. This proved by contradiction similarly to (b)ii.
iii. This follows from part (b)i. above.

A.3 Proof of Proposition 2

Let ς(z) ≡
∑∞

i=0 ςizi denote the z-transform of the sequence of survival probabilities {ςi}
∞
i=0

defined in (6). That equation implies ςi = (1 − αi)ςi−1, which together with Assumption 1,
means that there exists a 0 < α < 1 such that ςi ≤ (1 − α)ςi−1. Consequently, the function ς(z)
has certain useful properties, as stated in the following result:

Lemma 1 Suppose ς(z) ≡
∑∞

i=0 ςizi is a power series with coefficients satisfying ς0 > 0 and

ςi+1 ≤ (1 − d)ςi for all i ≥ 0 for some 0 < d ≤ 1. Then there exists a x > 1 such that:
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(i) The power series ς(z) is convergent and analytic on the closed disc Dx ≡
{
z ∈ C

∣∣∣ |z| ≤ x}
centred at the origin with radius x.

(ii) The equation ς(z) = 0 has no roots in the set Dx.

Proof. See appendix A.1 �

Hence by setting d ≡ α, there must exist a x > 1 such that ς(z) is convergent, analytic and
has no zeros on Dx.

(i) Define the function φ(z) = 1/ς(z), which is well-defined and analytic because of the
previous result, and thus φ(z) can be written as a convergent power series for all z ∈ Dx. It
is always the case that ς0 = 1, so φ(0) = 1, and hence the power series can be expressed as
φ(z) = 1−

∑∞
i=1 φizi in terms of a sequence of coefficients {φi}

∞
i=1. Since φ(z)ς(z) = 1, by equating

coefficients of powers of z it follows that φi = ςi −
∑i−1

j=1 ς jφi− j, and by making the definitions
α ≡ 1−φ1 and ϕi ≡ −φi+1, the survival function recursion recursion (8) is obtained with n = ∞.
This is equivalent to the hazard function recursion (7) when n = ∞.

(ii) Since φ(z) is analytic on Dx and x > 1 it must be the case that α +
∑∞

i=1 ϕi < ∞, and
hence ϕi → 0 as i→ ∞.

(iii) This is straightforward to prove by induction using (7).

A.4 Proof of Proposition 3

Assume ϕ , 0, since the case ϕ = 0 trivially requires just 0 < α < 1 for Assumption 1 to
hold. Let φ(z) ≡ 1 − (1 − α)z + ϕz2 = (1 − ζ1z)(1 − ζ2z) be the characteristic polynomial for
the survival function recursion, where ζ1 and ζ2 denote the reciprocals of the roots of φ(z) = 0.
These satisfy 1 − α = ζ1 + ζ2 and ϕ = ζ1ζ2.

Consider first the case where ϕ > 0. If αi satisfies 0 < αi ≤ ᾱ for some 0 < ᾱ < 1 then
(7) implies 0 < αi+1 ≤ α + ϕ/(1 − ᾱ). It follows that a sufficient condition for Assumption 1 to
be satisfied is ᾱ ≥ α + ϕ/(1 − ᾱ) for some 0 < ᾱ < 1. This is equivalent to φ

(
(1 − ᾱ)−1

)
≤ 0,

which requires that the quadratic equation φ(z) = 0 has real roots. The condition for this is
ϕ ≤ 1

4 (1 − α)2, which is one of the restrictions in (9).
If ζ1 and ζ2 are real then when 0 < α < 1 and ϕ > 0 it follows that ζ1 > 0 and ζ2 > 0.

Without loss of generality, let ζ1 be the largest reciprocal root. Then it must be the case that
0 < ζ1 < 1, and hence there is a ᾱ such that 0 < ᾱ < 1 and φ

(
(1 − ᾱ)−1

)
≤ 0, guaranteeing that

Assumption 1 holds.
Now consider the case ϕ < 0, where both roots are automatically real numbers. Here the

two roots must have opposite signs, and without loss of generality, suppose ζ1 > 0 and ζ2 < 0.
Since 0 < α < 1, it must be the case that ζ1 > −ζ2. Suppose that (9) holds. Then it follows that
φ(z) > 0 for all 0 ≤ z ≤ 1, and because φ

(
ζ−1

1

)
= 0, it must be the case that ζ1 < 1.

Since ζ1 and ζ2 are distinct numbers, the survival function sequence {ςi}
∞
i=0 can be expressed
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as ςi = c1ζ
i
1 + c2ζ

i
2, where c1 and c2 are real numbers, and in the following alternative forms:

ςi = c1ζ
i
1

1 +
c2

c1

(
ζ2

ζ1

)i
 , ςi − ςi+1 = c1(1 − ζ1)ζ i

1

1 +
c2(1 − ζ2)
c1(1 − ζ1)

(
ζ2

ζ1

)i
 (A.3)

From (7) it is seen that the first two terms of the hazard function are always α1 = α and
α2 = α + ϕ/(1 − α). Since 0 < α < 1 and ϕ < 0, the second term is well defined if and only if
ϕ > −α(1 − α) holds. Hence given (9), the survival function satisfies 0 ≤ ς2 < ς1 < ς0 = 1. By
using (A.3), ς0 − ς1 = c1(1− ζ1) + c2(1− ζ2) > 0 and ς1 − ς2 = c1(1− ζ1)ζ1 + c2(1− ζ2)ζ2 > 0. It
follows from these two inequalities that c1 > 0 and c1(1 − ζ1) > 0.

Because ζ1 > −ζ2, the terms (c2/c1)(ζ2/ζ1)i and (c2(1 − ζ2)/c1(1 − ζ1))(ζ2/ζ1)i must alternate
in sign and decline in absolute value as i increases. Because c1, ζ1 and (1 − ζ1) are positive, the
inequalities 0 ≤ ς2 < ς1 < ς0 imply 0 ≤ ςi < ςi−1 for all i ≥ 1, guaranteeing that Assumption 1
holds.

To see the converse, suppose Assumption 1 is true. As the first two terms of the hazard
function are well defined, the part of (9) for ϕ < 0 must hold. And since the survival function
sequence cannot feature oscillations, this requires that the roots of φ(z) = 0 are real numbers,
implying the second part of (9) for ϕ > 0.

A.5 Proof of Proposition 4

Let T (·) be the mapping from a distribution at time t to the distribution at time t + 1 implied by
(15), that is, {θi,t+1}

∞
i=0 = T

(
{θit}

∞
i=0

)
. Define m ≡ min

{
i
∣∣∣ αi+1 = 1

}
to be the maximum duration

of price stickiness implied by the hazard function, noting that the case of m = ∞ is possible.
Attention can be restricted to the set Sm ≡

{
{θi}

m
i=0

∣∣∣∣ 0 ≤ θi ≤ 1 ,
∑m

i=0 θi = 1
}

of probability
distributions for the duration of price stickiness up to a maximum of m periods. Let Tm(·) be
the corresponding mapping from Sm to Sm defined by equation (15).

(i) Under Assumption 1, Lemma 1 can be applied to the z-transform ς(z) ≡
∑∞

i=0 ςizi of
the survival probabilities {ςi}

∞
i=0. It follows that

∑∞
i=0 ςi is finite. Define a distribution {θi}

∞
i=0

using θi ≡ ςi/
∑∞

j=0 ς j. This is a well-defined probability distribution, and equations (6) and
(15) imply that it is a fixed point of Tm(·).

Define Vm ≡

{
{vi}

m
i=0

∣∣∣∣ {vi}
m
i=0 = {ϑi}

m
i=0 − {θi}

m
i=0 , {ϑi}

m
i=0 ∈ Sm

}
to be the set of possible

deviations from the first m + 1 terms of the stationary distribution {θi}
∞
i=0. It is straightforward

to see that Vm is a subset of the linear space Wm ≡

{
{vi}

m
i=0

∣∣∣∣ ∑m
i=0 vi = 0

}
. The definition of

Tm(·) in (15) shows that it can also be seen as a linear transformation fromWm toWm.
An eigenvalue of Tm : Wm → Wm is a scalar ζ ∈ C such there is a non-zero sequence

{vi}
m
i=0 ∈ Wm and Tm

(
{vi}

m
i=0

)
= ζ{vi}

m
i=0. This sequence is referred to as an eigenvector. Equa-

tion (15) shows that any eigenvalue and eigenvector pair must satisfy
∑m+1

i=1 αivi−1 = ζv0 and
(1 − αi)vi−1 = ζvi for all i = 1, . . . ,m. As the definition of the maximum duration of price
stickiness m guarantees that αi < 1 for all i ≤ m, it must be the case that ζ , 0, other-
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wise the sequence {vi}
m
i=0 could not be an eigenvector. It follows that vi = ςiv0/ζ

i and hence∑m
i=0 ςi/ζ

i = 0, or equivalently ς
(
ζ−1

)
= 0. Because ς(z) has no zeros in Dx and x > 1, all

the eigenvalues of Tm lie strictly inside the unit circle. Therefore, the stationary distribution is
unique and the economy must converge to it starting from any initial conditions.

(ii) Define φ(z) ≡ 1 − (1 − α)z +
∑n

i=1 ϕizi+1 to be the characteristic polynomial for the
survival function recursion in (8). The functions φ(z) is then related to ς(z) by φ(z)ς(z) = 1.
The definition of the stationary distribution implies θi = ςi/ς(1), but then ς(1) = 1/φ(1) and
φ(1) = α +

∑n
j=1 ϕ j, thus confirming the first part of (16).

The unconditional expectation of the probability of price adjustment is αe ≡
∑∞

i=1 αiθi−1.
The previous result combined with (6) implies αi = 1−(θi/θi−1), and so αe =

∑∞
i=0(θi−θi+1) = θ0,

and since θ0 =
(
α +

∑n
i=1 ϕi

)
ς0, the second part of (16) is shown to be correct.

The unconditional expectation of the duration of price stickiness is De ≡
∑∞

i=1 iθi−1. Let
θ(z) ≡

∑∞
i=0 θizi be the z-transform of the sequence {θi}

∞
i=0, which is analytic on Dx because of

the properties of ς(z). Therefore the power series can be differentiated term-by-term to yield
θ′(z) =

∑∞
i=0 iθizi−1. It is then seen thatDe = θ′(1) + θ(1). Since θ(z) = φ(1)/φ(z), it follows that

θ′(z) = −φ(1)φ′(z)/(φ(z))2 and hence De = (φ(1) − φ′(1))/φ(1). The definition of φ(z) yields
φ′(z) = −(1 − α) +

∑n
i=1(i + 1)ϕizi, proving the third part of (16).

A.6 Proof of Theorem 1

Define the sequence {φi}
n+1
i=1 with φ1 ≡ 1−α and φi = −ϕi−1 for i ≥ 2, and set φ(z) ≡ 1−

∑n+1
i=1 φizi.

Then let ς(z) ≡
∑∞

i=0 ςizi and θ(z) ≡
∑∞

i=0 θizi be the z-transforms of the survival function and the
duration distribution respectively. As Assumption 1 holds, Lemma 1 and equation (8) imply
that φ(z)ς(z) = 1 for all z in the unit disc D. It then follows from equation (16) of Proposition
4 that φ(z)θ(z) = φ(1) for all z ∈ D. In terms of the lag operator � and the forward operator �,
the equations in (19) can be expressed as Rt = �t[(ς(β�)/ς(β))(Pt + ηcxxt)] and Pt = θ(�)Rt.
The equivalent recursive versions in (20) and (22) are �t[φ(β�)Rt] = φ(β)(Pt + ηcxxt) and
φ(�)Pt = φ(1)Rt.

By substituting the recursive equation for the reset price into the recursive equation for the
price level, the stochastic difference equation �t[Υ(�)Pt] = fηcxxt is obtained with definitions
Υ(z) ≡ φ(z)φ(βz−1) − φ(1)φ(β) and f ≡ φ(1)φ(β). The function Υ(z) has the symmetry property
Υ(z) = Υ(βz−1) for all z , 0. Together with the definition of φ(z) this implies that Υ(z) can be
written as Υ(z) ≡ Υ0 +

∑n+1
i=1 Υi

(
zi + βiz−i

)
with Υi = −

(
φi −

∑n+1−i
j=1 β jφ jφi+ j

)
for i ≥ 1.

The definition of Υ(z) ensures that Υ(1) = 0. It follows that there exists a function ψ(z) ≡
1 −

∑n
i=1 ψizi −

∑n+1
i=1 δiz−i and a constant κ such that Υ(z) = (f/κ)(1 − z)ψ(z). This allows

the stochastic difference equation involving prices and real marginal cost to be replaced by an
equation �t[ψ(�)πt] = κηcxxt in terms of inflation and real marginal cost. If this equation is
written out in full and κx ≡ κηcx is defined then the Phillips curve given in (23) is obtained.

Expressions for the coefficients of the Phillips curve in terms of the hazard function para-

39



meters are obtained by using the relationship between the Υ(z) and ψ(z) functions and the
expression derived for Υi. The coefficients on lagged inflation are given by the expression ψi =

−(κ/f)
∑n+1

j=i+1 φ j

(
1 −

∑ j−(i+1)
k=1 βkφk

)
. Similarly, the coefficients on inflation expectations and real

marginal cost are δi+1 = (κ/f)
∑n+1

j=i+1 β
jφ j

(
1 −

∑ j−(i+1)
k=1 φk

)
and κ = f/

(∑n+1
j=1 φ j

(
1 −

∑ j−1
k=1 β

kφk

))
respectively. By using the definitions made at the beginning of this proof, all the coefficients
can be stated in terms of α, {ϕi}

n
i=1, β and ηcx:

ψi =
ϕi +

∑n
j=i+1 ϕ j

(
1 − β(1 − α) +

∑ j−1
k=1 β

k+1ϕk

)
(1 − α) −

∑n
j=1 ϕ j

(
1 − β(1 − α) +

∑ j−1
k=1 β

k+1ϕk

) i = 1, . . . , n (A.4a)

δi+1 = −βi+1
ϕi +

∑n
j=i+1 β

j−iϕ j

(
α +

∑ j−1
k=1 ϕk

)
(1 − α) −

∑n
j=1 ϕ j

(
1 − β(1 − α) +

∑ j−1
k=1 β

k+1ϕk

) i = 1, . . . , n (A.4b)

δ1 = β
(1 − α) −

∑n
j=1 β

jϕ j

(
α +

∑ j−1
k=1 ϕk

)
(1 − α) −

∑n
j=1 ϕ j

(
1 − β(1 − α) +

∑ j−1
k=1 β

k+1ϕk

) (A.4c)

κx =
ηcx

(
α +

∑n
j=1 ϕ j

) (
1 − β(1 − α) +

∑n
j=1 β

j+1ϕ j

)
(1 − α) −

∑n
j=1 ϕ j

(
1 − β(1 − α) +

∑ j−1
k=1 β

k+1ϕk

) (A.4d)

To establish the link between the signs of the sequences {ϕi}
n
i=1 and {ψi}

n
i=1, note φ(z)ς(z) = 1,

0 < β < 1 and Assumption 1 imply 0 < α +
∑n

i=1 ϕi < 1 and 0 < 1 − β(1 − α) +
∑n

i=1 β
i+1ϕi < 1.

(a) This follows immediately from (A.4a) by induction.
(b) i. Consider the case where ϕi ≥ 0 for all i = 1, . . . , n. Since Assumption 1 requires

that 0 < α < 1, the inequalities stated above can be extended to yield 0 < α +
∑ j−1

k=1 ϕk < 1 and
0 < 1 − β(1 − α) +

∑ j−1
k=1 β

k+1ϕk < 1 for all j = 1, . . . , n + 1. Therefore, by using the expression
for ψi in (A.4a), ϕi ≥ 0 for all i = 1, . . . , n implies ψi ≥ 0 for i = 1, . . . , n. Similarly, ϕi > 0 for
all i yields ψi > 0 for all i.

ii. The inequalities derived in part (b)i. also hold. The result follows immediately from
(A.4a).

iii. This is the contrapositive of the claim proved in (c)i. below.
(c) i. Now suppose ϕi ≤ 0 for all i = 1, . . . , n. Using similar reasoning to part (b)i. above,

the inequalities derived there must hold for all j = 1, . . . , n + 1. Hence from (A.4a), ϕi ≤ 0 for
all i = 1, . . . , n implies ψi ≤ 0 for i = 1, . . . , n. In addition, ϕi < 0 for all i leads to ψi < 0 for all
i.

ii. The inequalities derived in part (b)i. also hold, and the result follows from (A.4a).
iii. This is the contrapositive of part (b)i. above, which has already been proved.
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