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Abstract
We give a general method of �nding the optimal objective, and solution, values of a Mixed Integer

Linear Programme over a Cone (MILPC) as a function of the coe¢ cients (objective, matrix and right-
hand side). In order to do this we �rst convert the matrix of constraint coe¢ cients to a Normal Form
(Modi�ed Hermite Normal Form (MHNF)).Then we project out all the variables leaving an (attainable)
bound on the optimal objective value. For (M)IPs, including MILPC, projection is more complex, than
in the Linear programming (LP) case, yielding the optimal objective value as a �nite disjunction of
inequalities The method can also be interpreted as �nding the �minimal�strengthening of the constraints
of the LP relaxation which yeilds an integer solution to the associated LP.

1 Introduction

For an LP the optimal solution can be obtained by solving the set of binding constraints as equations.
These constraints give rise to a cone in the space of the structural variables. Our interest, here, is in
solving the associated (Mixed) Integer Program over this cone. As is well known this MILPC does
not generally solve the MILP associated with the original LP. This is because more constraints will be
binding (in the sense of being non-redundant) than those for the original LP.
The solution of a (M)ILPC is an �easy�problem in comparison with the general MILP problem. It

is sometimes known as �the Group Problem� since it can be formulated as an optimisation problem
over a �nite Abelian Group. It is discussed by, Johnson [3] and in Nemhauser and Wolsey[4]. The
convex hulls of the integer points within ILPCs are the Corner Polyhedra described by Gomory et al.[2].
Cuningham Green[1]also gives a method of successively enumerating all feasible solutions to an ILPC.
Williams[7] describes how to calculate the value function of an MILPC by converting the constraint
matrix into a succession of HNFs (Modi�ed(M)HNF), leading to a double recursion. We use this MHNF
here.
It is not suggested that the procedure described here is computationally viable for, other than, very

small problems. However it is intended to give insight into the structure of the MILPC, and ultimately
MILP problems.

We consider a MILP over a (dual feasible, pointed, LP) cone, where the LP solution is unique, in
the following form. All coe¢ cients are assumed to be integer.

M1 : Min z
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�c1x1 � c2x2�:::� cnxn � �z

subject to:
a11x1 + a12x2 + :::+ a1n � b1

a21x1 + a22x2 + :::+ a2n � b2
:
:

:

an1x1 + an2x2 + :::+ annxn � bn

xj 2 Z j 2 J1; xj 2 R j 2 J2
By a succession of elementary integer column operations (represented by postmultiplication by a matrix
E )and row interchanges (represented by premultiplication by a matrix T ), we convert the matrix into
a Modi�ed Hermite Normal Form (MHNF) (see Williams[7]). This transformation is carried out by
a succession of transformations of decreasing sub matrices into HNF. Williams[7] uses this to obtain
the optimal Chvatal function for an IPC by means of a double recursion.The transformed matrix of
coe¢ cients, in MHNF, is:

A =

0BBBBBBBBBBB@

�c01
a
0

11;�a
0

12; :::; 0

�a021; a022;�a
0

23; :::; 0
:
:
:

�a0n�1;1; �a0n�1;2; :::; a
0

n�1;n�1;�a0n�1;n
�a0n1; �a0n2; :::;�a

0

n;n�1; a
0
nn

1CCCCCCCCCCCA
where c

0

1; a
0

ii > 0; a0ij � 0 for i 6= j In order

to give this form a uniqueness it is convenient (but not necessary) to stipulate that a
0

ii > a
0

ij for all
i 6= j; i < n.
The model now takes the form:

M2 : Min z

subject to

�c
0

1x
0

1 � �z

a
0

11x
0

1 � a
0

12x
0

2 � b
0

1

:
:
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:

�a
0

n�1;1x
0

1 � a
0

n�1;2x
0

2 � :::+ a
0

n�1;n�1x
0

n�1 � a
0

n�1;nx
0

n � b
0

n�1

�a
0

n1x
0

1 � a
0

n2x
0

2 � :::� a
0

n�1;n�1x
0

n�1 + a
0

nnx
0

n � b
0

n

x
0

j 2 Z j 2 J1; x
0

j 2 R j 2 J2

:
.
.

In order to eliminate a real variable between inequalities we make use of the following theorem given
in Williams[8].

Theorem 1 9xj faijxj � fi i 2 I; �akjxj � gk k 2 Kg () 0 � akjfi + aijgk i 2 I; k 2 K where
aij > 0; i 2 I [K;xj 2 R

Proof.

(i) )This is obtained by adding each inequality, in the form xj � fi=aij to each inequality, in the form
�xj � gk=akj respectively to give fi=aij � -gk=akj ; i 2 I; k 2 K ie 0 � akjfi + aijgk i 2 I; k 2 K:

(ii)(Suppose 0 � akjfi + aijgk ie �aijgk � akjfi: This can expressed as �gk=akj � fi=aij : Let
xj = maxiffi=aijg (or minkf�gk=akjg): Then aijxj � fi and �akjxj � gk i 2 I; k 2 K

Note that projecting out continuous variables from an LP polytope results in another polytope in a
lower dimension.This is in contrast to the IP case where projection does not generally result in an IP
in a lower dimension. In general it results in an optimization over a �nite disjunction of polytopes in a
lower dimension.

In the LP case, the original inequalities imply fi=aij � xj � �gk=akj : Since xj belongs to the
continuum of R both (i) and (ii) of the above proof follow. However if xj 2 Z then (ii) does not follow.
When integer variables are projected out the resultant inequalities must be strengthened beyond those
for the LP case. One possible way of strenghthening is provided by the following theorem.

Theorem 2 9xj faijxj � fi i 2 I; �akjxj � gk k 2 Kg () 0 � akjfi + aijgk + akjui; fi + ui �
0(mod aij); ui 2 f0; 1; 2; :::; aij � 1g; i 2 I; k 2 K;where aij ; akj > 0; i 2 I [K;xj 2 Z

Proof.

(i) )We can write the inequalities in the form akjfi � akjaijxj � �aijgk implying that a multiple
of akjaij lies between the left and rightmost terms. If we apply a non-negative �correction term� akjui
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to the left side we have akjfi + akjui � akjaijxj � �aijgk so long as ; fi + ui � 0(mod aij):This
implies 0 � akjfi + aijgk + akjui:Whatsmore there is no loss of generality in restricting ui to the
domainf0; 1; 2; :::; aij�1g:Note that we could alternatively apply (di¤erent) correction terms to the right
side.

(ii)(Suppose 0 � akjfi + aijgk + akjui and fi + ui � 0(mod aij) where ui 2 f0; 1; 2; :::; aij � 1g: This
can expressed as �gk=akj � fi=aij + ui=aij : Let xj = maxiffi=aij + ui=aijg which is integral by virtue
of the congruence. Then aijxj � fiand �akjxj � gk ; i 2 I; k 2 K:

When we project out an integer variable we, in general, produce congruence relations as well as
inequalities. These must be taken account of in the elimination of subsequent variables. Before doing
this it is convenient to eliminate the next variable, to be projected out, from all except one of the
current set of congruence relations. This may be done by means of the Generalised Chinese Remainder
Theorem (GCRT). This result is encapsulated in the following theorem.

Theorem 3 ex � dl(modml) l 2 L () ex �
X
l

�lm
0

ldl(modM) ; 0 � dl � ds(mod gcd(ml;ms)) l; s

� L where M = lcml(ml) ,mlm
0

l =M; l � L and
X
l

�lm
0

l = 1

Proof. (i) =) The result that there exist �l such that
X
l

�lm
0

l = gcdl(m
0

l) = 1 is well known and

proved using the Euclidean Algorithm. We do not repeat the proof here. Multiplying each of the original
congruences by �lm

0

l we obtain ex �
X
l

�lm
0

ldl(modM):Subtracting the congruences in pairs we obtain

0 � dl � ds(mod gcd(ml;ms)):(ii)(= If 0 � dl � ds(mod gcd(ml;ms)) l; s � L then
X
l

�lm
0

ldl �

ds
X
l

�lm
0

l(mod gcdl(�lM;ms

X
l

�lm
0

l) s � L:Since ex �
X
l

�lm
0

ldl(modM) and
X
l

�lm
0

l = 1 this

implies ex � ds(modms) s 2 L:

Having aggregated all the congruences, involving the variable to be eliminated, into one congruence
(together with congruences involving the other variables) we are in a position to eliminate a variable
between a set of inequalities and this congruence. However two cases need to be distinguished, depending
on whether the new variable to be eliminated is integer or real. We consider the two cases in the following
two theorems.

Theorem 4 9xj faijxj � fi i 2 I; �akjxj � gk k 2 K ; exj � d(modm)g () 0 � akjfi +
aijgk+akjui; 0 � d(mod gcd(e;m)); fi��maijd= gcd(e;m)+ui � 0(mod aijm= gcd(e;m)) where aij ; akj
> 0; i 2 I [K;xj 2 Z ; �em= gcd(e;m) + �me= gcd(e;m) = 1 and ui 2 f0; 1; 2; :::; aijm= gcd(e;m)� 1g
Proof. (i) )We can write the inequalities in the form akjefi � aijakjexj � �aijegk: From the

congruence,aijakjexj � aijakjd(mod aijakjm):Let y = aijakjexj :Then y � 0(mod aijakje) and y �
aijakjd(mod aijakjm). Applying the GCRT gives 0 � d(mod gcd(e;m)) and y � �maijakjed= gcd(e;m)
mod(aijakj lcm(e;m)). Therefore akjefi � �maijakjed= gcd(e;m) �a multiple of aijakj lcm(e;m) �
�aijegk � �maijakjed= gcd(e;m). Since (e;m) divides d, by the congruence, the leftmost expression,
in the above inequality, is a multiple of akje. Hence we can apply a non-negative �correction term�
akjeui to the left side giving akjefi��maijakjed= gcd(e;m)+akjeui � 0(mod aijakj lcm(e;m)): ie fi�
�maijd= gcd(e;m)+ui � 0(mod aijm= gcd(e;m)). ui can be restricted to the domainf0; 1; 2; :::; aijm= gcd(e;m)�
1g:The resultant inequalities are 0 � akjfi + aijgk + akjui:(ii)(Suppose 0 � akjfi + aijgk + akjui; 0 �
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d(mod gcd(e;m)); fi � �maijd= gcd(e;m) + ui � 0(mod aijm= gcd(e;m)),where aij ; akj > 0; i 2 I [
K; and ui 2 f0; 1; 2; :::; aijm= gcd(e;m) � 1g The inequality can be expressed as �aijgk � akjfi +
akjui:But akjfi + akjui � �maijakjd= gcd(e;m) (mod aijakjm= gcd(e;m)) by the second congruence.
Let aijakjxj = maxifakjfi + akjuig giving xj 2 Z . Then aijxj � fi and �akjxj � gk; i 2 I; k 2 K .
Also 9i such that aijxj = fi+ ui. Combining this with the above congruence gives xj � �md= gcd(e;m)
(modm= gcd(e;m)) ie xj � (1��em)d= gcd(e;m) (modm= gcd(e;m)) . This implies exj � d(modm)g.

Theorem 5 9xj faijxj � fi i 2 I; �akjxj � gk k 2 K ; exj � d(modm)g () 0 � akjefi + aijegk+
akjeui; efi � aijd+ eui � 0(mod aijm) i 2 I; k 2 K
where aij ; akj > 0; i 2 I [K;xj 2 R and ui 2 [0; 1; 2; :::; aijm=e):
Proof. (i) )We can write the inequalities in the form efi=aij � exj � �egk=akj implying that

efi=aij � d � exj � d � �egk=akj � d ie a multiple of m lies between the left and rightmost expressions.
We apply a non-negative �correction term�to the left side. This correction term is from the continuum of
the rationals, so may be scaled. To maintain correspondence with Theorem 4 it is convenient to denote it
by eui=aij giving efi=aij�d+eui=aij � (modm): ie efi�aijd+eui � (mod aijm): ui can be restricted to
the interval [0; 1; 2; :::; aijm=e):The resultant inequalities are 0 � akjefi+ aijegk + akjeui:(ii)(Suppose
0 � akjefi + aijegk + akjeui and efi � aijd + eui � 0(mod aijm) where ui 2 [0; 1; 2; :::; aijm=e):
The inequalities expressed as �egkj=akj � efi=aij + eui=aij : Let exj = maxifefi=aij + eui=aijg ie
Then aijxj � fi and �akjxj � gk ; i 2 I; k 2 K . Also 9i such that exj = efi=aij + eui=aij ie
efi + eui = aijexj :Combining this with the above congruence gives exj � d(modm):

Note that, in the MIP case, we generate inequalities corresponding to those in the LP case, but
augmented by correction terms (de�ned over �nite integer domains or �nite intervals) which are subject
to a series of congruence relations. Also note that there will be a number of alternate correction terms
and representations of the congruence relations.
Note also that, in the MILP case, we generate inequalities corresponding to those in the LP case, but

augmented by correction terms (de�ned over �nite integer domains) which are subject to congruence
relations. Also note that these correction terms are not the same as the surplus variables (* am I
absolutely sure this is not the case?*)
The full solution of a MILP by projection forms the subject of another paper. It is also discussed

by Williams[6]. However projection of a MILPC is considerably simpler and forms the subject of this
paper.
We will restrict ourselves to considering only models M2 (equivalent to M1) where the cone is

pointed, dual feasible and gives a unique optimal LP solution. When solving the LP relaxation of M2
(equivalent to M1) the inequalities would be treated as equations and the system solved as such to
give the minimum value of z. However when solving a MILPC (and a MILP) we need to introduce
correction terms and congruences, as in the theorems above. Observe that in M2 each variable has
only one positive coe¢ cient in the inequalites. Therefore this inequality is combined once with each
of the other inequalities (so long as they have a non-zero coe¢ cient). After each elimination there
remains exactly one inequality with a positive coe¢ cient for each variable. Each elimination of an
integer variable, as the result of theorem 2, also produces one congruence relation and correction term,
derived from the inequality with a positive coe¢ cient, for the variable to be eliminated. After all xj
variables have been eliminated we have the result of the following theorem.

:
:

Theorem 6 The optimal solution to M2 is given by
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M3: Min z

such that������������

a
0

11;�a
0

12; ::::; 0

�a021; a
0

22;�a
0

23; ::::; 0
:
:
:

�a0n1;�a
0

n2; :::; a
0

n;n

������������
z � �c1(�1)n

������������

�a012; 0; ::::; 0; (b
0

1 + u1)

a
0

22;�a
0

23; 0; ::::; 0; (b
0

2 + u2)
:
:
:

�a0n2;�a
0

n3; :::; a
0

nn; (b
0

n + un)

������������
::::::::::::::::::::::::::::::::::::(1)

b
0

1 + u1 � 0mod(a
0

11;a
0

12) if x
0

1 � Z where

(p; q) represents gcd(p:q):

������
�1; �1; 0;

a
0

11;�a
0

12; (b
0

1 + u1)

�a021; a
0

22; (b
0

2 + u2)

������ � 0mod(
���� a011;;�a012�a021; a

0

22

; a
0

23(a
0

11; a
0

12))

���� if x02 � Z
where �1a

0

11 + �1a
0

12 = (a
0
11; a

0

12)

��������
0; �2; �2; 0

a
0

11;�a
0

12; 0; (b
0

1 + u1)

�a021; a
0

22;�a
0

23; (b
0

2 + u2)

�a031;�a
0

32; a
0

33; (b
0

3 + u3)

�������� � 0mod(
������

a
0

11;;�a
0

12;0

�a021; a
0

22;�a
0

23

�a031;�a32; a33

������ ; a034
���� a011;;�a012�a021; a

0

22

����)if x03 � Z

where �2

���� a011;;�a012�a021; a
0

22

����+�2a011a023 = (���� a011;;�a012�a021; a
00

22

���� ; a011a023)
.
.
. :

:
:

��������������

0; :::; 0; �n�1; �n�1; 0

a
0

11;�a
0

12; 0; :::; 0; (b
0

1 + u1)

�a021; a
0

22;�a
0

23; :::; 0; (b
0

2 + u2)
:
:
:

�a0n1;�a
0

n2; :::;�a
0

nn�1; (b
0

n + un)

��������������
� 0mod(

��������������

a
0

11;;�a
0

12;0; :::; 0

�a021; a
0

22; 0; :::; 0

�a031;�a
0

32; 0; :::; 0
:
:
:

�a0n1;�a
0

n2; :::;�a
0

nn�1; a
0

nn

��������������
; a

0

n�1;n

��������������

a
0

11;;�a
0

12;0; :::; 0

�a021; a
0

22; 0; :::; 0

�a031;�a
0

32; 0; :::; 0
:
:
:

�a0n�1;1;�a
0

n�1;2; :::; a
0

n�1n�1

��������������
) if x

0

n � Z
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ui � f0; 1; :::;

��������������

a
0

11;;�a
0

12;0; :::; 0

�a021; a
0

22; 0; :::; 0

�a031;�a
0

32; 0; :::; 0
:
:
:

�a0i1;�a
0

i2; :::;�a
0

i;n�1; a
0

ii

��������������
=

��������������

a
0

11;;�a
0

12;0; :::; 0

�a021; a
0

22; 0; :::; 0

�a031;�a
0

32; 0; :::; 0
:
:
:

�a0i�1;1;�a
0

i�1;2; :::;�a
0

i�1;n�1; a
0

i�1;i�1

��������������
�

1g if x0i � Z. ui = 0 if xi 2 R

Note that whereas M2 (and M1) had an in�nite number of integer solution we are now, in M3,
looking for the optimum over a �nite number of values of the ui.

To prove this theorem we successively eliminate the variables using theorems 2, to 5. :For convenience
we repeat M2.

M2 : Min z

subject to

�c
0

1x
0

1 � �z

a
0

11x
0

1 � a
0

12x
0

2 � b
0

1

:
:

:

�a
0

n�1;1x
0

1 � a
0

n�1;2x
0

2 � :::+ a
0

n�1;n�1x
0

n�1 � a
0

n�1;nx
0

n � b
0

n�1

�a
0

n1x
0

1 � a
0

n2x
0

2 � :::� a
0

n�1;n�1x
0

n�1 + a
0

nnx
0

n � b
0

n

x
0

j 2 Z j 2 J1; x
0

j 2 R j 2 J2

We eliminate x
0

1 using theorem 2. This results in:

M2
0
(n� 1) : Min z

subject to

�c
0

1a
0

12x
0

2 � �a
0

11z + c
0

1(b
00

1 + u1)

���� a011;;�a012�a021; a
0

22

����x02 � a0011a023x03 � ���� a011;; (b01 + u1)�a021; b
0

2

����
9



���� a011;;�a012�a031;�a
0

32

����x02 + a011a033x03 � a011a034x03 � ���� a011;; (b01 + u1)�a031; b
0

2

����
.
.
.���� a

0

11;;�a
0

12

�a0n+1;1;�a
0

n+1;2

����x02 � a011a0n+1;3x03 � :::+ a011a0n+1;n+1x0n+1 � ���� a011;; (b01 + u1)�a0n+1;1; b
0

2

����
a
0

12x
0

2 � �(b
0

1 + u1)mod(a
0

11)

u1�f1; 2; :::; a
0

11 � 1g

x
0

j 2 Z j 2 J1; x
0

j 2 R j 2 J2

Note that the determinants

���� a011;;�a012�a0i1;�a
0

i2

���� for i � 3 are all � 0. Hence M2
0
(n), with variables

x
0

2; :::; x
0

n+1 ,takes the same form asM2, where, in the inequalities, exactly one of the coe¢ cients of x
0

2

has a positive coe¢ cient. However x
0

2 is also included in a congruence. Using theorem 4 we associate
the next correction term with this inequality. It can be seen that this correction term must be a multiple
of a

0

11. Therefore the correction term can be taken as a
0

11u2:The result of eliminating x
0

2 is then:

M2
0
(n� 2) : Min z

subject to

�c
0

1a
0

12a
0

23x
0

3 � �
���� a011;;�a012�a021; a

0

22

���� z � c1 ���� �a012; (b01 + u1)a
0

22; (b
0

2 + u2)

����
������

a
0

11;;�a
0

12; 0

�a021; a
0

22;�a
0

23

�a031;�a
0

32; a
0

33

������x03 � a034
���� a011;;�a012�a021; a

0

22

����x04 �
������
a
0

11;;�a
0

12; (b
0

1 + u1)
�a021; a

0

22; (b
0

2 + u2)

�a031;�a
0

32; b
0

3

������
������

a
0

11;;�a
0

12; 0

�a021; a
0

22;�a
0

23

�a041;�a
0

42;�a
0

43

������x03 + a044
���� a011;;�a012�a021; a

0

22

����x04 � a055 ���� a011;;�a012�a021; a
0

22

����x05 �
������
a
0

11;;�a
0

12; (b
0

1 + u1)

�a021; a
0

22; (b
0

2 + u2)

�a041;�a
0

42; b
0

3

������
:
.
.
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������
a
0

11;;�a
0

12; 0

�a021; a
0

22;�a
0

23

�a0n1;�a
0

n2;�a
0

n3

������x03�a0n+1;3
���� a011;;�a012�a021; a

0

22

����x03�:::+a0n+1;n+1 ���� a011;;�a012�a021; a
0

22

����x0n+1 �
������
a
0

11;;�a012; (b01 + u1)
�a021; a022; (b02 + u2)
�a0n1;�a0n2; b03

������
(b

0

1 + u1) � 0mod(a
0

11; a
0

12)

u1�f1; 2; :::; a
0

11 � 1g

(a
0

21(a
0

11; a
0

12)+�1

���� a011;;�a012�a021; a
0

22

����)(b01+u1)+a011(a011; a012)(b02+u2)+a011a023(a011; a012)x03 � 0mod(a011 ���� a011;;�a012�a021; a
0

22

����)
u2�f1; 2; :::;

���� a0011;;�a012�a021; a
0

22

���� =(a011; a012)� 1g
where �1a

0

11 + �1a
0

12 = (a
0

11; a
0

12)
The second congruence can be simpli�ed to:������

�1; �1; 0;

a
0

11;�a
0

12; (b
0

1 + u1)

�a021; a
0

22;�a
0

23; (b
0

2 + u2)

������+ a023(a011; a012)x03 � 0mod(
���� a011;;�a012�a021; a022

����)
x
0

j 2 Z j 2 J1; x
0

j 2 R j 2 J2
The model now takes the same form as M2

0
(n� 1) (by renaming variables and coe¢ cients). The

proof follows by induction on n.
It is worth pointing out that the inequality in M3 could also be written using the untransformed

coe¢ cient matrix given in, M1, taking account of row interchanges ie:

������������

a11; a12; :::; a1n
a21; a22; :::; a2n:

:
:
:

an1; an2; :::; ann

������������
z �

��������������

�c1;�c2; :::;�cn; 0
a11; :::; a1n; (b1 + u

00

1 )

a21; :::; a2n; (b2 + u
00

2 )
:
:
:

an1; :::; ann; (bn + u
00

n)

��������������
where u

00

i is the correction term associated with the row of the transformed matrix corresponding to
the original row with RHS coe¢ cient bi.

Once the optimal values of the ui have been found from M3 the optimal solution (in terms of the
original variables) is given by:

xj =

������������

a11; a12; :::; a1;;j�1; b1 + u1; a1;;j+1; :::; a1;n
a21; a22; :::; a2;j�1;b2 + u2; a2;;j+1; :::; a2;n

:
:
:

an1; an2:::; an;j�1; b2 + un; an;;j+1; :::; an;n

������������
=

������������

a11; a12; :::; a1;n
a21; a22;:::; a2;n

:
:
:

an1; an2; :::; an;n

������������
j � J
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2 A Numerical Example

We consider the model

Minimize� x1 + x2 + x3
8x1 � 12x2 � 2x3 � 3

4x1 � x2 � 2x3 � 2

�12x1 + 4x2 + 6x3 � 13

In MHNF M3 becomes

�x
0

1 � �z
6x

0

1 � 2x
0

2 � 13

�2x
0

1 + x
0

2 � x
0

3 � 2

�2x
0

1 � 10x
0

2 + 36x
0

3 � 3

Where A =

2664
1;�1;�1
8;�12;�2
4;�1;�2
�12; 4; 6

3775 E =

24 0; 0; 1
0; 1;�3
1;�1; 4

35 T =

24 0; 0; 1
0; 1; 0
1; 0; 0

35 T AE = A= =

2664
�1; 0; 0
6;�2; 0
�2; 1;�1
�2;�10; 36

3775
T

24 3
2
13

35 =
24 13
2
3

35

Applying M3 we have:

8z � 488 + 26u3 + 72u2 + 2u3
subject to:

u1 � 1(mod 2)

36u1 + 3u3 � 0(mod 46)

u1�f0; 1g; u2�f0g; u3�f0; 1; 3; 4g

The optimal solution is u1 = 1; u2 = 0; u3 = 3 resulting in z = 65; x1 = 56; x2 = 20; x3 = 101:(The
optimal solution to the LP relaxation results from setting u1 = 0; u2 = 0; u3 = 0; giving z = 61).

12



3 A Geometrical Interpretation

Initially the model M3 is viewed in (x1; x2) space. Correction terms u1 are applied to give possible
strengthenings to the �rst constraint as illustrated in �gure 1 by the sublattice of feint lines.
Then, when x1 is projected out, we view the model in (x2; x3) space in �gure 2. Projection has

implied a congruence involving x2 and u1 ,represented by the sublattice of horizontal feint lines.An
extra correction term u2 is introduced to give possible strengthenings to the new �rst constraint. These
strengthenings give rise to the sublattice represented by the slanted feint lines. The intersection of the
two sublattices, created to date, is represented (in (x2; x3) space) by the bold dots. In this way the
lattice of integer solutions is bult up following successive projections of the model into lower dimensions.

Figure 1

13



Figure 2
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