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Abstract—In the context of the stability analysis of interde-
pendent networks through the eigenvalue evaluation of their
adjacency matrices, we characterize algebraically and also ge-
ometrically necessary and sufficient conditions for the adjacency
matrices of directed and undirected graphs to commute. We also
discuss the problem of communicating the concepts, the theorems,
and the results to a non-mathematical audience, and more
generally across different disciplinary domains, as one of the
fundamental challenges faced by the Internet Science community.
Thus, the paper provides much more background, discussion, and
detail than would normally be found in a purely mathematical
publication, for which the proof of the diamond condition would
require only a few lines. Graphical visualization, examples,
discussion of important steps in the proof and of the diamond
condition itself as it applies to graphs whose adjacency matrices
commute are provided. The paper also discusses interdependent
graphs and applies the results on commuting adjacency matrices
to study when the interconnection matrix encoding links between
two disjoint graphs commutes with the adjacency matrix of the
disjoint union of the two graphs. Expected applications are in
the design and analysis of interdependent networks.

Keywords: Commuting adjacency matrices, algebraic graph theory,
internet science.

I. INTRODUCTION

This paper is motivated by the wish to optimize the
efficiency of the mathematical analysis of the stability of
interdependent networks. The paper is also concerned with
a wider and deeper question of fundamental importance to In-
ternet Science. Namely, given the increasing reliance of every
applied and theoretical aspect of the Internet on many and
very different disciplines, how can the inevitable disciplinary
language barriers that today’s Internet scientists face be best
addressed? For example, what takes place in the mind of a
mathematician when solving a particular problem? And how
can such insight be best communicated to a wider audience
of applied scientists and engineers? What kind of formalism
provides an optimal “user interface” for a given audience?

Some integration with a social science perspective helps in
this regard. For example, whereas in computer science and
in the hard sciences in general the term ‘paradigm’ usually
means a deeper and more pervasive ‘model’, but still a model,
in social science the dominant definition of paradigm is due to
Thomas Kuhn (himself a physicist) as, paraphrasing, a body
of theory, a community of practice, and a set of methodologies

[1]. For a community of practice to exist, a shared language
– or set of languages – is essential. Thus, the development of
an Internet Science faces the problem of undoing the effect of
the disciplinary Babel tower most of us have been inhabiting.

As discussed in [2], however, one must go beyond “transla-
tion” when attempting to communicate across disciplines, and
take into account the different epistemologies relied upon in
each discipline. Although the analytical tools to effect such a
reflexive analysis of one’s research are best drawn from social
science, at this early stage of Internet Science development
an explicit discussion of the epistemologies at play (e.g.
integration with [3]) would make this paper too difficult to
read. Therefore, we prefer to adopt a tutorial style where the
problem at hand is approached from different mathematical
points of view, drawing connections between them. Thus, the
paper can also be seen as a reflexive account or “case study”,
in two different mathematical “languages” that tend to be
used respectively by engineers and mathematicians, of how
a particular mathematical fact, the “diamond condition” for
commuting adjacency matrices, was hypothesized, formalized,
and proven together with the development of visualization
techniques. The two presentations are then related through
geometrical visualization.

A. Background and Scope

This work grew out of P. Dini’s Research Mobility visit to
P. Van Mieghem’s Network Architectures and Services group
at TU Delft in September 2012, in the context of the EINS
Network of Excellence.1

The proof of the diamond condition requires only a few
lines. In this form, however, it can only be understood and
appreciated by mathematicians, or by other scientists equipped
with pencil, lots of paper, time and patience, and a strong
applied mathematics background. This paper aims to make this
important result as accessible and applicable as possible for a
wide range of Internet scientists. Therefore, the paper follows
a tutorial style that is organized into four main narratives:
• Section II: General facts and some elementary results

about commuting matrices, written in mathematical lan-
guage.

1http://www.internet-science.eu



• Section III: A “pedestrian” and “brute force” account
of how the commutativity requirement for symmetric
adjacency matrices can be expressed most simply in
coordinate form, written in a language more common in
applied mathematics contexts.

• Section IV: A detailed account of the mathematical facts
leading up to the diamond condition, written almost
completely in pure maths.

• Section V: A geometrical discussion and visualization of
the equivalence of the two previous sections, written in
a language more common to engineering contexts.

B. Mathematical Problem Statement
Given two separate undirected networks, for example an

electric utility network and the network of computers that
controls it, each can be characterized by its adjacency matrix.
Call the two matrices A1 and A2, both symmetric. Now
introduce some links between the networks. These links can
be modelled with another matrix B0, which is not necessarily
square or symmetric. The two global matrices, therefore, are:

A =

[
A1 0
0 A2

]
B =

[
0 B0

BT0 0

]
(1)

which are shown here in block form. Note that even when
B0 is neither square nor symmetric B will be both. It turns
out that whenever A and B commute the largest eigenvalue
of the combined matrix is a linear combination of the largest
eigenvalues of the individual matrices, as follows [4]:

λ1(A+ αB) = λ1(A) + αλ1(B), (2)

where α is some real number. This is useful because it speeds
up the evaluation of the eigenvalues of the connected network
since they are linear combinations of the eigenvalues of A and
B. Faster eigenvalue evaluation means more frequent monitor-
ing of the stability of the combined network, enabling quicker
intervention if something goes wrong in either network. Thus,
the problem we are trying to solve is:

Given any two symmetric adjacency matrices A1 and
A2, what are the constraints on the form B0 should
take so that A and B commute?

II. SOME GENERAL DISCUSSION AND RESULTS

Before addressing the problem statement we define a few
terms and review some known facts about matrices.

Definition 3 (Eigenspace). An eigenspace of a matrix is the
linear subspace consisting of all eigenvectors associated to a
given eigenvalue. Its dimensionallity is equal to the multiplicity
of the eigenvalue.

Definition 4 (Simultaneous diagonalization). If two matrices
A and B are diagonalized by the same matrix U then they
are simultaneously diagonalizable.

Explanation: Since U diagonalizes both A and B we can
write

UAU−1

UBU−1

}
Diagonal. (5)

Conjugation by any invertible U respects addition and multi-
plication of A and B:

UAU−1 + UBU−1 = U(A+B)U−1 (6)

(UAU−1)(UBU−1) = UA(U−1U)BU−1

= UABU−1 = U(AB)U−1. (7)

So simultaneous diagonalizability, i.e. that UA−1U and
UBU−1 are both diagonal, implies that U(A + B)U−1 and
U(AB)U−1 are too. Therefore the eigenvalues of A+B and
AB are, respectively, sums and products of those of A and B.

Proposition 1. If symmetric operators A and B (on a real or
complex n-dimensional vector space V ) commute, then they
are simultaneously diagonalizable by an orthonormal basis.2

Proof: Let A be a symmetric operator on a real or complex
n-dimensional vector space V (e.g., one given by an n × n
matrix). Then

A~v = λ~v, (8)

where λ is an eigenvalue for some eigenvector ~v ∈ V . Now
pre-multiply both sides of (8) by B. Then, since A and B
commute, we have:

BA~v = λB~v

A(B~v) = λ(B~v), (9)

showing that B~v is an eigenvector of A that belongs to the
same λ-eigenspace of A as ~v.3 Let the eigenvalues of A be λi
(1 ≤ i ≤ k, k ≤ n). Let Wi ⊆ V denote the λi-eigenspace of
A. Now V is the orthogonal direct sum

⊕k
j=1Wi, of the Wi.

Moreover, A acts on each Wi by stretching vectors in Wi by
a factor λi:

Wi = {~w : A~w = λi ~w}. (10)

For each i, let di = Dim(Wi) ≤ n. By (9), Wi is invariant
under B, i.e., B : Wi →Wi for each i. Therefore, since B is
a symmetric operator on V , it is also a symmetric operator on
Wi.4 Hence there exists an orthonormal basis w(i)

1 , . . . , w
(i)
di

for Wi that diagonalizes B restricted to Wi.5 This means that,

2Note: this does not mean that A and B will have the same (number of
distinct) eigenvalues, nor that they will have the same eigenspaces. In general
they will not. But all we need to prove is that there exists a basis of V that
will diagonalize both operators.

3The dimension of an eigenspace equals the number of repeated eigenvalues
associated with it. As a reminder of how to visualize an eigenspace, if n = 3
and the eigenspace is 2-dimensional, it is a plane embedded in R3.

4For a real matrix, being symmetric as an operator (for example, the inner
product 〈Ax, y〉 = 〈x,Ay〉 always holds) is equivalent to being symmetric
as a matrix (A = AT ). Then, since A maps Wi to Wi and the inner product
condition holds in V , it must hold in Wi too, so A restricted to Wi is a
symmetric operator, which lets us diagonalize A restricted to Wi.

5Notice that we are free to choose such a basis since – given that A
is a symmetric operator – each eigenspace is orthogonal to all the other
eigenvectors. In the example of the plane embedded in R3, any two mutually
perpendicular unit vectors lying in this plane form a valid basis for this Wi,
and each will be scaled by λi regardless of the choice of their orientation in
this plane. However, only one orientation of this basis system will diagonalize
also di dimensions of B.



using this basis for Wi,

B ~w
(i)
j = µ

(i)
j ~w

(i)
j , (11)

where µ(i)
j is an eigenvalue of B for ~w(i)

j ∈Wi (1 ≤ j ≤ di).6

Be that as it may, since each w
(i)
j lies in Wi, we have by

definition of Wi that

Aw
(i)
j = λiw

(i)
j , (12)

for 1 ≤ i ≤ k and 1 ≤ j ≤ di. Now consider the orthonormal
basis for V given by concatenating the bases for the various
Wi (1 ≤ i ≤ k) :

w
(1)
1 , . . . , w

(1)
d1
, . . . , w

(k)
1 , . . . , w

(k)
dk
,

In this basis, the ith block of B that corresponds to the sub-
space Wi is diagonal by (11) and the block of A corresponding
to Wi is diagonal by (12). Thus A and B are both diagonal
in this orthonormal basis. �

In the above basis, it is obvious that the eigenvalues of a
linear combination of the commuting symmetric matrices A
and B will be a linear combination of the eigenvalues of A and
B. A similar statement clearly also holds for the eigenvalues
of the product AB.

Proposition 2. If the block diagonal matrix for the networks
is

A =

[
A1 0
0 A2

]
(13)

and for the interconnection graph one has

B =

[
0 B0

BT0 0

]
, (14)

then commutativity AB = BA is equivalent to requiring

A1B0 = B0A2. (15)

Proof: From

AB =

[
0 A1B0

A2B
T
0 0

]
and (16)

BA =

[
0 B0A2

BT0 A1 0

]
, (17)

for commutativity A1B0 = B0A2 and A2B
T
0 = BT0 A1 must

be true simultaneously. Conversely, assuming Eq. (15) is true,
since A1 and A2 are both symmetric,

AT1 B0 = B0A
T
2

[AT1 B0]T = [B0A
T
2 ]T

BT0 A1 = A2B
T
0 ,

thus showing that the other condition is also true. �
The spectrum of a graph is the set of eigenvalues (with

multiplicities) of a matrix representation of the graph.

6In other words, B may have up to di distinct eigenvalues associated with
subspace Wi, unlike A which only had 1 eigenvalue associated with Wi (by
definition of Wi as an eigenspace of A).

Proposition 3. If B0 is invertible and A and B commute, then
A1 and A2 have the same spectrum. Note that in this case A1

and A2 must be of the same size.

Proof: By Prop. 2, B0A2 = A1B0. Hence,

B0A2B
−1
0 = A1B0B

−1
0

B0A2B
−1
0 = A1, (18)

but conjugation does not change the spectrum of a matrix. �

Unfortunately, although two isomorphic graphs have adja-
cency matrices with the same spectrum, the converse is not
true: two adjacency matrices with the same spectrum need not
correspond to two isomorphic graphs. Graphs that have the
same spectrum but are not isomorphic are called cospectral.
The issue of cospectral graphs is likely to play an important
role in this problem.

We look at a few more simple cases of solutions to the
commutative interconnection problem. We can always take
B0 = 0, the m× n zero matrix, for a trivial example (i.e. no
coupling). If the two graphs are isomorphic then we can always
take B0 = I (or a permutation matrix that gives the mapping
of the isomorphism on nodes). As a fourth and distinct case,

Proposition 4. Let A1 be an m ×m matrix and A2 n × n.
Using an m×n matrix of all 1s for B0 works to yield AB =
BA, with A and B as defined in (13) and (14), if and only if
all the row sums of A1 are equal to all the column sums of A2.
In particular this always works if A1 and A2 are adjacency
matrices of regular graphs of the same degree.

Proof: Let

m

A1 =


︷ ︸︸ ︷

0 a12 · · · a1m
a21 0 · · · a2m

...
...

. . .
...

am1 am2 · · · 0




m

n

B0 =


︷ ︸︸ ︷
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1




m

n

A2 =


︷ ︸︸ ︷

0 a12 · · · a1n

a21 0 · · · a2n

...
...

. . .
...

an1 an2 · · · 0




n

Then,

n



A1B0 =



︷ ︸︸ ︷∑m
j=1 a1j · · ·

∑m
j=1 a1j∑m

j=1 a2j · · ·
∑m
j=1 a2j

...
. . .

...∑m
j=1 amj · · ·

∑m
j=1 amj




m (19)

n

B0A2 =


︷ ︸︸ ︷∑n

i=1 a
i1 · · ·

∑n
i=1 a

in∑n
i=1 a

i1 · · ·
∑n
i=1 a

in

...
. . .

...∑n
i=1 a

i1 · · ·
∑n
i=1 a

in




m (20)

Both (19) and (20) are m× n matrices and they are equal as
long as the sums of the rows of A1 equal the sums of the
columns of A2. In particular, this condition is clearly satisfied
in the case of regular graphs of the same degree. �

III. LIE BRACKET AND THE COORDINATE FORM OF THE
COMMUTATIVITY CONDITION FOR UNDIRECTED GRAPHS

To investigate which matrices commute we can use a Lie
algebra approach [5]. Let F be a field. A Lie algebra over F
is a vector space L together with a bilinear map called the Lie
bracket:

L× L→ L, (x, y)→ [x, y], x, y ∈ L (21)

such that

[x, x] = 0 ∀x ∈ L (22)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. ∀x, y, z ∈ L (23)

Thus the Lie bracket returns a vector, which can be bracketed
recursively with another vector as shown, for example, by the
Jacobi identity (23). In R3, the familiar vector or cross-product
satisfies the Lie bracket axioms. Bilinearity implies that

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y]

= [x, y] + [y, x], (24)

from which we find that

[x, y] = −[y, x] = 0, ∀x, y ∈ L. (25)

Now let V be an n-dimensional vector space over F . Let gl(V )
be the set of all linear maps V → V , so it can be regarded
as a set of matrices. This is itself an n2-dimensional vector
space7 over F with canonical basis Eij , where Eij is a unit
vector since it is an (n × n) matrix all of whose entries are
0 except for a single 1, for one value of 1 ≤ i ≤ n and one
value of 1 ≤ j ≤ n, which equals 1. It becomes a Lie algebra
if we define

[A,B] = AB −BA, ∀A,B ∈ gl(V ), (26)

with the usual matrix product.

7The axioms of a vector space can indeed be satisfied by a set whose
elements are matrices.

Although Erdmann and Wildon (for example) develop the
theory of abstract Lie algebras fairly extensively, in this paper
we only need to rely on the definition of the Lie bracket. In
particular, for the problem at hand we start by asking what
conditions (n × n) symmetric adjacency matrices A and B
need to satisfy in order to commute, i.e.,

[A,B] = 0. (27)

We will later investigate how any such conditions might relate
to the interdependent graphs and in particular to the form of
the B0 connecting matrix. We may rewrite A and B as follows:

A =
∑
ij

aijEij , aij = aji ∈ {0, 1} and 1 ≤ i, j ≤ n; (28)

B =
∑
ij

bijEij , bij = bji ∈ {0, 1} and 1 ≤ i, j ≤ n, (29)

The summation limits on all the indices are always from 1 to
n unless underwise stated. Substituting into (27),∑

i

∑
j

aijEij ,
∑
k

∑
l

bklEkl


=
∑
i

∑
j

∑
k

∑
l

aijbkl[Eij , Ekl] = 0 (30)

An example of this straightforward calculation for n = 2 is
provided in [6]. The Lie brackets of the unit matrices (basis
vectors) follow these easily verifiable rules:

Case 1: j = k, i = l, [Eij , Ekl] = Eil − Ekj (31)
Case 2: j = k, i 6= l, [Eij , Ekl] = Eil (32)
Case 3: j 6= k, i = l, [Eij , Ekl] = −Ekj (33)
Case 4: j 6= k, i 6= l, [Eij , Ekl] = 0. (34)

The four cases can be written more compactly using the
Kronecker delta δij , which takes values zero and one with
δij = 1 if and only if i = j (see also [7]):

[Eij , Ekl] = δkjEil − δilEkj (35)

We now expand [A,B] as in (30), according to which of these
cases applies to (i, j, k, l). Full details for the example n = 3
are provided in [6]. In the following, we discuss the general
case, showing the specialization to n = 3 only for the final
step of each case.

Case 1: j = k, i = l∑
i

∑
j 6=i

aijbji(Eii − Ejj) = 0, (36)

since A and B are both symmetric. E.g. for n = 3,

(36) = a12b21(E11 − E22) + a13b31(E11 − E33)+

a21b12(E22 − E11) + a23b32(E22 − E33)+

a31b13(E33 − E11) + a32b23(E33 − E22) = 0, (37)

Case 2: j = k, i 6= l

∑
i

∑
j

∑
l 6=i

aijbjlEil =
∑
i

∑
l 6=i

∑
j

aijbjl

Eil. (38)



For n = 3, taking advantage of the fact that A and B are
symmetric adjacency matrices (i.e. with zero diagonal), the
above simplifies to:

∑
i

∑
l 6=i

∑
j

aijbjl

Eil

= a13b32E12 + a12b23E13 + a23b31E21 +

a21b13E23 + a32b21E31 + a31b12E32 (39)

We will pair this expression with the analogous result for Case
3, which is calculated next.

Case 3: j 6= k, i = l∑
i

∑
j

∑
k 6=j

aijbki(−Ekj) = −
∑
j

∑
k 6=j

(∑
i

aijbki

)
Ekj

(40)

For zero diagonals and n = 3,

−
∑
j

∑
k 6=j

(∑
i

aijbki

)
Ekj

= −a31b23E21 − a21b32E31 − a32b13E12 −
a12b31E32 − a23b12E13 − a13b21E23 (41)

Adding the two non-zero results for the 3× 3 example,∑
i

∑
j

∑
k

∑
l

aijbkl[Eij , Ekl]

= a13b23(E12 − E21) + a12b23(E13 − E31) +

a23b13(E21 − E12) + a12b13(E23 − E32) +

a23b12(E31 − E13) + a13b12(E32 − E23)

= (a13b23 − a23b13)(E12 − E21) +

(a12b23 − a23b12)(E13 − E31) +

(a12b13 − a13b12)(E23 − E32) (42)

Setting this equal to zero, therefore, is the condition for two
3×3 symmetric adjacency matrices A and B to commute. The
generalization of this expression to n× n matrices requires a
bit of work which, as before, is shown in detail in [6]. What
we have shown so far is that the Lie bracket of two arbitrary
symmetric matrices A and B is given by the sum of Eqs. (38)
and (40). Expansion of these two sums, simplification due to
symmetry and zero diagonals, and rearrangement eventually
leads to the general commutativity condition:∑

i

∑
j

∑
k

∑
l

aijbkl[Eij , Ekl]

=
∑
i

∑
l 6=i

∑
j

aijbjl

Eil −
∑
j

∑
k 6=j

(∑
i

aijbki

)
Ekj

=

n−1∑
i=1

n∑
k=i+1

n∑
j=1
j 6=i,k

(aijbkj − akjbij)(Eik − Eki) = 0 (43)

The next section provides a more abstract, more elegant,
and more efficient derivation and proof of this condition,

along with the analogous one for directed graphs. The much
greater insight afforded by this more “mathematical” work
then leads naturally to a simple geometrical interpretation for
commutativity and to constructive tests that are easily codable
for both directed and undirected graphs for any n. The strategy
is to work with the simplest possible “unit graphs”, i.e. single
directed or undirected edges, and to generalize to any digraph
or graph by writing it as a linear combination of these with
coefficients in {0, 1}. The geometrical condition for undirected
graphs is of course equivalent to the result obtained above.

IV. DIAMOND CONDITION FOR COMMUTING DIRECTED
AND UNDIRECTED GRAPHS

A directed graph or digraph Γ = (V,E) is a set V of
vertices together with a set of edges E ⊆ V ×V . It is called a
graph, or undirected graph, if E is a symmetric relation, i.e.
E = E−1 = {(v2, v1) : (v1, v2) ∈ E}. If Γ is an undirected
graph, we say “{v1, v2} is an edge of Γ” if either (hence both)
of (v1, v2) or (v2, v1) are edges of Γ. In this paper we shall
assume Γ has no self-loops, i.e. (v, v) 6∈ E for any v ∈ V .
Moreover, if we write (i, j) is an edge of Γ, this shall be taken
to assume i 6= j.8

For finite graphs, |V | = n is a natural number and it is
convenient to take V = {1, . . . , n}. We then denote by Eij
the n × n matrix having zeroes in all positions, except for a
1 in row i, column j. The notation δij is the Kronecker delta
taking values zero and one with δij = 1 if and only if i = j.

The adjacency matrix of a graph or digraph Γ is defined as

A(Γ) =

n∑
(i,j)∈E

Eij . (44)

For n × n square matrices A and B, their Lie bracket is
[A,B] = AB − BA. A and B commute if and only if
[A,B] = 0.

A. Commuting Digraphs

We study when two digraphs have commuting adjacency
matrices. In this case we say that the (di)graphs commute. Note
we can do this even if the (di)graphs do not have the same
number of nodes: If Γ has vertices V and Γ′ has vertices V ′,
possibly V ∩ V ′ 6= ∅, we enumerate V ∪ V ′ = {v1, . . . , vn},
and consider, without loss of generality, each of the (di)graphs
as having edges connecting nodes amongst the vi’s that belong
to them. NB: Whether or not graphs commute does depend on
whether and how their nodes are identified, e.g. they always
commute if their sets of nodes are disjoint!

Observation 1. EijEkl = δjkEil

Thus,

Lemma 5 (Lie Bracket of Directed Edges).

[Eij , Ekl] = δjkEil − δilEkj . (45)

8Note that parentheses in (i, j) imply that order matters, whereas curly
brackets {i, j}, which are more generally used to denote a set, imply that
either ordering of the indices is equivalent. Thus, parentheses are used for the
edges of digraphs and curly brackets for the edges of bidirectional graphs.



Corollary 6. Distinct Eij and Ekl commute unless (and only
unless) the directed edges (i, j) and (k, l) are abutting (i.e.
j = k or i = l, or both).

Corollary 7. Eij does not commute with Eji, for any choice
of i, j ∈ V ∪ V ′ (i 6= j).

Corollary 8. Disjoint edges always commute. That is, Eij
commutes with Ekl if the four vertices i, j, k, and l are
pairwise distinct.

Observation 2.

[A,B] =

n∑
i

n∑
j

n∑
k

n∑
l

aijbkl [Eij , Ekl]. (46)

Proposition 9 (Simple Necessary Directed Quadrilateral Con-
dition for Commuting Digraphs). Let [A,B] = 0 for adjacency
matrices of directed graphs. For each vertex k where an edge
(i, k) of Γ meets an edge (k, j) of Γ′, there exists a vertex k′

such that edge (i, k′) ∈ Γ′ and edge (k′, j) ∈ Γ.

Proof: Abutting edges account for the only way to generate
nonzero coefficients in front of Eij and Eji in the expansion
of the Lie bracket by Lemma 5. In the expansion of the Lie
bracket of A and B (Observation 2), for every k with an edge
(i, k) in Γ and an edge (k, j) in Γ′, we have

[Eik, Ekj ] = δkkEij − δjiEkk = Eij . (47)

For every such k, we also have, since (k′, j) is in Γ and (i, k′)
in Γ′, the summand

[Ek′j , Eik′ ] = δjiEk′k′ − δk′k′Eij = −Eij , (48)

which cancels the former. However, there can be no cancella-
tion if there is no k′ corresponding to k. �

Visual Interpretation for Digraphs. Each pair of such
summands in the proof corresponds to a quadrilateral whose
directed edges give two paths from i to j with edges coming
alternatingly from the two graphs. Along one of the paths the
Γ edge is first and along the other the Γ′ edge is first. (Note
that k = k′ is possible if the two digraphs share a two-step
path from i to j. Also i = j can occur.) Moreover, it is easy
to give necessary and sufficient conditions for directed graphs
to commute:

Theorem 10 (Diamond Condition for Commuting Di-
graphs). If Γ and Γ′ are directed graphs, with adjacency
matrices A and B respectively, then A and B commute if
and only if the diamond condition holds: For all nodes i and
j, the number of two-step paths from i to j consisting of an
edge of Γ followed by an edge of Γ′ is equal to the number of
two-step paths from i to j consisting of an edge of Γ′ followed
by an edge of Γ.

Proof: Since we are multiplying adjacency matrices, the first
number mentioned gives the (i, j)-entry of AB, the second
number gives (i, j)-entry of BA. Hence [A,B] = 0 in its
(i, j)-entry if and only if these numbers are equal. �

B. Commuting Undirected Graphs

We now characterize when undirected graphs have com-
muting adjacency matrices. Notation: Let E{i,j} = Eij +Eji.
Obviously E{i,j} = E{j,i}. If Γ is an undirected graph, then
A is a symmetric matrix. Clearly in this case

A(Γ) =

n∑
{i,j}∈E

E{i,j}. (49)

Observation 3. For undirected graphs with adjacency matri-
ces A and B,

[A,B] =

n∑
i<j
k<l

aijbkl [E{i,j}, E{k,l}]. (50)

Lemma 11 (Lie Bracket of Undirected Edges).

[E{i,j}, E{k,l}] = δjk(Eil − Eli) + δjl(Eik − Eki)+
δik(Ejl − Elj) + δil(Ejk − Ekj). (51)

Moreover, at most one of the summands is nonzero. The
bracket is zero if and only if |{i, j, k, l}| 6= 3. Thus an edge
commutes with another unless (and only unless) they share a
single vertex.

Proof: Using the distributivity of the Lie bracket over sums
and the formula for the Lie bracket of directed edges, we see
that

[E{i,j}, E{k,l}] (52)
= [Eij + Eji, Ekl + Elk]

= [Eij , Ekl + Elk] + [Eji, Ekl + Elk]

= [Eij , Ekl] + [Eij , Elk] + [Eji, Ekl] + [Eji, Elk]

= δjkEil − δliEkj + δjlEik − δkiElj +

δikEjl − δljEki + δilEjk − δkjEli (53)

Collecting terms multiplied by the same δ’s now yields the
result. If all of i, j, k and l are distinct then this is zero since
all the δ’s are zero. If there are only two distinct vertices,
it follows that {i, j} = {k, l}; then this Lie bracket is the
bracket of a matrix with itself and hence zero. In the case
of 3 distinct vertices, we have two undirected edges sharing
exactly one vertex, so only the δ corresponding to the unique
shared vertex is nonzero. �

Corollary 12. E{i,j} commutes with E{k,l} if and only if
edges {i, j} and {k, l} are (1) identical or (2) share no vertex.

NB: As can be seen from Lemma 11, [A,B] need not be
symmetric even if both A and B are symmetric.

Proposition 13 (Simple Necessary Quadrilateral Condition for
Commuting Undirected Graphs). Let [A,B] = 0 for adjacency
matrices of undirected graphs. For each vertex k where an
edge {i, k} of Γ meets an edge {k, j} of Γ′ (i 6= j), there is



a vertex k′ so that {j, k′} is an edge in Γ and {k′, i} is an
edge in Γ′.9

Proof: In the expansion of [A,B] in Observation 3 by
Lemma 11, Eij can occur only with a +1 coefficient due
to summands of the form [E{i,k}, E{k,j}] (k ∈ V ∩ V ′) and
only with a −1 coefficient due to summands of the form
[E{j,k′}, E{k′,i}] (k′ ∈ V ∩ V ′). Hence the number of such
summands of each type must be equal. �

Visual Interpretation. Each pair of such summands in the
proof corresponds to a quadrilateral comprised of alternating
edges from Γ and Γ′. Note that k = k′ is possible if the two
edges where the graphs meet occur in both graphs.

Similarly, but more simply than in the directed case, it is
easy to give necessary and sufficient conditions for directed
graphs to commute:

Theorem 14 (Diamond Condition for Commuting Undi-
rected Graphs). If Γ and Γ′ are undirected graphs, with
adjacency matrices A and B respectively, then A and B
commute if and only if, for all nodes i and j, the number of
two-step paths from i to j consisting of an edge of Γ followed
by an edge of Γ′ is equal to the number of two-step paths from
j to i consisting of an edge of Γ followed by an edge of Γ′.

Proof: This follows from Theorem 10 by noting that the
second number in Theorem 10 is equal, for undirected graphs,
to the number of two-step paths from j to i consisting of an
edge of Γ followed by an edge of Γ′. �

Note that edges in the Diamond Condition comprise (pos-
sibly degenerate) quadrilaterals with edges belonging alternat-
ingly to Γ and Γ′.

C. Examples of Commutative Interconnections

We will now develop a geometrical visualization through
the corresponding graphs. We recall the motivational problem
of connecting two undirected networks in such a way that their
adjacency matrices commute, Eq. (1) in Section I-B.

1) Connecting to n-Cycles: We examine the case where the
two networks are both simple cycles with n nodes (n ≥ 3).
In this case A1 = A2 is the n× n matrix

A1 = A2 =

n∑
i=1

E{i,i+1}, (54)

where the indices are taken modulo n, so n + 1 ≡ 1. The
two n-cycles can be visualized as straight-line networks with
wrap-around (so-called periodic boundary conditions), where
the last node connects back to the first. The two cycles are
visualized in red as shown in Figure 1 with an example set of
blue interconnections given by B0 = I , the identity matrix.

9We call an edge red if it belongs to Γ and blue if it belongs to Γ′. With
that, although one can formulate this proposition in terms of coterminous red-
blue and blue-read paths from i to j as in Proposition 9, due to undirectedness
we can formulate a quadrilateral condition in terms of a closed red-blue-red-
blue loop around the perimeter of the quadrilateral i, k, j, k′, which is easier
to check visually (see next section). An edge is purple if it is both red and
blue.

21 54 76

1'

n

3'2' 5'4' 6'

3

7' n'

Fig. 1. Two disjoint n-cycle graphs (red) with interconnections (blue),
according to the identity matrix I

We already know we can take B0 to be the zero, identity
or all-ones matrices. Regard the above (disconnected, two-
component) red graph as Γ. We are interested in finding in-
terconnection graph Γ′ with nodes {1, 2, . . . , n, 1′, 2′, . . . , n′}
and edges of the form {i, j′}, with i a node of the first cycle
and j′ a node of the other one.

Blue edges connect each i to i′, yielding a graph for
which the diamond condition (Theorem 14) obviously holds
(Figure 1). We now consider how the resulting graph can be
extended minimally with more interconnection edges, while
still preserving commutativity. If we want to add {1, 2′} to
the interconnection edges, the Diamond Condition (Theorem
14) says that we must complete to a quadrilateral the edges
{1, 2} and {1, 2′}. We can do this with {2, 3′}, which together
with {2′, 3′} gives a quadrilateral.10 The addition of the new
edge thus requires another edge. Continuing in this way, we
can add all {i, (i+ 1)′} to Γ′. This yields a regular graph of
degree 4 consisting of the two cycles and the interconnections,
see Figure 2. By Theorem 14, Γ and Γ′ commute, giving us a
new example. Here B0 has entry bij = 1 if and only if i = j
or j ≡ i+ 1 mod n.

21 54 76

1'

n

3'2' 5'4' 6'

3

7' n'

Fig. 2. Example of commuting B0 interconnection graph with two
n-cycle graphs

2) More Examples Connecting Two n-Cycles: Although
we constructed the above example using the quadrilateral
condition, we can now easily see many similar graphs that
will also work (we also get an independent verification of
the commutativity of A and the interconnection matrix B just
constructed):

Define Dk to be the n × n matrix with entries d(k)ij = 1
if j = i + k mod n and zero otherwise. D0 is the identity
matrix I and D0 + D1 is the interconnection matrix B0 we
just constructed above (Figure 2).

10Also {1, 2′} (blue), {2′, 3′} (red), {3′, n} (blue), {n, 1} (red) would
work, which can be continued to a different solution.



Observation 4. The graph Γ constructed from the two n-
cycles with interconnection matrix Dk is isomorphic to the
graph with the two-cycles connected by links {i, i′}. Note that
the latter are encoded by the identity matrix D0 = I . Due
to the isomorphism, the diamond condition for the graph with
interconnection matrix based on Dk holds since it holds for
the graph with interconnection matrix based on I = D0.

It follows from Proposition 2 that A1Dk = DkA1. Hence
we have a commuting interconnection by setting B0 = Dk

for any 1 ≤ k ≤ n. Notice that the interconnections encoded
by Dk have no edges in common with those encoded by Dm

unless k = m. It follows that any sum of distinct Di’s is a
zero-one matrix.

Let S ⊆ {1, 2, . . . , n}. Let Γ′ be the interconnection graph
with matrix

BS =
∑
k∈S

[
0 Dk

DT
k 0

]
. (55)

Then BS commutes with A, the matrix of two disjoint n-
cycles, since A1 commutes with each Dk. These yield 2n

examples of commuting interconnection graphs, including our
example constructed in this section (taking S = {0, 1}), the
identity (S = {0}), the zero matrix (S = ∅), and J , the all-
ones matrix for S = {0, 1, 2, . . . , n}. Note that each element
of S adds one edge at every node to the graph. Thus we have
proved the following:

Proposition 15 (Connecting Two n-Cycles via Commutative
Interconnection). Let A be the adjaceny matrix of two disjoint
n-cycles (n ≥ 3) as given above. For any subset S of
{1, . . . , n}, the interconnection matrix BS commutes with A.
Moreover, including the interconnection links gives a regular
graph of degree |S|+ 2.

3) Graphs on which Groups Act: We can generalize the
results just presented.

Let ∆ be any n-node graph with an automorphism group
G, which acts11 regularly on ∆: that is, for all π, π′ ∈ G, if
π(v) = π′(v) for some v in the graph then π = π′. Take two
disjoint copies of ∆ with nodes {1, . . . , n} and {1′, . . . , n′},
respectively. We can create a commutative interconnection for
fixed π ∈ G: connect each i in ∆ to π(i)′ in the disjoint
copy. For π = e, the identity automorphism, this is clearly
a commutative interconnection. For π 6= e, the graph with
the interconnections constructed according to π is clearly
isomorphic to the one with π = e since the nodes i′ with
a prime are simply relabelled by (π(i))′. Define Dπ to be
the n × n matrix of zeros and ones with entries d(π)ij = 1
if and only if j = π(i). If Dπ and Dπ′ are both 1 at
position (i, j), it follows that j = π(i) = π′(i), whence by
regularity π = π′. Interconnecting using the identity matrix
yields a graph satisfying the diamond condition, hence so does
interconnecting using any π ∈ G. And, like before, due to the

11G acts on ∆ = (V,E) means each π ∈ G permutes V , and for all
v1, v2 ∈ V , {v1, v2} ∈ E iff {π(v1), π(v2)} ∈ E.

isomorphism, it follows that A1Dπ = DπA1, where A1 is the
adjacency matrix of ∆.

Let Bπ be the symmetric interconnection matrix based on
Dπ . ABπ = BπA, where A is the adjacency block diagonal
matrix based on A1 = A2. Then for any subset S ⊆ G,

BS =
∑
π∈S

Bπ (56)

commutes with the adjacency matrix A of the two disjoint
copies of ∆. This is clear since A commutes with each Bπ .

V. VISUALIZATION, DISCUSSION AND CONCLUSION

Figure 3 shows four examples of commuting 6-node graphs
that demonstrate the Diamond Condition (Theorem 14). The
purple edges indicate overlap between the two graphs Γ and
Γ′, and the examples were chosen to show the Diamond
Condition for different levels of overlap.

Table I shows a visualization of Lemma 5, as the Lie bracket
of the four possible combinations of single-edge directed
graphs with one vertex in common. Table II, on the other hand,
shows a visualization of Lemma 11. The insights encapsulated
in these two lemmas and displayed in these tables were the
kernel of the proof, in the following sense. Our initial work
focused on reviewing background material and rederiving
known results, as shown in Section II. The second phase of the
work sought to express the commutativity condition through
the Lie bracket for A and B matrices of arbitrary size, as
shown in Section III. It was at this point that C. L. Nehaniv
started to think about when “elemental” graphs of single edges
commute, leading to the development presented in Section
IV. The two tables then capture all the possible component
interactions for the directed and undirected cases, from which
the corresponding Diamond Conditions follow naturally for
graphs of any size by linear superposition, matching the “brute
force” condition (43).
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Bracket Adjacency Matrix Adjacency Matrix Lie Bracket Kronecker δ Output
of Edges A of Γ B of Γ′ Notation
1

2

3

4

i j=k

l

Eil

 0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0

 [Eij , Ekl] =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

−
 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 δjkEil −��>δliEkj Eil

1

2 3

4

i j=k

l  0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0

 [Eij , Elk] =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 ���δjlEik −��>δkiElj 0

1

2 3

4

i j=k

l  0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0

 [Eji, Ekl] =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 ��>δikEjl −���δljEki 0

1

2

3

4

i j=k

l

-Eli

 0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0

 [Eji, Elk] =

 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−
 0 0 0 0

0 0 0 0
0 0 0 0
0 1 0 0

 ��>δilEjk − δkjEli −Eli

TABLE I
Visualization of Lemma 5 for n = 4 example of single-edge digraphs with one common vertex

Bracket Adjacency Matrix Adjacency Matrix Lie Bracket Example-Specific General
of Edges A of Γ B of Γ′ [E{i,j}, E{k,l}] Output Expression

1

2
3

4

i j=k

l

Eil
-Eli

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 1
0 0 1 0


 0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

−
 0 0 0 0

0 0 0 0
0 0 0 0
0 1 0 0

 E24 − E42 δjk(Eil − Eli)

1

2
3

4

i j=l

k

Eik
-Eki

 0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 1
0 0 1 0


 0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

−
 0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0

 E13 − E31 δjl(Eik − Eki)

1

2
3

4

i=k j

l

Ejl

-Elj

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
1 0 0 0
0 0 0 0

−
 0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 0

 E31 − E13 δik(Ejl − Elj)

1

2
3

4i=l

k

j

Ejk

-Ekj

 0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0


 0 0 0 0

0 0 0 0
0 0 0 0
0 1 0 0

−
 0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0

 E42 − E24 δil(Ejk − Ekj)

TABLE II
Visualization of Lemma 11 for n = 4 example of single-edge undirected graphs with one common vertex


	Dini_Diamond_condition_commuting_2013_cover
	Dini_Diamond_condition_commuting_2013_published

