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a b s t r a c t

An asymptotic theory is developed for series estimation of nonparametric and semiparametric regression
models for cross-sectional data under conditions on disturbances that allow for forms of cross-sectional
dependence and heterogeneity, including conditional and unconditional heteroscedasticity, along with
conditions on regressors that allow dependence and do not require existence of a density. The conditions
aim to accommodate various settings plausible in economic applications, and can apply also to panel,
spatial and time series data. A mean square rate of convergence of nonparametric regression estimates is
established followed by asymptotic normality of a quite general statistic. Data-driven studentizations that
rely on single or double indices to order the data are justified. In a partially linear model setting, Monte
Carlo investigation of finite sample properties and two empirical applications are carried out.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Economic agents are typically interdependent, due for exam-
ple to externalities, spill-overs or the presence of common shocks.
Such dependence is often overlooked or ignored in cross-sectional
or panel data analysis. In order to account for possible cross-
sectional dependence, one needs first to establish a framework
under which its structure can be suitably formalized, and which
permits an asymptotic statistical theory that is useful in statisti-
cal inference, in particular a central limit theorem for estimates of
functions or parameters of interest. Several approaches to mod-
elling cross-sectional dependence prominent in recent literature
can accomplish this. One class of models postulates unobserved
common factors that affect some or all individual units, see e.g An-
drews (2005), Pesaran (2006) and Bai (2009), and entail persistent
cross-sectional dependence. Two other classes involve a concept
of ‘‘economic location’’ or ‘‘economic distance’’. In economic data,
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cross-sectional units correspond to economic agents such as indi-
viduals or firms, envisaged as positioned in some socio-economic
(even geographical) space, whereby their relative locations under-
pin the strength of dependence, see e.g. Conley (1999) and Pinkse
et al. (2002). The spatial autoregressive (SAR)model of Cliff andOrd
(1968, 1981), see e.g. Arbia (2006), Lee (2002, 2004) and Kelejian
and Prucha (1998, 1999), employs spatial weight matrices whose
elements consist of inverse pairwise economic distances between
agents, whence the dependent variable or disturbance for a given
unit is affected by a weighted average of the other sampled units’
variables. The weights are presumed known and reflect the prox-
imity between agents, leaving a small number of parameters to
be estimated. Alternatively, mixing conditions extending ones fa-
miliar from the time series literature, have been employed. Conley
(1999) and Jenish and Prucha (2012), for example, develop spatial
mixing and functions-of-mixing conditions in terms of economic
distance between agents, under a suitable stationarity assumption,
while an alternative type of conditionwas proposed by Pinkse et al.
(2007). Another approach, of Robinson (2011), employs a possibly
non-stationary, linear process for disturbances, with dependence
in regressors expressed in terms of the departure of joint densities
from the product of marginals; a degree of heterogeneity across

le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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units is permitted, as well as strong dependence analogous to long
memory in time series, which is ruled out by mixing conditions, as
well as weak dependence, and the model can also accommodate
economic distances, as well as lattice or irregularly-spaced data.

On the other hand, nonparametric and semiparametric estima-
tion has becomewell established in econometric analysis, enabling
assumptions of a known parametric functional form, that are fre-
quently not warranted by economic theory, to be dropped or re-
laxed. There are many theoretical results on nonparametric kernel
estimation under temporal dependence, see e.g. Robinson (1983).
Jenish (2012), Robinson (2011) and Robinson and Thawornkai-
wong (2012) have considered kernel estimation in nonparamet-
ric regression and partially linear regression, under forms of
cross-sectional dependence. The asymptotic behaviour of series es-
timation under independence has been studied in Andrews (1991)
and Newey (1997). For weakly dependent time series data, Chen
and Shen (1998) and Chen et al. (2012) offer a rather complete
treatment of asymptotic theory and robust inference of general
sieveM-estimation,while Chen and Christensen (2015) shows that
spline and wavelet series regression estimation obtains the opti-
mal uniform convergence rate of Stone (1982).

This paper presents an asymptotic theory for series estimation
of nonparametric and semiparametric regression models that cov-
ers fairly general cross-sectional heterogeneity and dependence,
mainly of a weak form. The conditions of the paper may be rel-
evant to cross-sectional, spatial, time series and panel data, and
follow the framework of Robinson (2011), with modifications ne-
cessitated by the nature of series estimates relative to kernel ones.
Our asymptotic results can easily be modified to cover linear and
nonlinear parametric regression. Our other main contribution is
establishing a theoretical background for a studentization method
that offers an alternative to the existing variance estimation litera-
ture. In the spatial context, an extension of heteroscedasticity and
autocorrelation consistent (HAC) estimation of the covariance ma-
trix in the limiting normal distribution familiar from the time series
literature, see e.g. Hannan (1957), is possible if additional informa-
tion is available, such as the locations or geographical or economic
distances between units. Conley (1999) considered HAC estima-
tion under a stationary random field with measurement error in
distances, as did Kelejian and Prucha (2007) for SAR-type models,
andRobinson and Thawornkaiwong (2012) in a semiparametric re-
gression set-up. However, the small sample performance of HAC
estimation can be poor and an alternative studentization that can
produce more accurately sized tests was suggested by Kiefer et al.
(2000) in a time series setting. The present paper provides theoret-
ical justification for employing a version of such a studentization in
spatial or spatio-temporal data, though it critically relies on an as-
sumption that the practitioner can suitably order the data across
one or two dimensions, as may be relevant when geographical lo-
cations are known, or there are one or two characteristics believed
to be strongly associated with dependence between individuals.

The paper is structured as follows. In Section 2, the model set-
ting is outlined. In Section 3, series estimation is introduced and
a mean square rate of convergence for the nonparametric com-
ponent is established. Section 4 contains asymptotic normality re-
sults, covering slower-than-

√
n, aswell as

√
n, rate of convergence.

In the latter setting, Section 5 presents data-driven studentizations
in one and two dimensions. Using the semiparametric partially lin-
ear regression model, Section 6 presents a Monte Carlo study of fi-
nite sample performance and two empirical examples. Section 7
concludes. Two appendices contain proofs.

2. Model setting

The paper commences from the nonparametric regression
model

Yi = m(Xi)+ Ui, i = 1, 2, . . . , (1)
relating observable random variables (Xi, Yi) ∈ X×R, for some set
X ⊂ Rq,where m : X → R and Ui satisfies

Ui = σ(Xi)ei, (2)

where σ : X → R and ei ∈ R are unobservable random variables
with zero mean and finite variance, independent of {Xi}

∞

i=1 and
σ : X → R. We regard m and σ as nonparametric functions. The
factor σ(Xi) allows for conditional heteroscedasticity in Yi, and the
factor ei for dependence and unconditional heteroscedasticity. We
observe (Xi, Yi) for i = 1, . . . , n, while the ei (and thence theUi and
Yi) can form triangular arrays, so ei = ein, etc., but this feature will
be suppressed in our notation; triangular arrays enable coverage
of a wide range of models for spatial dependence, including SAR
models with normalized weight matrices, and stationary models
for panel data or multi-dimensional lattice or irregularly-spaced
data where the single index i in (1) and (2) requires a re-labelling
of multiple indices which is liable to change as n increases, as
discussed by Robinson (2011), who considered kernel estimation
of m. In some of our work ei can have semi-strong dependence
analogous to that found in long memory time series models. In
Sections 3 and 4 we qualify (1) and (2) by detailed regularity
conditions, including also restrictions on the dependence of Xi.

Under the preceding conditions m(x) = E(Yi|Xi = x) for
x ∈ X.We will estimate m by a series nonparametric regression
estimate m̂, constructed as a linear combination of pre-specified
approximating functions. More generally, we are interested in es-
timating a d × 1 vector functional a(m) of m, as in Andrews
(1991) and Newey (1997), where a(m) can be estimated by a(m̂).
Simple nonparametric examples of a(m) include the value of m,
a(m) = (m(x1), . . . ,m(xd))′, and the value of the partial deriva-

tive, a (m) =


∂/∂xℓm(x)


x1
, . . . , ∂/∂xℓm(x)


xd

′

, at multiple

fixed points (x1, . . . , xd) ∈ Xd, where xℓ is the ℓth element of
x. Of semiparametric examples of a(·), the partially linear regres-
sion model, will be discussed in detail in Section 5. Other a(·),
including nonlinear functionals, can be found in Newey (1997).
Andrews (1991) established asymptotic normality for series esti-
mates of a vector-valued linear a(m̂), with Xi and Ui independent
and non-identically distributed, and indicated that his proof can
be extended to cover strong mixing time series regressors. Newey
(1997) established uniform and integrated mean square rates of
consistency for m̂(x) and asymptotic normality of a(m̂) when Xi
and Ui are independent and identically distributed (iid) and a(m)
is a possibly nonlinear scalar functional, also describing conditions
under which a(m̂) converges to a(m) at parametric rate. Chen and
Shen (1998) and Chen et al. (2012) considered these issues for sieve
extreme estimates with weakly dependent time series, with rules
of inference that are robust toweak dependence. Chen et al. (2012)
also indicated that for certain cases of slower-than-

√
n rate of con-

vergence such as when a(m) = m, the asymptotic variance of the
estimate a(m̂) coincides with that obtained under independence,
as found for kernel estimation by Robinson (1983), for example.

3. Estimation ofm and mean square convergence rate

The estimation of m is based on user-chosen approximating
functions ps(·) : X → R, s = 1, 2, . . ., and a data-free integer
κ denoting the number of ps(·) employed. Denote

pk(·) = (p1(·), . . . , pk(·))′, k ≥ 1;

P = [pκ(X1), . . . , pκ(Xn)]
′, κ ≥ 1;

(3)

Y = (Y1, . . . , Yn)
′
; β̂ = (P ′P)−P ′Y , (4)

where A− denotes the Moore–Penrose pseudo-inverse of a matrix
A, and a series estimate ofm(x) by

m̂(x) = pκ(x)′β̂. (5)
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As usual, the choice of κ entails a bias/variance trade-off, where
increasing κ increases variance while reducing bias, and vice versa.
In this connection, our first assumption restricts smoothness of the
unknown function m. We first introduce a weighted sup norm for
functions in order to allow for unbounded support X = Rq of Xi:

|g|∞,w := sup
x∈X

|g(x)|(1 + ∥x∥2)−w/2,

for some w ≥ 0, see e.g. Chen et al. (2005) and Chen (2007). The
weighted sup norm becomes the more familiar sup norm |g|∞ =

supx∈X |g(x)| when w = 0, and this suffices in place of |g|∞,w in
the following assumption when the Xi are uniformly bounded.

Assumption A1. Letw ≥ 0 be the largest value such thatmaxi≥1 E
∥Xi∥

2w < ∞. There exists a sequence of vectors β = βκ and a
number α > 0 satisfying,

|m − pκ′β|∞,w = O(κ−α), as κ → ∞.

Conditions similar to Assumption A1, with | · |∞ in place of
| · |∞,w , were used in earlier series estimation literature, see
e.g. Andrews (1991) and Newey (1997). Further insights into those
conditions for various ps(·), including polynomials, trigonometric
polynomials, splines and orthogonal wavelets, can be found in
Chen (2007, p. 5573). Chen et al. (2005) noted that the weight
function (1 + ∥x∥2)−w/2 used here could be regarded as an
alternative to the trimming used in kernel estimation when
support is unbounded, X = Rq. Conditions imposing an upper
bound on κ may necessitate stronger smoothness ofm.

For any non-negative definitematrix B denote byλ (B) andλ (B)
the smallest and largest eigenvalues respectively, and for any real
matrix B denote the spectral norm ∥B∥ = λ̄1/2(B′B). As in Andrews
(1991) and Newey (1997), for example, introduce the sequence

ξ = ξκ = sup
x∈X

∥pκ(x)∥. (6)

If m is believed bounded, one might choose bounded ps(·),
whence ξ ≤ C

√
κ , where C throughout denotes a generic arbi-

trarily large positive constant. It may be possible to obtain the rate
of ξ exactly: Newey (1997) showed that under suitable conditions,
ξ ∼ κ when the ps(·) are orthogonal polynomials, and ξ ∼ κ1/2

when they are B-splines, a ∼ bmeaning that a/b tends to a positive
finite limit. Define

Q = Qn = n−1P ′P. (7)

Denote by c an arbitrarily small generic positive constant. The
following assumption presupposes elimination of any redundant
ps(·):

Assumption A2. For all sufficiently large n, E(ps(Xi)
2) ≤ ∞ for

1 ≤ s ≤ κ, 1 ≤ i ≤ n and λ (E(Q )) ≥ c.

The first inequality of A2 implies E ∥pκ(Xi)∥
2

≤ Cκ which is
equivalent to tr (E(Q )) ≤ Cκ if the Xi are identically distributed,
whereby E(Q ) = E(pκ(X1)pκ(X1)

′).

Assumption A3. The model (1), (2) holds, where the sequences
{Xi}

∞

i=1 and {ei}∞i=1 are mutually independent, maxi≥1 Eσ 4(Xi) <
∞, and the ei have zero means and finite variances.

To describe dependence in {Xi} introduce

ζij = sup
f∈Fij

Cov(f (Xi), f (Xj)),

Fij =

f : Ef 2(Xi) = Ef 2(Xj) = 1


,

(8)

△ = △n =
1

n(n − 1)

n
i,j=1,i≠j

ζij. (9)
The quantity ζij is bounded above by the maximal correlation co-
efficient of Rozanov (1963), for example. For Gaussian Xi, it follows
from Lemma 10.2 of Rozanov (1963) that ζij ≤

Corr Xi, Xj
. Fur-

ther, for a stationary Gaussian process Xi, ζij is upper-bounded by
the α-mixing coefficient with index |i − j|. More generally, the Xi
need not have absolutely continuous distribution functions. The
quantity △ is an overall measure of dependence; the property
△ ∼ n−1 is analogous to weak dependence of time series, while
a rate between that and the upper bound △ ≤ 1 is analogous to
strong dependence.

Assumption A4. As n → ∞, κ−1
+ κξ 2(n−1

+ △) → 0.

The △ component is vacuous under independence of Xi and
otherwise indicates that the stronger the dependence the smaller
κ needs be. In light of A1, this necessitates greater smoothness of
m. The κξ 2/n → 0 component reduces under suitable conditions
to κ = o(n1/2) for B-splines and κ = o(n1/3) for orthonormal
polynomials.

To describe dependence in ei define

γik = E (eiek) ; ω = ωn = max
1≤i≤n

1
n

n
k=1

|γik| . (10)

The property

ω ∼ n−ς , ς ∈ (0, 1], (11)

can be said to coverweak dependence in ei whenς = 1, and ‘‘semi-
strong dependence’’ when ς ∈ (0, 1), the latter case correspond-
ing to long memory in stationary time series. Define

χ = ωκ if sup
x
σ 2(x) < ∞; = ωξκ1/2, otherwise. (12)

Both versions of χ are identical when ξ ∼ κ1/2. The following the-
orem obtains an integrated mean square rate of convergence.

Theorem 1. Under Assumptions A1–A4, as n → ∞,

max
1≤i≤n

E|m̂(Xi)− m(Xi)|
2

= O

χ + κ−2α . (13)

Thus if

χ + κ−2α


→ 0, m̂ is consistent. For example if ξ ∼

κρ (13) becomes O

κ1/2+ρn−ς

+ κ−2α

in view of (11), leading

to the optimal rate κ ∼ nς/(1/2+ρ+2α). The rate in (13) coin-
cides with Newey’s (1997) for iid Xi and ei, and bounded σ , when
χ ∼ κ/n, and weak dependence in ei (ς = 1 in (11)) leaves
the rate unchanged. On the other hand, more generally under only
Eσ 4 (Xi) ≤ C and (11), we have χ ∼ ξκ1/2n−ς , entailing stronger
restrictions on κ and/or ξ to achieve consistency. Newey (1997)
also covered a general concept of uniform convergence (where his
uniform rate was improved by de Jong (2002), for compact X). A
uniform rate of convergence in our setting may be shown to be
Op

ξ

χ1/2

+ κ−α


under a modification of A1 stated in terms of
sup norm, using the proof of Theorem 1. More recently, Chen and
Christensen (2015) verified that spline and wavelet series regres-
sion estimators forweakly dependent regressors attain the optimal
uniform convergence rate of Stone (1982).

4. Asymptotic normality

Our interest now lies in inference on the d × 1 deterministic
functional a(m), for which a central limit theorem is the first step.
For this purpose, we denote

θ0 = a(m), θ̂ = θ̂n = a(m̂),

and introduce the following assumptions from Newey (1997),
modified here with the weighted sup norm:
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Assumption B1. Either: (i) a(g) is a linear operator in g , or: (ii)
For any ϵ > 0, there exists a linear operator D(g) and constant
Cϵ < ∞ such that ∥a(g)− a(m)− D(g − m)∥ ≤ Cϵ |g − m|

2
∞,w , if

|g − m|∞,w ≤ ϵ.

Assumption B2. ∥D(g)∥ ≤ C |g|∞,w .

B2 implies continuity of D(·), the Frechet-differential of a(·)
at m, while B1(ii) imposes a stronger smoothness condition on
a(·) at m and is not restrictive, see e.g. Newey (1997, p. 153).
When a(·) is a linear operator, its Frechet-derivative is itself,
D(g) = a(g). For example, for the linear operator a(g) =

(g(x1), . . . , g(xd))′, a(ps) = D(ps) =

ps(x1), . . . , ps(xd)

′
, s =

1, . . . , κ .
Define the κ × d matrix

A = An = (D(p1), . . . ,D(pκ))′.

Also, using (3), let

v = vn = n−1/2A′P ′U, U = (U1, . . . ,Un)
′ , (14)

and thence the conditional and unconditional variance matrices

V̄ = V̄n = E

vv′

|Xi, i = 1, . . . , n


=
1
n

n
i,k=1

γikσ(Xi)σ (Xk)A′pκ(Xi)pκ(Xk)
′A,

V = Vn = E

vv′


=
1
n

n
i,k=1

γikE

σ(Xi)σ (Xk)A′pκ(Xi)pκ(Xk)

′A

.

Assumption B3. For a positive non-increasing scalar sequence
τ = τn, τλ (V ) ≥ c for all sufficiently large n.

B3 requires A to have rank d for all κ ≥ d. The case τ → 0
as n → ∞ is relevant when a is a nonparametric functional,
converging at rate

√
nτ , while the case τ ≡ 1 is relevant when

a is a semiparametric functional, converging at rate
√
n, the latter

situation being discussed in detail in the following section. B3 does
not satisfactorily allow both nonparametric and semiparametric
components in a, which will have different rates; theory suggests
they should use differentκ , but our statistic is insufficiently general
to permit this. We strengthen the rate condition A4 to:

Assumption B4. As n → ∞,

ξ 4τκ (1 + n△)+ ξ 4nτ(χ2
+ κ−2α) → 0.

To prove asymptotic normality we introduce a more detailed
specification of ei:

Assumption B5. (2) holds with

ei =

∞
j=1

bijεj, i = 1, 2, . . . , (15)

where the εj, j ≥ 1, are independent random variables with zero
mean and unit variance, the ε2j are uniformly integrable, and the
bij are real constants such that for some η > 0 and all sufficiently
large n,

n
i=1

bij+ ∞
j=1

jηbij ≤ C, i = 1, 2, . . . ; j = 1, 2, . . . . (16)

The linear process (15) was employed by Robinson (2011) and
the dependence on both i and j of bij (like γij), rather than just their
difference i − j, distinguishes (2) from representations for station-
ary time series, as does our allowance for them to be triangular
arrays, thereby covering models described after (1) and (2) in Sec-
tion 2. In SAR models, where the bij tend to reflect economic dis-
tances between agents, we have, for all i, bij = 0 for j > n, andn

j=1

bij ≤ C is commonly assumed, see e.g. Kelejian and Prucha
(1998) and Lee (2004). In models featured in the spatial statistics
literature it is frequently natural to allow bij to be non-zero for all
j, analogously to autoregressive time series models. Condition (16)
implies weak dependence in ei: noting that

γik = E(eiek) =

∞
j=1

bijbkj, (17)

it is easily seen that
n

k=1 |γik| ≤ C and thus ω = O

n−1


in (10).

Finally, some falling off of fourth cumulants is required in the
assumption below.

Assumption B6. Defining w(h)i := ph(Xi)σ (Xi) for i ≥ 1, 1 ≤ h ≤

κ, as n → ∞

ξ 2

n2

n
i2,i4=1

max
i1,i3


κ

h1,...,h4=1


cum(w(h1)i1

, . . . , w
(h4)
i4
)
21/2

→ 0.

(18)

Under independence of the Xi, ormore generally finite dependence
(similar to m-dependence in time series), this condition entails
κ2ξ 2/n → 0 as n → ∞.

Denote by B1/2 the unique positive definite square root of a
positive definite matrix B.

Theorem 2. Under Assumptions A1–A4 and B1–B6, as n → ∞,

√
nV̄−1/2(θ̂ − θ0)→d N(0, Id), (19)

√
nV−1/2(θ̂ − θ0)→d N(0, Id). (20)

Replacing V by a data dependent quantity without affect-
ing the limit distribution in (20) typically requires additional in-
formation, as discussed in Section 1. In the weakly dependent
time series context, Chen et al. (2012) found that under condi-
tions on a(·) that preclude

√
n-convergence of a(m̂), V reduces

asymptotically to the same matrix as under the assumption of
independence (cf Robinson (1983) for kernel estimates), which
in our setting is limn→∞ n−1n

i=1 γiiE

σ(Xi)

2A′pκ(Xi)pκ(Xi)
′A

.

This prompts interest in developing, for spatial settings, infer-
ence under

√
n-convergence, when such a simplification does not

result. As indicated in Section 1, one example of a(m) is the vec-
tor (m(x1), . . . ,m(xd))′ whence, using Theorem 2 and after a rel-
atively simple studentization a test for a specific functional form
of m(x) analogous to that of Robinson (1983) can be developed,
though such a test lacks satisfactory consistency properties and
much more work would be required to justify a consistent test. Of
course in case of a nonparametric a(m) the rate of convergence in
Theorem 2 is slower than

√
n, whereas in the sequel we focus on

the, semiparametric,
√
n case.

5. Studentization

We present a studentization for a
√
n-convergent semipara-

metric estimate θ̂ . Attainment of the parametric
√
n rate by

semiparametric estimates has attractedwide interest in the econo-
metric literature, following Robinson (1988) and Powell et al.
(1989), who used kernel estimation. Newey (1997) developed√
n-convergence of a series semiparametric estimate, while Chen
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and Shen (1998) establish extensions for weakly dependent time
series. In our spatial setting statistical inference requires a stu-
dentization that is robust to dependence and heterogeneity across
i. Section 1 discussed difficulties with HAC estimation in dealing
with cross-sectional dependence. Given a suitable ordering of data,
however, a(m̂) can be studentizedwithout assuming anyparticular
dependence structure, following the time series approach of Kiefer
et al. (2000). We consider two different versions of such studenti-
zation, depending on whether data are to be ordered according to
one or two indices. Below, we first present some common assump-
tions that are required for both versions of the studentization, then
each version is considered in detail in the following subsections.

Define, for a fixed r ∈ [0, 1]:

V (r) :=
1

[rn]

[rn]
i,k=1

γikE

σ(Xi)σ (Xk)A′pκ(Xi)pκ(Xk)

′A

.

Throughout this section, we impose the following unprimitive
assumption.

Assumption C1. There exists a finite positive definite matrix Ω
such that limn→∞ V (r) = Ω for all r ∈ [0, 1].

Sufficient conditions for C1 involve technical restrictions on the
functional derivativeD(·) of a(·) that can be found in Assumption 7
of Newey (1997), where they are verified to hold for the estimands
in partially linear and single index models and also when the
quantity of interest is the approximate consumer surplus. In a
non-iid setting, we also require weak dependence in ei for C1 to
hold, which is implied by B5. Existence of Ω is a condition on
the collective strength of dependence in Ui and Xi, comparable to
Assumption A4 of Robinson and Thawornkaiwong (2012). C1 also
requires a degree of homogeneity across units, although somewhat
less stringent than identity of distribution.

Assumption C2. As n → ∞: (i) △ = O(n−1); (ii) χ = O(κ/n);
(iii)

√
nξ 3κ

1
2 −α

= o(1); (iv) κ2ξ 4 = o(n).

Assumption C2(i) impliesweak dependence ofXi, C2(ii) restricts
the dependence across i of pκ(Xi)Ui, C2(iii) strengthens the
smoothness condition of B3(iii) and C2(iv) further restricts the
growth of κ and ξ , but is satisfied by, for example, the rate
mentioned after Assumption B6.

Assumption C3. maxj≥1E(ε4j ) < ∞, and supx∈X |σ(x)| < ∞.

Let D(·; g) denote the functional derivative of a(·) evaluated at
g , and D(·; g) =


D1(·; g), . . . ,Dd(·; g)

′
. The following assump-

tion fromNewey (1997) requiresDi(·; g) to exhibit continuity over
g .

Assumption C4. For any ϵ > 0 and all g̃, ḡ such that |g̃−m|∞,w ≤

ϵ and |ḡ − m|∞,w ≤ ϵ, there exists Cε < ∞ such that ∥Di(g; g̃)−

Di(g; ḡ)∥ ≤ Cε|g|∞|g̃ − ḡ|∞,w , i = 1, . . . , d.

5.1. Studentization for one dimensional ordering

In this subsection, we consider the case when one has informa-
tion to suitably order the data with a single index. We first intro-
duce the quantities used in the studentization and discuss in detail
the requisite assumption on the ordering.

We estimate A by

Â =
∂a(pκ′β)
∂β


β=β̂

(21)
and with M̂ =

m̂(X1), . . . , m̂(Xn)


, Û = Y − M̂ , set

Ŝ∗

n,m =

m
i=1

Â′Q−1pκ(Xi)Ûi/
√
n, 1 ≤ m ≤ n,

B̂n =
1
n

n
m=1

Ŝ∗

n,mŜ
∗′

n,m,

Ψd =

 1

0
[Wd(r)− rWd(1)][Wd(r)− rWd(1)]′dr,

where Wd(·) denotes a d-dimensional vector of independent
Brownian motions, so Ψd is the integral of the outer product of
the d-dimensional multivariate Brownian bridge, and we note that
EWd(r)Wd(u)′ = rId, 0 ≤ r ≤ u ≤ 1.

Assumption C5. As n → ∞: (i)


[rn]
i=1
n

k=[rn]+1 |γik| = o(n)
uniformly in r ∈ [0, 1]; (ii) max1≤i≤n

n
k=1 |γik| = O(1).

Assumption C5(ii) further rules out the presence of any ‘‘dom-
inant’’ unit whose error covariances with new units added to the
sample are persistently significant. In our other assumptions, the
ordering of the n observations is arbitrary, but Assumption C5(i),
required to justify our studentization, is unfortunately highly sen-
sitive to ordering, requiring some falling-off of dependence as |i−k|
increases (Lemma 2 in Appendix B shows that it is satisfied if there
exists a positive function η(·) such that |γik| ≤ η(i − k), i, k =

1, 2, . . ., and


∞

j=−∞
η(j) < ∞). This is often reasonable with

time series, but for spatial data there is generally no natural or-
dering and the bulk of the n! possible orderings will not satisfy
C5(i), so considerable care would be required in ordering the data.
In some economic applications data might be ordered with re-
spect to some relevant (explanatory) variable. For example, with
firm data, firms using similar inputs or producing similar outputs
might be expected to exhibit high correlation in disturbances. It
may be that some economic distances are available, as in SAR
models, in which case they can facilitate ordering by indicating
neighbouring units although there would still remain considerable
arbitrariness in the ordering. Such considerations are pursued in
the Monte Carlo study in the following section. Other approaches
to the modelling of cross sectional data that would justify alterna-
tive studentizations can also be challenged. Mixing assumptions,
for example, are, like ours, nonparametric, but they generally pre-
suppose that observations are recorded on a Euclidean space and
distances betweenunits are known to thepractitioner for inference
robust to dependence, using HAC variance estimation, to be car-
ried out. Parametric models, such as SAR and factor models, with
the former requiring the practitioner to specify one or more n × n
spatialweightmatrices, run obvious risks ofmisspecification. If the
practitioner has no information that suggests a plausible ordering
of data, e.g. in the case one has a random permutation of observa-
tions, one cannot use our studentization to carry out inference that
is robust to cross-sectional dependence, just as one cannot with
any other alternative method available.

Theorem 3. Under the assumptions of Theorem 2, and Assump-
tions C1–C5, as n → ∞

n(θ̂ − θ0)
′B̂−1

n (θ̂ − θ0)→d Wd(1)′Ψ−1
d Wd(1).

Theorem 3 may be employed in approximate hypothesis tests
and interval estimation, with critical values given in Table 2 of
Kiefer et al. (2000).

5.2. Studentization for two dimensional ordering

We can partially relax the ordering required in the previous
subsection. When one has geographical locations of individuals
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or spatio-temporal data, it is natural to consider two dimensional
ordering of the data. For a given number n of observations, sup-
pose we can choose s and t such that n = st . In the case of geo-
graphical locations, this setting does not necessarily entail a grid or
regular spacing. Suppose each location has two (real valued) coor-
dinates, north and east. One may divide the south–north axis into
s intervals, possibly of different length so that each has t obser-
vations. In each such interval one then orders the t observations
along the west–east axis, and thence finally gives each observation
two subscripts, j = 1, . . . , s and k = 1, . . . , t . The choice of s and
t introduces arbitrariness. Moreover, having gone through such an
indexing procedure, so e.g.Xjk corresponds to x (ui, vi), we canhave
for observation points Xj1k1 = x


ui1 , vi1


, Xj2k2 = x


ui2 , vi2


, the

outcome vi1 < vi2 but k1 > k2, say, so while the procedure is
appropriate for (possibly irregular) lattice data, for example, it en-
tails an element of arbitrariness in relation to general geographical
data sets on two dimensions. There is also an underlying difference
in our attitudes to the one- and two-dimensional orderings of this
and the previous section. In the former case, our attitude is that
the ordering may be possible (e.g. it will be in the time series case)
but typically more or less problematic, whereas in the latter we
take for granted that we know locations, at least approximately. It
should also be added that if in fact we know actual locations in ei-
ther case, our procedures do not in general use that information,
only orderings, so will not be ideal.

Though we adopt the above simplified method of ordering in
establishing our results, theywill also hold if the s intervals contain
differing numbers tj of observations, where

s
j=1 tj = n. It would

seemalso to be possible to extendour approach and results to three
or more dimensions.

Some of the previously defined quantities need to be rewritten
to incorporate two dimensional ordering of data. Note that
quantities that do not depend on the ordering of data such as
θ̂ do not need to be restated. The model can be rewritten as
Yjk = m(Xjk) + Ujk. Denote γjkιh = Cov(Ujk,Uιh), where Ujk =

∞

ι=1


∞

h=1 bjkιhειh and let

V =
1
n

s
j,ι=1

t
k,h=1

γjkιhE

σ(Xjk)σ (Xιh)A′pκ(Xjk)pκ(Xιh)′A


,

Ŝ∗

n,m,ℓ =

m
j=1

ℓ
k=1

Â′Q−1pκ(Xjk)Ûjk/
√
n,

Ĉn =
1
n

s
m=1

t
ℓ=1

Ŝ∗

n,m,ℓŜ
∗′

n,m,ℓ,

Φd =

 1

0

 1

0
[Wd(r, u)− ruWd(1, 1)]

× [Wd(r, u)− ruWd(1, 1)]′drdu,

where Wd(·, ·) denotes a d-dimensional vector of independent
Brownian sheets such that Wd(0, 0) = 0 and Cov(Wd(r, u),Wd
(r ′, u′)) = (r ∧ r ′)(u ∧ u′)Id for r, u, r ′, u′

∈ [0, 1].

Assumption C5′. As n → ∞: (i)
t

k,h=1


[rs]
j=1
s

ι=[rs]+1 |γjkιh| =

o(n) uniformly in r ∈ [0, 1] and
s

j,ι=1


[ut]
k=1

ℓ
h=[ut]+1 |γjkιh| =

o(n) uniformly in u ∈ [0, 1]; (ii) max1≤ι≤s,1≤h≤t
s

j=1
t

k=1 |γjkιh|

= O(1).

Assumption C5′(ii) is identical to C5(ii), just rewritten with the
two subscripts. Assumption C5′(i) requires a suitability of ordering
in both directions.

Theorem 4. Under the assumptions of Theorem 2, and Assump-
tions C1–C4, C5′, as n → ∞

n(θ̂ − θ0)
′Ĉ−1

n (θ̂ − θ0)→d Wd(1, 1)′Φ−1
d Wd(1, 1).
Table 1 provides critical values for Wd(1, 1)′Φ−1
d Wd(1, 1) sim-

ulated from 50,000 iterations, where Wd(1, 1) was approximated
by normalized sums of iid Gaussian randomvariables in 1000 steps
in both directions.

6. Numerical results for the partially linear model

The present section contains Monte Carlo investigation of
finite-sample performance of our estimates and two empirical
applications, in all cases for the partially linear regression model,
which is discussed in the following sub-section.

6.1. Partially linear regression model

We partition Xi =

W ′

i , Z
′

i

′ and specialize (1) to

Yi = Z ′

i δ0 + h(Wi)+ Ui, (22)

where h(·) is a nonparametric function and δ0 is an unknown
parameter vector, so m(x) = m(w, z) = z ′δ0 + h(w). This model
is particularly suitable when Zi contains categorical variables, and
is often used when the overall number of regressors is large,
when a fully nonparametric specification suffers the curse of
dimensionality. Kernel estimation of thismodel has receivedmuch
attention see e.g. Robinson (1988) and Fan and Li (1999), where
δ0 was shown to be estimable at

√
n rate despite first stage

nonparametric estimation having a slower-than-
√
n rate. Series

estimation of (22) was considered in Chamberlain (1986) where
the choice of series functions takes into account the partially linear
form, the first d functions being Zi, and the remaining κ − d are
functions of Wi only. The series estimate of δ0 is then the first d
elements of β̂ , and ĥ(x) = m̂(w, z) − z ′δ̂. There is more than one
a(·) that yields a(m) = δ0. Andrews (1991) considered a(m) =

∂m(w, z)/∂z = δ0 for any w, z, earlier mentioned by Robinson
(1988), in a kernel context. Here we use the functional of Newey
(1997), which leads to

√
n-consistency. Denote Z∗

= Z − E(Z|W),
where Z and W are random variables independent of the data used
to construct δ̂. Suppose E(Z∗Z∗′) is non-singular, an identification
condition, and consider

a(m) = E

[E(Z∗Z∗′)]−1Z∗m(W, Z)


.

Now E(Z∗Z∗′) = E

Z∗Z′

− Z∗E(Z′
|W)


= E(Z∗Z′), since E

Z∗E

(Z′
|W)


= E[ZE(Z′
|W)] − E[E(Z|W)E(Z′

|W)] = 0, and E

Z∗m

(W, Z)


= E

Z∗

Z′δ0 + h(W)


= E(Z∗Z′)δ0 since E[Z∗h(W)] =

E[Zh(W)] − E[E(Z|W)h(W)] = 0. Thus

a(m) = δ0.

Likewise, since β̂ = (δ̂′, λ̂′)′, m̂(w, z) = z ′δ̂ + q(w)′λ̂,

a(m̂) = E

[E(Z∗Z∗′)]−1Z∗m̂(X, W)


= [E(Z∗Z∗′)]−1


E(Z∗Z′)δ̂ + E[Z∗q(W)′]λ̂


= δ̂.

6.2. Monte Carlo study of finite sample performance

Our simulations take both Wi and Zi in (22) to be one-
dimensional, and throughout set δ0 = 0.3 and h(w) = log(1+w2).
Our main focus is to investigate performance of studentizations of
Section 5 when the ordering requirements of C5 and C5′ may be
problematic due to noise in our information about the ordering. For
example, even if one knows which characteristic(s) of individual
units underpins the structure of spatial dependence, it may be
observed with error. For both settings of Sections 5.1 and 5.2,
we introduce varying degrees of perturbations to the correct
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Table 1
Asymptotic critical values ofWd(1, 1)′Φ−1

d Wd(1, 1).

% d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

90 26.45 56.12 89.06 125.13 164.52 205.41 251.52 299.46 349.92 404.22
92.5 31.94 65.19 101.88 140.16 182.74 225.43 275.62 327.14 379.69 438.89
95 40.13 78.37 119.49 161.47 208.18 254.78 310.96 364.84 422.63 485.4
97.5 56.94 102.44 149.76 200.09 253.48 306.56 366.9 428.62 496.25 562.6
99 80.51 137.37 192.4 253.15 313.18 376.38 450.14 516.98 596.31 667.22

% d = 11 d = 12 d = 13 d = 14 d = 15 d = 16 d = 17 d = 18 d = 19 d = 20

90 462.01 518.89 579.63 642.53 705.94 772.63 843.9 918.99 988.69 1066.3
92.5 497.43 556.68 620.25 688.05 754.72 824.05 897.5 975.44 1048.85 1127.71
95 548.63 609.57 677.77 750.63 820.3 897.52 973.74 1052.87 1126.82 1213.57
97.5 631.45 697.63 777.26 855.09 927.58 1013.52 1096.11 1180.25 1271.74 1353.66
99 749.3 816.72 901.14 990.75 1065.59 1162.26 1245.07 1345.38 1446.13 1535.03

% d = 21 d = 22 d = 23 d = 24 d = 25 d = 26 d = 27 d = 28 d = 29 d = 30

90 1143.37 1228.08 1301.17 1384.64 1473.12 1556.33 1651.56 1745.87 1838.19 1931.44
92.5 1209.83 1298.81 1373.56 1460.09 1555.47 1636.52 1736.99 1836.96 1928.30 2034.14
95 1296.34 1391.67 1471.74 1567.32 1660.19 1748.68 1854.77 1959.23 2047.54 2161.92
97.5 1447.76 1544.98 1642.89 1742.46 1840.65 1944.36 2048.66 2145.17 2247.40 2367.51
99 1634.47 1752.84 1834.49 1954.47 2068.41 2180.41 2277.93 2406.17 2492.32 2630.90
ordering of data and report their effects on Monte Carlo coverage
probabilities and power of test.

In the first set of simulations which is relevant to the stu-
dentization of Section 5.1, we generate random locations for
individual units along a line, which determines the underlying de-
pendence structure. We then compare the performance of our stu-
dentization under the correct ordering of data with that under a
perturbed ordering, where locations are observed subject to er-
ror, but used to order the data. To be specific, the locations of
the observations, denoted s = (s1, . . . , sn)′, were generated by a
random draw from the uniform distribution over [0, n]. Keeping
them fixed across replications, Ui and Zi were generated indepen-
dently as scalar normal variables with mean zero and covariances
Cov(Ui,Uj) = Cov(Zi, Zj) = ρ |si−sj|, using various ρ ∈ (0, 1). To
construct Wi, we generate another scalar normal random variable
Vi in the same way as Ui and Zi and let Wi = 1 + Vi + 0.5Zi. The
dependent variable is then Yi = log(1 + W 2

i )+ 0.3Zi + Ui.
For the studentization, we add noise to the locations, to

generate four sets of ‘‘perturbed’’ locations: defining

ϵ′
= (ϵ′

1, . . . , ϵ
′

n)
′
∼ N(0, 4In),

ϵ′′
= (ϵ′′

1 , . . . , ϵ
′′

n )
′
∼ N(0, 25In),

ϵ′′′
= (ϵ′′′

1 , . . . , ϵ
′′′

n )
′
∼ N(0, 100In),

ϵ′′′′
= (ϵ′′′′

1 , . . . , ϵ
′′′′

n )
′
∼ N(0, 400In),

we take

s′i = si + ϵ′

i , s′′i = si + ϵ′′

i , s′′′i = si + ϵ′′′

i ,

s′′′′i = si + ϵ′′′′

i , i = 1, . . . , n.

We base the studentization on 5 different orderings of the data,
according to the five sets of locations s, s′, s′′, s′′′, s′′′′.

We consider two sample sizes, n = 100, 400 and 4 levels of
dependence, ρ = 0, 0.2, 0.4, 0.6. For each of the 8 combinations,
three bandwidth values, κ = 4, 6, 9 were tried, and for the series
functions ofWi, the first κ − 1 orthonormal Legendre polynomials
were used. The results are based on 1000 replications.

We first analyse performance of the estimates of both the
nonparametric function m and semiparametric quantity a(m). We
report in Table 2 the Monte Carlo mean squared error (MSE),
biases and variances of m at a fixed point x = (w, z) =

(0.5, 0.5), the Monte Carlo integrated MSE (MISE) of m to convey
global performance, and the MSE of δ̂. The bias and variance
of m(0.5, 0.5) are in line with the prediction that larger κ reduce
bias while increasing variance, while under all values of ρ, κ = 4
or κ = 6 led to the smallest MSE for n = 100, while κ = 6 did
Table 2
Monte Carlo MSE, variance and bias, design 1.

ρ n κ MSE(m̂x) Var(m̂x) Bias(m̂x) MISE(m̂) MSE(δ̂)

0 100 4 0.0353 0.0283 0.0842 0.0595 0.0126
6 0.035 0.0347 0.017 0.0701 0.0125
9 0.0463 0.0463 0.0039 0.0989 0.0132

400 4 0.0162 0.0071 0.0956 0.0265 0.0033
6 0.0082 0.0079 0.0174 0.0199 0.0033
9 0.0098 0.0098 −0.0024 0.025 0.0034

0.2 100 4 0.0526 0.0453 0.0855 0.0863 0.0216
6 0.055 0.0546 0.0201 0.0992 0.022
9 0.0671 0.067 0.0066 0.1261 0.0229

400 4 0.0219 0.0121 0.099 0.033 0.005
6 0.0141 0.0135 0.0254 0.0278 0.0051
9 0.0151 0.0151 0.0041 0.0334 0.0051

0.4 100 4 0.0693 0.0647 0.0674 0.106 0.0268
6 0.0757 0.0756 0.005 0.1207 0.0273
9 0.0915 0.0915 −0.002 0.1493 0.0278

400 4 0.025 0.0148 0.1014 0.0394 0.0065
6 0.0175 0.0168 0.0265 0.0347 0.0065
9 0.0193 0.0192 0.0058 0.0404 0.0065

0.6 100 4 0.0863 0.0809 0.0738 0.1326 0.0341
6 0.0861 0.0859 0.0112 0.1465 0.0348
9 0.1028 0.1028 −0.0013 0.1739 0.0358

400 4 0.034 0.0253 0.0931 0.0517 0.0107
6 0.0272 0.0267 0.0222 0.0481 0.0107
9 0.0301 0.0301 −0.0006 0.0542 0.0107

so for n = 400. For the MISE, κ = 4 was best when n = 100,
and κ = 6 was best for n = 400. The Monte Carlo MSE of δ̂ was
relatively insensitive to κ across all 8 settings, which is important
as optimal choice of κ for semiparametric estimation is oftenmore
ambiguous than for nonparametric estimation.

Our next objective is to investigate performance of the
studentization of Section 5.1. Theorem 3 implies in this setting,
n/B̂n(δ̂ − δ0)→d W1(1)/

√
Ψ1, as n → ∞.

Kiefer et al. (2000)’s Table 2 gave simulated values of the
percentiles of W 2

1 (1)/Ψ1, from which we derive the 99.5th,
97.5th and 95th percentiles of W1(1)/

√
Ψ1 as

√
101.2,

√
46.39

and
√
28.88, respectively. We thence construct asymptotic 95%

confidence intervals for δ0,

δ̂ −


46.39Ĉn/n, δ̂ +


46.39Ĉn/n


.

Table 3 reports the Monte Carlo average length of this interval
based on correctly ordering the data according to s. The length
decreases with n and increases with ρ and is fairly insensitive to
κ . Similar patterns are observed under perturbed ordering.
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Table 3
Monte Carlo average 95% CI length for δ0 , design 1.

n κ ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6

100 4 0.5605 0.6746 0.7447 0.8328
6 0.5608 0.6701 0.7401 0.8276
9 0.5608 0.6736 0.7353 0.8224

400 4 0.2955 0.3519 0.4043 0.4889
6 0.2933 0.3501 0.4039 0.4874
9 0.2922 0.3489 0.402 0.4869

Table 4 reports empirical coverage probabilities for the 99%, 95%
and 90% confidence intervals under the five different orderings
of data, based on locations s, s′, s′′, s′′′, and s′′′′. When ρ =

0, studentizations with all orderings produce a rather precise
coverage probabilities for both samples sizes. For ρ = 0.2, 0.4, 0.6
and correct ordering based on s, the coverage probabilities suffer
slightly in the smallest sample n = 100, while being fairly good
for n = 400, at least for ρ = 0.2 and 0.4. The more we perturb
the ordering, a gradual deterioration is reported. Nevertheless,
even with the greatest perturbations, caused by substantial noises
Var


ϵ′′′

i


= 100 and Var


ϵ′′′′

i


= 400, the results are encouraging.

Table 5 reports empirical power of testing H0 : δ0 = δ against
H1 : δ0 ≠ δ, for δ = 0.3, 0.4, 0.5, 0.7; of course columns
corresponding to δ = 0.3 report empirical size. Not surprisingly,
for ρ = 0, powers across different orderings are similar, while
for ρ = 0.2, 0.4 and 0.6, power tends to improve with increasing
perturbations.
The second set of simulations considers the studentization of
Section 5.2. To generate the data, we follow the random location
setting of Robinson and Thawornkaiwong (2012), where the loca-
tions of the observations, denoted s1, . . . , sn, were generated by
a random draw from the uniform distribution over [0, 2n1/2

] ×

[0, 2n1/2
]. Keeping these locations fixed across replications, Ui and

Zi were generated independently as scalar normal random vari-
ables with mean zero and covariances Cov(Ui,Uj) = Cov(Zi, Zj) =

ρ∥si−sj∥. We generated Wi and Yi, and used the same κ , series
functions and number of replications, as before, but took ρ =

0, 0.2, 0.4, 0.52 for n = 100 and ρ = 0, 0.2, 0.35, 0.5 for n = 400.
The random location setting implies the degree of dependence is
determined not only by ρ, but also by the distances between loca-
tions. The fact that we are considering locations on a plane rather
than along a line implies that ρ produces differing strengths of de-
pendence compared to the familiar time series AR(1) model, mak-
ing it difficult to get a sense of the degree of dependence in the data
generated. Onemeasure of dependence thatmight be used in com-
parisons is

n
i,j=1 |Cov(Ui,Uj)|. Our choices of ρ led this quantity

to be of similar magnitude to that in the AR(1) model with lag-1
autocorrelation ϕ = 0, 0.2, 0.4, 0.6: for n = 100, in our spatial
setting it took values 100, 156, 246, 401 for ρ = 0, 0.2, 0.4, 0.52,
respectively, which are comparable to 100, 150, 232, 396 in the
time series AR(1) with ϕ = 0, 0.2, 0.4, 0.6; for n = 400, it took
values 400, 618, 932, 1597 for ρ = 0, 0.2, 0.35, 0.5, respectively,
which are comparable to 400, 599, 930, 1590 in the time series
AR(1) with ϕ = 0, 0.2, 0.4, 0.6.
Table 4
Coverage probabilities for δ0 , design 1.

ρ n κ s s′ s′′ s′′′ s′′′′

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

0 100 4 0.894 0.951 0.987 0.891 0.942 0.987 0.897 0.936 0.991 0.889 0.937 0.989 0.892 0.94 0.987
6 0.897 0.944 0.99 0.891 0.947 0.989 0.892 0.942 0.99 0.891 0.937 0.99 0.895 0.942 0.985
9 0.896 0.938 0.989 0.891 0.94 0.989 0.889 0.937 0.984 0.878 0.933 0.985 0.882 0.94 0.984

400 4 0.908 0.947 0.988 0.91 0.947 0.989 0.909 0.948 0.989 0.906 0.95 0.989 0.907 0.95 0.991
6 0.897 0.947 0.991 0.897 0.947 0.991 0.891 0.944 0.992 0.897 0.955 0.99 0.902 0.951 0.992
9 0.89 0.952 0.991 0.889 0.951 0.988 0.891 0.944 0.99 0.891 0.947 0.989 0.897 0.943 0.992

0.2 100 4 0.865 0.939 0.979 0.863 0.927 0.98 0.859 0.922 0.975 0.836 0.915 0.972 0.829 0.898 0.971
6 0.862 0.926 0.984 0.855 0.919 0.984 0.849 0.916 0.979 0.837 0.913 0.978 0.828 0.899 0.97
9 0.852 0.917 0.984 0.853 0.908 0.981 0.848 0.906 0.978 0.845 0.902 0.972 0.827 0.892 0.973

400 4 0.89 0.951 0.989 0.889 0.951 0.988 0.881 0.946 0.986 0.876 0.941 0.983 0.868 0.936 0.986
6 0.889 0.948 0.988 0.889 0.946 0.987 0.881 0.941 0.988 0.877 0.938 0.985 0.866 0.934 0.983
9 0.883 0.943 0.986 0.885 0.94 0.986 0.876 0.934 0.986 0.872 0.934 0.984 0.863 0.929 0.983

0.4 100 4 0.863 0.918 0.976 0.858 0.916 0.97 0.837 0.904 0.971 0.825 0.898 0.968 0.807 0.881 0.959
6 0.866 0.916 0.971 0.858 0.909 0.969 0.846 0.91 0.966 0.827 0.891 0.964 0.797 0.877 0.962
9 0.864 0.913 0.973 0.86 0.907 0.972 0.841 0.901 0.96 0.84 0.901 0.969 0.796 0.868 0.967

400 4 0.887 0.941 0.992 0.885 0.938 0.99 0.88 0.933 0.986 0.878 0.931 0.986 0.866 0.916 0.977
6 0.893 0.935 0.992 0.889 0.933 0.99 0.885 0.93 0.99 0.88 0.929 0.991 0.868 0.912 0.975
9 0.891 0.939 0.992 0.891 0.936 0.991 0.887 0.931 0.99 0.879 0.928 0.99 0.865 0.91 0.975

0.6 100 4 0.863 0.93 0.974 0.855 0.923 0.974 0.846 0.921 0.963 0.823 0.894 0.961 0.804 0.872 0.951
6 0.865 0.919 0.978 0.864 0.915 0.976 0.84 0.912 0.967 0.821 0.893 0.956 0.799 0.874 0.948
9 0.86 0.914 0.979 0.856 0.907 0.977 0.846 0.902 0.971 0.816 0.88 0.958 0.796 0.862 0.945

400 4 0.866 0.923 0.977 0.861 0.921 0.977 0.858 0.915 0.975 0.846 0.913 0.973 0.835 0.905 0.96
6 0.872 0.927 0.98 0.869 0.923 0.981 0.864 0.919 0.978 0.861 0.912 0.975 0.837 0.897 0.96
9 0.869 0.93 0.981 0.867 0.928 0.978 0.864 0.922 0.977 0.856 0.913 0.975 0.84 0.901 0.966
Table 5
Empirical power of 5% test on δ0 , κ = 6, design 1.

ρ \δ s s′ s′′ s′′′ s′′′′

0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7

n = 100 0 0.049 0.113 0.319 0.778 0.058 0.112 0.32 0.781 0.064 0.119 0.314 0.779 0.063 0.121 0.32 0.781 0.06 0.12 0.31 0.779
0.2 0.061 0.131 0.275 0.656 0.073 0.141 0.28 0.667 0.078 0.142 0.287 0.679 0.085 0.139 0.314 0.695 0.102 0.163 0.313 0.726
0.4 0.082 0.127 0.245 0.597 0.084 0.131 0.246 0.607 0.096 0.139 0.273 0.635 0.102 0.167 0.28 0.642 0.119 0.174 0.331 0.683
0.6 0.07 0.108 0.229 0.542 0.077 0.115 0.236 0.55 0.079 0.136 0.263 0.587 0.106 0.158 0.293 0.601 0.128 0.187 0.304 0.639

n = 400 0 0.053 0.287 0.751 0.994 0.053 0.287 0.749 0.994 0.052 0.283 0.751 0.994 0.05 0.288 0.754 0.995 0.05 0.29 0.756 0.994
0.2 0.049 0.219 0.624 0.971 0.049 0.22 0.622 0.971 0.054 0.228 0.633 0.969 0.059 0.224 0.632 0.968 0.064 0.243 0.648 0.971
0.4 0.059 0.177 0.508 0.942 0.062 0.183 0.507 0.943 0.067 0.188 0.517 0.946 0.069 0.193 0.531 0.946 0.084 0.209 0.546 0.952
0.6 0.077 0.164 0.387 0.846 0.079 0.169 0.394 0.848 0.085 0.17 0.401 0.85 0.087 0.174 0.406 0.857 0.095 0.191 0.441 0.872
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Table 6
Monte Carlo MSE, variance and bias, design 2.

ρ n κ MSE(m̂x) Var(m̂x) Bias(m̂x) MISE(m̂) MSE(δ̂)

0 100 4 0.1851 0.0239 0.4016 0.1923 0.0151
6 0.0337 0.0273 0.08 83.4583 0.0133
9 0.037 0.0368 0.0158 83.4967 0.0137

400 4 0.173 0.0062 0.4084 0.1787 0.0038
6 0.017 0.0071 0.0998 365.4258 0.0032
9 0.0085 0.0081 0.0213 365.4463 0.0032

0.2 100 4 0.1936 0.0325 0.4014 0.1995 0.0165
6 0.0406 0.0339 0.0815 83.4625 0.0151
9 0.0441 0.044 0.0103 83.5007 0.0154

400 4 0.1741 0.0077 0.4078 0.1804 0.0039
6 0.0184 0.0087 0.0989 365.4674 0.0036
9 0.0113 0.0108 0.0226 365.487 0.0036

0.4 100 4 0.1937 0.0423 0.3892 0.2094 0.019
6 0.0511 0.0456 0.0745 83.4556 0.0173
9 0.0549 0.0549 0.0029 83.4942 0.0176

0.35 400 4 0.1766 0.0109 0.4071 0.1815 0.0048
6 0.0215 0.0114 0.1003 365.3836 0.0041
9 0.0122 0.0117 0.0233 365.4038 0.004

0.52 100 4 0.2195 0.0662 0.3916 0.2288 0.0245
6 0.0735 0.0666 0.0826 83.519 0.023
9 0.0766 0.0765 0.0109 83.5562 0.0231

0.5 400 4 0.181 0.0164 0.4057 0.1858 0.0062
6 0.0265 0.0164 0.1007 365.3476 0.0053
9 0.0167 0.0161 0.0228 365.3677 0.0053

Table 7
Monte Carlo average 95% CI length for δ0 , design 2.

n κ ρ = 0 ρ = 0.2 ρ = 0.4, 0.35 ρ = 0.52, 0.5

100 4 0.5696 0.596 0.6135 0.6602
6 0.5304 0.5582 0.5748 0.6193
9 0.5348 0.5606 0.5785 0.6202

400 4 0.2853 0.2982 0.3108 0.3379
6 0.2634 0.2765 0.2905 0.3186
9 0.262 0.2754 0.2896 0.3178
We used the two dimensional location coordinate si = (s1i, s2i)
to order the data with two indices. The first coordinate s1i was
used to divide the sample into n1/2 groups numbered by the first
index and the second coordinate s2i was then used to order within
each group, generating the second index. For perturbations to the
ordering, we added two dimensional error terms to si, leading to
s′i, s

′′

i , s
′′′

i , s
′′′′

i , respectively:

ϵ′

i ∼ N(0, 4I2), ϵ′′

i ∼ N(0, 25I2),
ϵ′′′

i ∼ N(0, 100I2), ϵ′′′′

i ∼ N(0, 400I2),

where ϵ′

i , ϵ
′′

i , ϵ
′′′

i , ϵ
′′′′

i are independent across i. It is worth noting
that due to the difference in the settings, above errors represent
more significant perturbations than in the previous setting, since
the variance of s1i and s2i in the current set-up is smaller than the
variance of si used in the previous one.

We report in Table 6 the Monte Carlo MSE, bias and variance
of m(0.5, 0.5), MISE of m, and MSE of δ̂0. Again, patterns of bias
and variance of m with changing κ are in line with predictions,
and κ = 6, 9 tended to generate the lowest MSE for settings with
n = 100, 400, respectively. Table 7 reports Monte Carlo average
length of 95% confidence intervals. As before, it decreases with
n, increases with ρ and shows little variation across κ . Table 8
reports the empirical coverage probabilities for the 99%, 95% and
90% confidence intervals based on critical values of Table 1. As
expected, adverse impacts of perturbed ordering increase with ρ
and the magnitude of perturbations, although the results are again
encouraging even for the greatest perturbations andρ = 0.52, 0.5.
Table 9 reports empirical power of testing H0 : δ0 = δ against
H1 : δ0 ≠ δ, for δ = 0.3, 0.4, 0.5, 0.7 with 5% significance level.
Again, results are similar to those of the previous setting, with
power improving with increasing perturbations for ρ ≠ 0, and
powers across different orderings are similar when ρ = 0.

6.3. Empirical examples

We apply our methodology in two illustrative empirical
examples, using (22) with data from Yatchew (2003). Series
Table 8
Coverage probabilities for δ0 , design 2.

ρ n κ s s′ s′′ s′′′ s′′′′

0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

0 100 4 0.892 0.943 0.992 0.898 0.947 0.991 0.889 0.957 0.992 0.896 0.954 0.992 0.909 0.948 0.988
6 0.89 0.951 0.987 0.896 0.95 0.99 0.9 0.951 0.988 0.895 0.947 0.989 0.901 0.953 0.988
9 0.899 0.952 0.988 0.904 0.958 0.988 0.9 0.944 0.985 0.906 0.946 0.987 0.904 0.954 0.986

400 4 0.91 0.962 0.987 0.913 0.954 0.99 0.909 0.961 0.991 0.905 0.96 0.989 0.901 0.956 0.991
6 0.912 0.956 0.987 0.91 0.955 0.992 0.915 0.954 0.99 0.91 0.951 0.99 0.902 0.959 0.988
9 0.914 0.961 0.987 0.906 0.958 0.99 0.908 0.959 0.989 0.908 0.95 0.99 0.908 0.961 0.99

0.2 100 4 0.889 0.938 0.99 0.897 0.942 0.986 0.889 0.938 0.987 0.891 0.94 0.979 0.885 0.938 0.985
6 0.876 0.937 0.99 0.882 0.933 0.988 0.873 0.932 0.985 0.875 0.929 0.981 0.883 0.94 0.983
9 0.886 0.935 0.988 0.884 0.941 0.986 0.867 0.934 0.989 0.879 0.934 0.978 0.889 0.938 0.989

400 4 0.916 0.954 0.991 0.904 0.949 0.991 0.911 0.959 0.989 0.899 0.94 0.985 0.896 0.946 0.988
6 0.907 0.952 0.987 0.897 0.946 0.985 0.902 0.954 0.988 0.881 0.932 0.985 0.888 0.944 0.986
9 0.907 0.951 0.988 0.902 0.948 0.983 0.909 0.957 0.99 0.883 0.934 0.983 0.887 0.938 0.988

0.4 100 4 0.878 0.937 0.985 0.864 0.938 0.987 0.878 0.931 0.982 0.872 0.929 0.985 0.861 0.927 0.983
6 0.876 0.928 0.983 0.867 0.928 0.984 0.867 0.92 0.977 0.86 0.921 0.983 0.859 0.929 0.985
9 0.881 0.937 0.983 0.882 0.93 0.98 0.867 0.927 0.973 0.863 0.919 0.975 0.857 0.92 0.981

0.35 400 4 0.893 0.953 0.99 0.893 0.944 0.988 0.876 0.943 0.989 0.879 0.934 0.986 0.86 0.929 0.982
6 0.888 0.95 0.991 0.885 0.94 0.993 0.875 0.935 0.991 0.869 0.928 0.984 0.866 0.934 0.983
9 0.893 0.953 0.99 0.89 0.939 0.991 0.876 0.935 0.992 0.872 0.927 0.985 0.877 0.93 0.981

0.52 100 4 0.873 0.928 0.978 0.845 0.91 0.974 0.829 0.906 0.975 0.826 0.898 0.969 0.821 0.883 0.966
6 0.857 0.911 0.981 0.83 0.901 0.973 0.81 0.884 0.97 0.8 0.877 0.962 0.803 0.876 0.961
9 0.849 0.916 0.981 0.835 0.902 0.973 0.815 0.896 0.969 0.807 0.878 0.958 0.808 0.883 0.967

0.5 400 4 0.876 0.938 0.989 0.86 0.924 0.985 0.853 0.915 0.978 0.841 0.904 0.977 0.829 0.903 0.974
6 0.877 0.932 0.985 0.865 0.921 0.987 0.844 0.912 0.976 0.831 0.903 0.973 0.835 0.904 0.973
9 0.875 0.933 0.986 0.862 0.922 0.987 0.839 0.911 0.977 0.833 0.904 0.97 0.835 0.905 0.971
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Table 9
Empirical power of 5% test on δ0 , κ = 6, design 2.

ρ\δ s s′ s′′ s′′′ s′′′′

0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7 0.3 0.4 0.5 0.7

n = 100 0 0.049 0.117 0.333 0.829 0.05 0.117 0.327 0.833 0.049 0.114 0.327 0.83 0.053 0.124 0.322 0.836 0.3 0.4 0.5 0.7
0.2 0.063 0.123 0.295 0.779 0.067 0.134 0.314 0.79 0.068 0.127 0.32 0.803 0.071 0.148 0.344 0.818 0.06 0.132 0.339 0.799
0.4 0.072 0.132 0.315 0.769 0.072 0.137 0.301 0.783 0.08 0.137 0.339 0.79 0.079 0.15 0.334 0.794 0.071 0.153 0.358 0.812
0.52 0.089 0.124 0.267 0.678 0.099 0.144 0.283 0.714 0.116 0.158 0.327 0.733 0.123 0.175 0.333 0.75 0.124 0.187 0.361 0.76

n = 400 0 0.044 0.32 0.846 0.999 0.045 0.325 0.852 0.999 0.046 0.331 0.838 0.999 0.049 0.348 0.864 0.998 0.041 0.355 0.842 0.998
0.2 0.048 0.323 0.823 1 0.054 0.342 0.81 1 0.046 0.342 0.823 1 0.068 0.361 0.821 1 0.056 0.346 0.845 1
0.35 0.05 0.287 0.779 1 0.06 0.295 0.791 1 0.065 0.318 0.789 1 0.072 0.365 0.808 0.999 0.066 0.347 0.81 1
0.5 0.068 0.249 0.692 0.998 0.079 0.266 0.714 1 0.088 0.293 0.726 0.999 0.097 0.342 0.773 0.999 0.096 0.36 0.783 0.999
Table 10
Cost function in electricity distribution.

Kernel Series
Coef SE t-stat Coef SE t-stat t∗n,w t∗n,e

wage −6.298 12.453 −0.506 −6.002 15.736 −0.381 0.426 0.261
pcap −1.393 1.6 −0.872 −2.531 1.846 −1.371 44.08△ 35.433△

1
2wage2 0.72 2.13 0.3388 1.731 12.837 0.135 0.061 0.036
1
2 pcap

2 0.032 0.066 0.485 0.148 0.318 0.466 1.593 1.491
wage · pcap 0.534 0.599 0.891 2.044 1.553 1.317 43.155△ 40.27△

PUC −0.086 0.039 −2.205∗
−0.043 0.017 −2.6∗ 11.042 28.893△

kwh 0.033 0.086 0.384 0.0828 0.102 0.8085 8.208 9.486
life −0.634 0.115 −5.513∗

−0.613 0.124 −4.935∗ 104.6∗ 92.7∗

lf 1.249 0.436 2.865∗ 0.746 0.486 1.535 39.669△ 36.587△

kmwire 0.399 0.087 4.586∗ 0.442 0.088 5.012∗ 202.65∗ 151.02∗
estimation yields similar estimates of δ0 to the kernel ones in
Yatchew (2003). For the hypothesis H0 : δ0ℓ = 0 against H1 :

δ0ℓ ≠ 0, ℓ = 1, . . . , d, the test that assumes independence
of disturbances is contrasted with that based on an extension of
Theorem 3 or 4, which allow for spatial dependence. Denoting byδℓ the ℓth element ofδ and B̂ℓn, Ĉℓn the (ℓ, ℓ)th element of B̂n, Ĉn,

respectively, the statistic t∗n = nδ2ℓ/B̂ℓn and t ′n = nδ2ℓ/Ĉℓn satisfy:

t∗n →d W 2
1 (1)/Ψ1 under H0; t∗n →p ∞ under H1,

t ′n →d W 2
1 (1, 1)/Φ1 under H0; t ′n →p ∞ under H1

(cf Kiefer et al. (2000, pp. 712–713)).
The first empirical example concerns the following cost

function of distributing electricity, also from Yatchew (2003):

tc = δ1wage + δ2pcap +
δ3

2
wage2 +

δ4

2
pcap2 + δ5wage · pcap

+ δ6PUC + δ7kwh + δ8life + δ9lf + δ10kmwire + h(cust)+ u.

The dependent variable, tc , is the log total cost per customer.
The parametrically involved regressors are wage (log wage rate),
pcap (log price of capital), PUC (a dummy for public utility
commissions that deliver additional services, and therefore may
benefit from economies of scale), life (log of the remaining life of
distribution assets), lf (log of the load factor, measuring capacity
utilization relative to peak usage), and kmwire (log of kilometres
of distributionwire per customer). The nonparametrically involved
regressor is cust (log of the number of customers). The disturbance
is now denoted u. Yatchew (2003) was interested in estimating
the conditional expectation of tc given cust , holding the other
regressors fixed, as the shape of this curve reveals whether
there are increasing/decreasing returns to scale in electricity
distribution. We are interested in estimating δ and testing their
significance, H0 : δl = 0, versus H1 : δl ≠ 0 for l = 1, . . . , d, when
allowing for dependence in the disturbance u. The data consists of
81 municipal distributors in Ontario, Canada in 1993.

The first set of columns of Table 10 repeats the kernel estimates
of δ and their standard errors, assuming uncorrelatedness of error
terms, from Yatchew (2003) based on methods and theory of
Robinson (1988). The second set of columns reports theδi, using
the first three Legendre polynomials in series estimation. Test
statistics labelled ∗ are 5% significant, while those labelled △ are
10% significant. To apply the studentization of Section 5.1, two
different orderings were tried. First, the data were ordered in the
ascendingwage rate faced by the firm,with the rationale that firms
may be subject to input shocks, and those with similar wage rate
mayuse similar inputs, leading to dependence in disturbances. Test
statistics based on this studentization are denoted t∗n,w . Second,
the data were ordered according to the number of employees
of the firm, which is a measure of size, noting that firms of
similar size may be subject to similar shocks, or alternatively, may
be dependent due to competition. Test statistics based on this
studentization are denoted t∗n,e. Inference based on the assumption
of uncorrelated disturbances found PUC, life, lf and kmwire to
be 5% significant using kernel estimation, while PUC, life and
kmwire are 5% significant with series estimation. When allowing
for dependence in disturbances, and with both orderings, life and
kmwire were still found to be 5% significant, while lf , pcap and
wage ·pcapwere 10% significant and PUC , whichwas 5% significant
under uncorrelatedness, was 10% significant based on ordering
according to number of employees.

The second example involves hedonic pricing of housing
attributes, the data concerning 92 detached homes in Ottawa
sold during 1987. The dependent variable is the sale price of a
given house (price), while the parametrically involved regressors
consist of attributes of the house, including lot size (lotarea), square
footage of housing (usespc), number of bedrooms (nrbed), average
neighbourhood income (acginc), distance to highway (dhwy),
presence of garage (grge), fireplace (frplc), and luxury bathroom
(lux). The nonparametric function h(·) has two arguments, being
location coordinates s = south andw = west:

price = h(s, w)+ δ1frplc + δ2grge + δ3lux + δ4acginc + δ5dhwy
+ δ6lotarea + δ7nrbed + δ8usespc + u.

In series estimation of h(s, w), we used approximating func-
tions (1, s, w, sw). The first set of columns of Table 11 recalls the
kernel estimates reported in Yatchew (2003), and the second set



J. Lee, P.M. Robinson / Journal of Econometrics 190 (2016) 1–17 11
Table 11
Hedonic house pricing.

Variable Kernel Series
Coef SE t-stat Coef SE t-stat t ′n

frplc 12.6 5.8 2.17* 12.7 5.62 2.26* 42.40*
grge 12.9 4.9 2.63* 12.8 4.31 2.97* 80.88*
lux 57.6 10.6 5.43* 58.2 11.3 5.15* 260.74*
acginc 0.6 0.23 2.61* 0.61 0.2 3.08* 29.64△

dhwy 1.5 21.4 0.07 −9.2 5.86 −1.57 21.32
lotarea 3.1 2.2 1.41 3.8 1.85 2.03* 31.56△

nrbed 6.4 4.8 1.33 7.8 4.2 1.85△ 19.51
usespc 24.7 10.6 2.33* 23.6 11.6 2.04* 53.13*

reports the corresponding series estimation results. The estimates
of coefficients, their standard errors and the t-statistics are broadly
similar, revealing significance of many of the regressors at the 5%
level.

In applying the studentization of Section 5.2, we divided the
north axis to 9 intervals, the first two containing 11 units each
and the rest 10 units, anticipating possible spatial dependence
in disturbances of neighbouring houses. In Table 11, SE refers to
standard error computed under the assumption of independence,
and the test statistic t ′n defined above has critical values 40.3, 26.45
at sizes 5% and 10%, respectively. Again, test statistics labelled *
are significant at 5% level and those with △ at 10% level. Our tests,
which attempt to account for dependence, find that the presence
of fireplace, garage, luxury bathroom and square footage are 5%
significant, while average neighbourhood income and lot size are
10% significant. The contrasting conclusions on the significance of
δ estimates between the test under independent errors (denoted
t-stat) and the test t ′n allowing for dependence may be due to
cross-sectional dependence in the data, as seems natural, given
that prices of houses of the same type, sold in the same year and
city, would have been subject to an overlapping set of demand
and supply side factors, driven by the same macroeconomic
fundamentals.

7. Conclusion

This paper has established a theoretical background for se-
ries estimation of a vector-valued functional of the nonparametric
regression function under cross-sectional dependence and het-
erogeneity. Theoretical results include a mean square rate of
convergence and asymptotic normality. Robust data-driven stu-
dentizations that require a suitable ordering of observations across
either one or two dimensions offer an alternative to existingmeth-
ods of inference. The framework of cross-sectional dependence and
heterogeneity of this paper and its technical arguments may be
used to establish asymptotic theory in some other settings.
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Appendix A. Proofs of Theorems 1–4

Proof of Theorem 1. This follows that of Theorem 1 in Newey
(1997), with modifications arising from relaxing his iid set-
ting. Throughout the proofswrite p (·) = pκ (·).Wehave E(m̂(Xi)−
m(Xi))

2
≤ 2[E(p(Xi)

′(β−β))2+E(p(Xi)
′β−m(Xi))

2
], whence (13)

follows from Lemma 1 and A2 on showing that

∥β − β∥ = Op

χ1/2

+ κ−α

. (23)
As in Newey (1997), if we replace p (·) by the normalized
E(Q )−1/2p, we can take E(Q ) = Iκ , where Ir denotes the r-rowed
identity matrix. Though this transformation affects β and β , we
leave the notation unchanged because m̂(x) is unchanged. To prove
(23), given (7) and (3), put 1n = l(λ(Q ) ≥ 1/2), where l(·) is the
indicator function. It will be shown that

1 − 1n = op(1) as n → ∞, (24)

whence Q−1 exists with probability approaching 1. Writing M =

(m(X1), . . . ,m(Xn))
′, 1n(β − β) = 1n[Q−1P ′(Y − M)/n + Q−1P ′

(M − Pβ)/n], by elementary inequalities

∥1n(β − β)∥ ≤ ∥1nQ−1
∥∥P ′U/n∥

+ ∥1nQ−1P ′/
√
n∥∥(M − Pβ)/

√
n∥ = Op


χ1/2

+ κ−α

, (25)

since ∥1nQ−1
∥ ≤ λ̄(Q−1)→p 1, and thus ∥1nQ−1P ′/

√
n∥2

=

∥1nQ−1P ′−1/n∥ = ∥1nQ−1
∥ ≤ λ̄(Q−1) = Op(1); ∥(M − Pβ)/

√
n∥2

= n−1n
i=1(m(Xi) − p(Xi)

′β)2 = Op(κ
−2α) by Lemma 1

and
P ′U/n

 = Op

χ1/2


, the final statement following from

E
P ′U/n

2
2 =

1
n2

n
i,j=1

γijE

σ (Xi) σ


Xj

p(Xi)p′(Xj)


≤

1
n2

n
i,j=1

γij Eσ 4 (Xi) Eσ 4 Xj

E ∥p(Xi)∥

4 E
p(Xj)

41/4
≤

C
n2

n
i,j=1

γij E ∥p(Xi)∥
41/2

≤ Cξω (Etr(Q ))1/2 ≤ Cξκ1/2ω, (26)

which can be improved to

E
P ′U/n

2
2 ≤

C
n2

n
i,j=1

γij E p(Xj)
2 ≤ Cκω

when σ is bounded. Thus (23) follows from (24). To prove (24), for
any ε > 0,

P(|1 − 1n| > ε) ≤ P(λ(Q ) < 1/2) ≤ P(
λ(Q )− 1

 > 1/2)

≤ 4E

λ(Q )− 1

2
≤ 4E∥Q − Iκ∥2

2,

since λ(Q )− 1 = λ(Q − Iκ) and where ∥A∥2 = tr1/2(A′A) denotes
the Euclidean norm of a matrix A. We show that

E∥Q − Iκ∥2
2 ≤ Cκξ 2


n−1

+ △


→ 0. (27)

Denoting ψ (i,j)
pℓ = Cov


pp(Xi)pℓ(Xi), pp(Xj)pℓ(Xj)


, the left side of

(27) is a1 + a2 where

a1 =
1
n2

κ
p,ℓ=1

n
i=1

ψ
(i,i)
pℓ , a2 =

1
n2

κ
p,ℓ=1

n
i,j=1,j≠i

ψ
(i,j)
pℓ .

By elementary inequalitiesψ (i,i)
pℓ

 ≤


sup
x

p2p(x) sup
x

p2ℓ(x)Ep
2
p(Xi)Ep2ℓ(Xi)

1/2

≤ C

sup
x

p2p(x)Ep
2
ℓ(Xi)+ sup

x
p2ℓ(x)Ep

2
p(Xi)


and thus, applying A4,

a1 ≤
C
n2

sup
x

∥pκ(x)∥2
n

i=1

E ∥p(Xi)∥
2

≤ Cκξ 2/n = o(1),
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while

ψ
(i,j)
pℓ =


ψ
(i,i)
pℓ


ψ
(j,j)
pℓ Cov


pp(Xi)pℓ(Xi)/


ψ
(i,i)
pℓ ,

pp(Xj)pℓ(Xj)/


ψ
(j,j)
pℓ


≤ Cζij


sup
x

p2ℓ(x) sup
x

p2p(x)
1/2

×

Ep2p(Xi)Ep2ℓ(Xi)Ep2p(Xj)Ep2ℓ(Xj)

1/4
,

and thus

a2 ≤
C
n2


sup
x

∥pκ(x)∥2
 n

i,j=1,j≠i

ζij


E ∥p(Xi)∥

2
+ E

p(Xj)
2

≤ Cκξ 2△ = o(1),

by A4, which completes the proof of (27), and thus of the
theorem. �

Proof of Theorem 2. We will prove later that

∥V̄ − V∥2 = op(τ−1), (28)

implying with B3 that
V̄ V−1

− Id
 ≤

V̄ − V
 V−1

→p 0 and
thus

V V̄−1
→p Id, ∥V̄−1

∥ ≤ ∥V−1
∥∥V V̄−1

∥ = Op(τ ). (29)

Writing r = θ̂−θ0 −n−1/2v, with v defined in (14), (19) is implied
if
√
nV̄−1/2r = op(1), (30)

V̄−1/2v→d N(0, Id). (31)

Proof of (30). By the same argument as in the proof of
Theorem 1, (30) follows if we show that ∥1n

√
nV̄−1/2r∥ ≤√

n∥V̄−1/2
∥∥1nr∥ = op(1). Now denoting m̄(·) = p(·)′β ,

∥r∥ ≤ ∥a(m̂)− a(m)− D(m̂)+ D(m)∥
+ ∥D(m̂)− D(m̄)− n−1/2v∥ + ∥D(m̄)− D(m)∥

=: ∥r1∥ + ∥r2∥ + ∥r3∥.

Since ∥V̄−1/2
∥ = Op(τ

1/2) it suffices to prove that 1n
√
nτ∥ri∥ =

op(1), i = 1, 2, 3. By B1, ∥r1∥ = Op(|m̂ − m|
2
∞,w). By the triangle

inequality, A1 and (23),

|m̂ − m|
2
∞,w ≤ 2|p′(β̂ − β)|2

∞,w + 2|p′β − m|
2
∞,w

≤ 2ξ 2∥β̂ − β∥
2
+ O(κ−2α)

= Op

ξ 2(χ + κ−2α)


, (32)

and by B4,
√
nτ∥r1∥ = Op

√
nτξ 2


χ + κ−2α

= op(1).

Next, since

D(m̂) = D(P ′β) = A′β = A′Q−1P ′(M + U)/n,

D(m̄) = D(P ′β) = A′β,
(33)

we have

∥1nr2∥ = ∥1nA′Q−1P ′(M + U)/n − 1nA′β − 1nA′P ′U/n∥
≤ ∥1nA′(Q−1

− I)P ′U/n∥ + ∥1nA′Q−1P ′(M − Pβ)/n∥
≤ ∥A∥∥1n(Q−1

− I)∥∥P ′U/n∥
+ ∥A∥∥1nQ−1P ′/

√
n∥∥(M − Pβ)/

√
n∥.
Now ∥A∥ ≤ Cξ , ∥1−1
n Q∥ = Op(1), and by (12), Lemma 1 and

(26),
1−1

n Q−1P ′/
√
n
 = Op(1),

(M − Pβ)/
√
n
 = Op(κ

−α),P ′U/n
 = Op(χ

1/2), while
1n(Q−1

− I)
2 = Op(∥I − Q∥

2
2) =

O(κξ 2(n−1
+ △)) from (27). Thus

√
nτ∥1nr2∥ = Op


ξ (nτ)1/2


ξκ1/2(n−1/2

+ △
1/2)+ κ−α


= op(1)

by B4. Finally, by linearity of D(·), B2 and A1,
√
nτ∥r3∥ =

O(
√
nτ |m̄ − m|∞,w) = O(

√
nτκ−α) = op(1), by B4.

Proof of (31). With zi = A′pκ(Xi)σ (Xi), write

v =

∞
j=1

tjεj, tj = tjn =

n
i=1

zibij/
√
n. (34)

For N = Nn, write v1 =
N

j=1 tjεj, v2 = v − v1. Since

E ∥zi∥2
≤ Cξ 2


Eσ 4(Xi)E ∥pκ(Xi)∥

41/2
≤ Cξ 3κ1/2, (35)

we have

E
tj2 ≤

C
n

n
i=1

n
k=1

(E ∥zi∥2
+ E ∥zk∥2)

bijbkj
≤

Cξ 3κ1/2

n


n

i=1

bij2

(36)

and thus

E ∥v2∥
2

=

∞
j=N+1

E
tj2

≤
Cξ 3κ1/2N−η

n


max

j

n
k=1

bkj n
i=1

∞
j=N+1

jη
bij

≤ Cξ 3κ1/2N−η max
1≤i≤n

∞
j=1

jη
bij = o


τ−1 ,

by B5, on choosing N such that

ξ 3κ1/2τ

1/η
/N → 0. Thus from

(31) it remains to consider V̄−1/2v1. Defining

V = Vn =

N
j=1

tjt ′j ,

in view of (17), (36)
V̄ −V2 =


∞

j=N+1

tj2 = op

τ−1


, so

arguing as in (29),V−1V̄ →p Id,
V−1

 = Op(τ ). (37)

We now show that for any c ∈ Rd such that c ′c = 1

c ′V−1/2v1 →d N (0, 1) , (38)

conditionally on {Xi}
∞

i=1 whence (38) holds unconditionally also,
andV−1/2v1 →d N (0, Id)

by the Cramer–Wold device. Writing wj = wjn = c ′V−1/2tj, since
thewjεj aremartingale differences under A3 it suffices to check the
following two sufficient conditions of Scott (1973):

N
j=1

E(wjεj)
2
→p 1, (39)

N
j=1

E

(wjεj)

21(|wjεj| > δ)
{Xi}

∞

i=1


→p 0, ∀δ > 0. (40)
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By independence of {εi} and {Xi}, and
N

j=1w
2
j ≡ 1, the left side of

(39) is E
N

j=1w
2
j


≡ E(1) = 1, so (39) holds. As in the proof of

Theorem 4 of Robinson (2011), again using the independence, the
term of (40) is bounded by

max
j≥1

E

ε2j 1


ε2j > δ/r


+

1
rδ

N
j=1

w4
j ,

for any r > 0. By B5, for any δ the first term can bemade arbitrarily
small by choosing r small enough, while from (36)

N
j=1

w4
j ≤

1
n2

V−1/2
4 N

j=1

tj4
= Op

ξ 6κτ 2
n2

N
j=1


n

i=1

bij4


= Op

ξ 6κτ 2
n


max
j≥1

n
i=1

bij3 
max
1≤i≤n

∞
j=1

bij


= Op


ξ 6κτ 2

n


, (41)

which is op(1), to verify (40) in viewof B4. It follows from the above
calculations that V̄−1/2v =


V̄−1/2V 1/2

V−1/2v1 + V̄−1/2v2 =V−1/2v1 + op(1), to prove (31). This proves (19). Finally, writing
√
nV−1/2(θ̂−θ0) =

√
nV̄−1/2(θ̂−θ0)+

√
n

V−1/2

−V̄−1/2

(θ̂−θ0),

(20) follows from (19) and (29).
Proof of (28). Let z(ℓ)i denote the ℓth element of zi. The (ℓ, p)th

element of V̄ − V is n−1n
i,j=1 γij


z(ℓ)i z(p)j − E(z(ℓ)i z(p)j )


, which,

from Isserlis’ formula, has variance

1
n2

n
i1,i2,i3,i4=1

γi1i2γi3 i4cum(z
(ℓ)
i1
, z(p)i2

, z(ℓ)i3
, z(p)i4

) (42)

+
1
n2

n
i1,i2,i3,i4=1

γi1 i2γi3i4φ
(ℓ,ℓ)
i1i3

φ
(p,p)
i2 i4

+
1
n2

n
i1,i2,i3,i4=1

γi1 i2γi3 i4φ
(ℓ,p)
i1 i4

φ
(p,ℓ)
i2 i3

, (43)

where φ(ℓ,p)ij = Cov(z(ℓ)i , z(p)j ).
For each ℓ, p = 1, . . . , d, the left side of (42) is bounded by

1
n2

n
i2,i4=1

n
i1=1

γi1 i2  n
i3=1

γi3 i4  cum(z(ℓ)i1
, z(p)i2

, z(ℓ)i3
, z(p)i4

)


≤

1
n2

n
i2,i4=1

max
i1,i3

cum(z(ℓ)i1
, z(p)i2

, z(ℓ)i3
, z(p)i4

)


× max

i2

n
i1=1

γi1i2 max
i4

n
i3=1

γi3 i4 
≤

C
n2

n
i2,i4=1

max
i1,i3

cum(z(ℓ)i1
, z(p)i2

, z(ℓ)i3
, z(p)i4

)


≤

C
n2

n
i2,i4=1

max
i1,i3

κ
h1,...,h4=1

|Ah1ℓAh2pAh3ℓAh4p|

× |cum(w(h1)i1
, . . . , w

(h4)
i4
)|
≤
C
n2

κ
h=1

A2
hℓ

κ
h=1

A2
hp

n
i2,i4=1

max
i1,i3

×


κ

h1,...,h4=1


cum(w(h1)i1

, . . . , w
(h4)
i4
)
21/2

≤
Cξ 2

n2

n
i2,i4=1

max
i1,i3

×


κ

h1,...,h4=1


cum(w(h1)i1

, . . . , w
(h4)
i4
)
21/2

= o(1),

by B6, noting

κ
h1,...,h4=1

|Ah1ℓAh2pAh3ℓAh4p| ≤


κ

h1,...,h4=1

(Ah1ℓAh2pAh3ℓAh4p)
2

1/2

κ2

≤ ∥A∥
2κ2

≤ Cξ 2κ2

with ∥A∥ ≤ Cξ from B2.
From (35),

φ(ℓ,p)ii

 ≤ Cξ 3κ1/2, and the first term in (43) is
bounded by

1
n2

n
i1,i2,i3,i4=1

γi1 i2γi3 i4φ(ℓ,ℓ)i1i3

 φ(p,p)i2 i2
φ
(p,p)
i4 i4

1/2
≤

C
n2
ξ 3κ1/2

n
i1,i2,i3,i4=1

γi1 i2γi3 i4φ(ℓ,ℓ)i1i3


≤

C
n2
ξ 3κ1/2

 n
i=1

φ(ℓ,ℓ)ii

+ n
i,j=1
i≠j

φ(ℓ,ℓ)ij




≤ Cξ 6κ

n−1

+ △


= op

τ−2 (44)

by A4 and B4, since

|φ
(ℓ,ℓ)
ij | =


φ
(ℓ,ℓ)
ii


φ
(ℓ,ℓ)
ii

Cov z(ℓ)i /


φ
(ℓ,ℓ)
ii , z(ℓ)j /


φ
(ℓ,ℓ)
ii


≤ Cξ 3κ1/2ζij, i ≠ j.

By symmetry the second term in (43) is also of the order (44). �

Proof of Theorem 3. The proof of Theorem 3 is similar to, and
simpler than the proof of Theorem 4 and is thus omitted here, but
can be found in the online appendix of the paper on the author’s
website.1

Proof of Theorem 4. Define the d × 1 vector summation

Ŝ∗

n (r, u) =

[rs]
j=1

[ut]
k=1

Â∗′Q−1p(Xjk)Ûjk/
√
n, 0 ≤ r, u ≤ 1,

where [·] denotes integer part. From Lemmas 3–5, one has
weak convergence


Ŝ∗
n (r, u)


r,u∈[0,1] ⇒


Ω1/2

{Wd(r, u) − ruWd

(1, 1)}

r,u∈[0,1] in the space {D([0, 1]2)}d. Observe that Ĉn = n−1s

m=1
t

ℓ=1 S
∗
n (m/s, ℓ/t)S

∗
n (m/s, ℓ/t)

′
∼
 1
0

 1
0 S∗

n (r, u)S
∗
n (r, u)

′

drdu, so the continuous mapping theorem gives Ω−1/2Ĉn
Ω−1/2

⇒ Φd. Writing

n(θ̂n − θ0)
′Ĉ−1

n (θ̂n − θ0)

=

√
nΩ−1/2(θ̂n − θ0)

′

(Ω1/2Ĉ−1
n Ω1/2)

√
nΩ−1/2(θ̂n − θ0)


.

1 https://sites.google.com/site/jungyoonleeecon.

https://sites.google.com/site/jungyoonleeecon
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We observe by Lemmas 3–5 that Ω−1/2ĈnΩ
−1/2

⇒ Φd, and by
Theorem2 andAssumption C1 that

√
nΩ−1/2(θ̂n−θ0)→d N(0, Id),

where the two terms converge jointly. �

Appendix B. Lemmas

Lemma 1. Under Assumption A1, as n → ∞,

max
1≤i≤n

E|m(Xi)− p′(Xi)β|
2

= O

κ−2α .

Proof of Lemma 1. By A1, for 1 ≤ i ≤ n,

E

m(Xi)− p′(Xi)β

2
= E


m(Xi)− p′(Xi)β

2
1 + ∥Xi∥

2−w1 + ∥Xi∥
2w

≤ |m − p′β|
2
∞,wE


1 + ∥Xi∥

2w
= O(κ−2α). �

Lemma 2. Assume there exists η(j) ≥ 0, j ∈ Z such that


∞

j=−∞
η(j)

< ∞ and |γik| ≤ η(i − k), i, k = 1, 2, . . . . Then for any r ∈ [0, 1],

[rn]
i=1

n
k=[rn]+1

|γik| = o(n).

Proof of Lemma 2. Note that τn =


|j|≥log n η(j) → 0 as n → ∞,
and maxj η(j) ≤ C < ∞. We have

[rn]
i=1

n
k=[rn]+1

|γik| ≤

[rn]
i=1

n
k=[rn]+1

η(i − k) ≤

[rn]
i=1

n
k=[rn]+log n

η(i − k)

+

n
k=[rn]+1

[rn]−log n
i=1

η(i − k) + C
[rn]

i=[rn]−log n

[rn]+log n
k=[rn]+1

1

≤ τn

[rn]
i=1

1 + τn

n
k=[rn]+1

1 + C(log n)2

≤ 2τnn + C(log n)2 = o(n). �

The remaining lemmas are needed for establishing the studen-
tization of Section 5.2, where we need to verify weak convergence
of d-dimensional processes. We first introduce a metric for the co-
ordinate space for each element of d-dimensional processes, then
consider a metric for the d-dimensional processes which lie in a
product space. Corresponding definitions and lemmas required for
studentization of Section 5.3 can be found in the online supple-
mentary appendix.

Let X(·, ·), Y (·, ·) ∈ D2([0, 1]2) = D2 where D2 is the space
of all real valued functions on [0, 1]2 that are right-continuous
with finite left limits with respect to each of the two arguments
(r, u) ∈ [0, 1]2. Let Λ be the group of all transformations λ :

[0, 1]2 → [0, 1]2 of the form λ(r, u) = (λ1(r), λ2(u))′, where
λ1, λ2 : [0, 1] → [0, 1] are continuous, strictly increasing
functions satisfying λ1(0) = λ2(0) = 0 and λ1(1) = λ2(1) = 1.

The ‘‘Skorohod’’ metric d(·, ·) in D2 is defined as

d(X, Y ) = inf
λ∈Λ


min{∥X − Yλ∥, ∥λ∥}


,

where ∥X − Yλ∥ = supr,u∈[0,1] |X(r, u) − Y (λ(r, u))| and ∥λ∥ =

supr,u∈[0,1] |λ(r, u) − (r, u)′|. The space D2 equipped with the
metric d(·, ·) is separable and complete (cf. Bickel and Wichura
(1971, p. 1662)), which is crucial to our need when dealing with
the product space Dd

2 = D2 × · · · × D2.
Introduce the d-dimensional processes

Sn(r, u) =

[rs]
j=1

[ut]
k=1

A′p(Xjk)Ujk/
√
n,

Ŝn(r, u) =

[rs]
j=1

[ut]
k=1

A′p(Xjk)Ûjk/
√
n, r, u ∈ [0, 1].

(45)

Note that Sn(·, ·) ∈ Dd
2. For X(·, ·) = (X1(·, ·), . . . , Xd(·, ·))

′
∈ Dd

2
and Y (·, ·) = (Y1(·, ·), . . . , Yd(·, ·))

′
∈ Dd

2, define the metric in Dd
2

as

d′(X, Y ) = max
1≤ℓ≤d

{d(Xℓ, Yℓ) : Xℓ, Yℓ ∈ D2}.

Then the σ -algebra generated by open sets of Dd
2 is equivalent

to the product of the σ -algebras generated by open sets in the
component space D2 (Billingsley (1968), p. 225).

Lemma 3 states a functional central limit theorem (FCLT) for
Sn(r, u) inDd

2 equippedwith themetric d′(·, ·), where⇒Dd
2
denotes

weak convergence of the associated probability measures in Dd
2.

Note that Sn(r, u) can also be written as a sum with triangular
array weights

Sn(r, u) =

∞
ι,h=1

tιh(n : r, u)ειh, (46)

where, with zjk = A′p(Xjk)σ (Xjk) and

tιh(n; r, u) :=

[rs]
j=1

[ut]
k=1

zjkbjkιh/
√
n, r, u ∈ [0, 1], n ≥ 1,

with bjkιh as in Ujk =


∞

ι=1


∞

h=1 bjkιhειh. In the proof, we find it
more convenient to use the representation (45) for establishing
tightness while (46) is used for deriving asymptotic normality.

Lemma 3. Under the assumptions of Theorem 4 as n → ∞,
Sn(r, u)


0≤r,u≤1

⇒Dd
2


Ω1/2Wd(r, u)


0≤r,u≤1. (47)

Proof of Lemma 3. We use two sufficient conditions for weak
convergence of probabilitymeasures in the product spaceDd

2 under
the metric d′(·, ·): convergence of finite dimensional distributions
of Sn(·, ·) to those of Ω1/2Wd(·, ·), and tightness condition for
each component of the vector Sn(·, ·). This is justified by using
the same arguments as in Phillips and Durlauf (1986, pp. 487–489,
Lemma A.1, A.3). While Lemma A.3 of Phillips and Durlauf (1986)
on the tightness condition is a general result that applies also
to the product space Dd

2, we need to show that their Lemma
A.1 on convergence of finite dimensional distributions shown for
{D[0, 1]}d remains valid also for Dd

2 = {D([0, 1]2)}d. The proof of
Lemma A.1 of Phillips and Durlauf (1986) rests on Theorem 14.5 of
Billingsley (1968) derived for the space D[0, 1]. Neuhaus (1971, p.
1290) extended Billingsley (1968)’s result to the space D([0, 1]2).
Hence the same arguments as those in Phillips and Durlauf (1986)
imply validity of their Lemma A.1 for the product space Dd

2.
Convergence of finite dimensional distributions and tightness

for Sn(·, ·) will be established below after showing: for any 0 ≤

r ≤ r ′
≤ 1 and 0 ≤ u ≤ u′

≤ 1,

ESn(r, u)Sn(r ′, u′)′ → ruΩ, (48)

where Sn(r, u) =

Sn1(r, u), . . . , Snd(r, u)

′
. Write

ESn(r, u)Sn(r ′, u′)′ = ESn(r, u)Sn(r, u)′

+ E

Sn(r, u)(Sn(r ′, u′)′ − Sn(r, u)′)


.
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Denote by Pru = (p(X11), p(X12), . . . , p(X1[ut]), p(X21), p(X22), . . . ,
p(X[rs][ut]))

′ a [rs][ut]×κ matrix and similarly byUru the [rs][ut]×1
vector. By Assumption C5′, E(SnS ′

n) = Vn → Ω, and therefore

ESn(r, u)Sn(r, u)′ =
[rs]
s

[ut]
t

1
[rs]

1
[ut]

E(A′P ′

ruUruU ′

ruPruA) → ruΩ.

Convergence (48) follows if we show that E

Sn(r, u)(Sn(r ′, u′)′

− Sn(r, u)′)


→ 0. Denote d × 1 vector A′p(x) =: wκ =

(w1κ(x), . . . , wdκ(x))′. A precondition for C1 given by Assumption
7 of Newey (1997), along with weak dependence in ejk implied by
B5, lead to Ew2

pκ(Xjk) < ∞ for 1 ≤ p ≤ κ, 1 ≤ j ≤ s, 1 ≤ k ≤ t .
For ℓ, p = 1, . . . , d,

|E

Sn(r, u)(Sn(r ′, u′)′ − Sn(r, u)′)


ℓp|

≤
C
n

[rs]
j=1

[r ′s]
ι=[rs]+1

[ut]
k=1

[u′t]
h=[ut]+1

|γjkιh|E|wℓκ(Xjk)wpκ(Xιh)|

≤
C
n

 t
k,h=1

[rs]
j=1

[r ′s]
ι=[rs]+1

|γjkιh| +

s
j,ι=1

[ut]
k=1

[u′t]
h=[ut]+1

|γjkιh|


= o(1),

by C5′(i), and because

E|wℓκ(Xi)wpκ(Xk)| ≤

Ew2

ℓκ(Xi)Ew2
pκ(Xk)

1/2
< ∞.

This completes the proof of (48).
Next we show that finite dimensional distributions of Sn(·)

converge to those of Ω1/2Wd(·), that is, for an arbitrary integer k,
and any distinct points r1, . . . , rk and u1, . . . , uk in [0, 1],
Sn(r1, u1), . . . , Sn(rk, rk)


→d


Ω1/2Wd(r1, u1), . . . ,Ω

1/2Wd(rk, uk)

.

By the Cramer-Wold device, it suffices to show that for any d × 1
vectors c ′

1, . . . , c
′

k, Qn →d Q ,where

Qn =

k
l=1

c ′

l Sn(rl, ul), Q =

k
l=1

c ′

lΩ
1/2Wd(rl, ul).

From (46), Qn =


∞

ι,h=1 t
∗

ιh(n; r, u)ειh with t∗ιh(n; r, u) =k
l=1 c

′

l tιh(n; rl, ul). By (48),

Var(Qn) =

∞
ι,h=1

(t∗ιh)
2

→ Var(Q ) =

k
l,t=1

c ′

lΩct · min{rl, rt} < ∞.

By (41), which holds for all c ′

l tιh(n; rl, ul), l = 1, . . . , k, we
have

S
ι=1
T

h=1 t
∗

ι,h(n; r, u)
4

= op(1) for S and T similar to N
mentioned in the proof of (31), and Qn →d Q follows by the same
argument as in the proof of asymptotic normality (31).

To verify tightness of Sn(r, u), we define the increment of
Sn(r, u). For 0 ≤ r ≤ r ′

≤ 1 and 0 ≤ u ≤ u′
≤ 1, set

δ(rur ′u′) = (δ1(rur ′u′), . . . , δd(rur ′u′))′

:= Sn(r ′, u′)+ Sn(r, u)− Sn(r ′, u)− Sn(r, u′)

=
1

√
n

[r ′s]
j=[rs]+1

[u′t]
k=[ut]+1

A′p(Xjk)Ujk.

To establish tightness of joint probability measures on a product
space such as Dd

2, a necessary and sufficient condition is that all
of the marginal probability measures are tight on the coordinate
space D2 (Phillips and Durlauf (1986, Lemma A.3), Billingsley
(1968, p. 41)). A sufficient condition for tightness for each
component in D2 established in (Bickel and Wichura (1971),
Theorem 3) is given by

E|δℓ(rur ′u′)|4 ≤ C


[r ′s] − [rs]

s

2
[u′t] − [ut]

t

2

,

ℓ = 1, . . . , d, (49)

noting that the right hand side approaches the squared Lebesgue
measure


(r ′

− r)(u′
− u)

2
as s, t → ∞. Note that

E|δ(rur ′u′)|2

≤
1
n

[r ′s]
j,ι=[rs]+1

[u′t]
k,h=[ut]+1

|γjkιh|E|σ(Xjk)σ (Xιh)wℓκ(Xjk)w
′

ℓκ(Xιh)|

≤
C
n

[r ′s]
j,ι=[rs]+1

[u′t]
k,h=[ut]+1

|γjkιh|

≤
C
n

[r ′s]
j,ι=[rs]+1

[u′t]
k,h=[ut]+1


max

1≤j≤s,1≤k≤t

s
ι=1

t
h=1

|γjkιh|



≤ C


[r ′s] − [rs]

s


[u′t] − [ut]

t


(50)

by Assumption C5′(ii).
To verify (49), denote by 1ℓ a d-dimensional vector whose ℓth

element is 1 and other elements 0, so

Snℓ(u)− Snℓ(r) =

∞
ι,h=1

1′

ℓ(tιh(n; r
′, u′)− tιh(n; r, u))ειh

=:

∞
ι,h=1

λιhnειh. (51)

By Assumption C3,

E


∞
ι,h=1

λιhnειh

2

=

∞
ι,h=1

λ2ιhn, (52)

E


∞
ι,h=1

λιhnειh

4

=

∞
ι1,...,ι4=1

∞
h1,...,h4=1

λι1h1nλι2h2nλι3h3nλι4h4n

× E(ει1h1ει2h2ει3h3ει4h4)

= 3


∞

ι,ι′=1:ι≠ι′

∞
h,h′=1:h≠h′

λ2ιhnλ
2
ι′h′n



+ κ

∞
ι,h=1

λ4ιhn ≤ C


∞
ι,h=1

λ2ιhn

2

. (53)

Thus from (50)–(53),

E|Snℓ(r ′, u′)− Snℓ(r, u)|4 ≤ C


∞
ι,h=1

λ2ιhn

2

≤ C

E
Snℓ(r ′, u′)− Snℓ(r, u)

22
≤ C


[r ′s] − [rs]

s

2
[u′t] − [ut]

t

2

to prove (49). �

Lemma 4. Under the assumptions of Theorem 4, as n → ∞,
Ŝn(r, u)


0≤r,u≤1

⇒Dd
2


Ω1/2

{Wd(r, u)− ruWd(1, 1)}

0≤r,u≤1. (54)
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Proof of Lemma 4. We have

Ŝn(r, u)− Sn(r, u) =

[rs]
j=1

[ut]
k=1

A′p(Xjk){m(Xjk)− m̂(Xjk)}/
√
n

=

[rs]
j=1

[ut]
k=1

A′p(Xjk){m(Xjk)− p′(Xjk)β}/
√
n

+

[rs]
j=1

[ut]
k=1

A′p(Xjk)p′(Xjk)(β − β̂)/
√
n

= A′P ′

ru(Mru − Pruβ)/
√
n

+ A′P ′

ruPru(β − β̂)/
√
n

=: an(r, u)− ℓn(r, u).

We shall show that

sup
r,u∈[0,1]

∥an(r, u)∥ = op(1), (55)

ℓn(r, u)⇒Dd
2
ruΩ1/2Wd(1, 1), (56)

which, together with Lemma 3, prove (54).
Proof of (55). One has

sup
r,u∈[0,1]

∥an(r, u)∥

≤ ∥A′
∥ sup

r,u∈[0,1]
∥P ′

ru∥ sup
r,u∈[0,1]

∥(Mru − Pruβ)/
√
n∥ (57)

= Op(
√
nξ 2κ−α) (58)

because ∥A′
∥ ≤ Cξ , whereas

sup
r,u∈[0,1]

∥P ′

ru∥ = Op(
√
nξ),

sup
r,u∈[0,1]

∥(Mru − Pruβ)/
√
n∥ = O(κ−α),

by Lemma 1. Then (55) follows by C2(iii).
Proof of (56). Since

√
n(β̂ − β) = Q−1P ′(M − Pβ)/

√
n +

Q−1P ′U/
√
n, withQru = P ′

ruPru/n,

ℓn(r, u) = A′QruQ−1P ′(M − Pβκ)/
√
n + A′QruQ−1 P

′U
√
n

=: ℓ1,n(r, u)+ ℓ2,n(r, u). (59)

We shall show the following two resultswhich constitute the proof
of (56):

sup
r,u∈[0,1]

∥ℓ1,n(r, u)∥ = op(1), ℓ2,n(r, u)⇒D[0,1]d ruWd(1, 1).

Noting that Q−1
= Op(1) and supr,u∈[0,1]

Qr
 = Op(

√
κ), since

under A2 [rs]
j=1

[ut]
k=1

p(Xjk)p′(Xjk)/n

 = Op(
√
κ),

we obtain

∥ℓ1n(r)∥ ≤ ∥A′
∥ sup

r,u∈[0,1]

Qru
 Q−1

 P ′(M − Pβ)/
√
n


≤ ∥A′
∥Op

√
κ

∥P ′

∥
(M − Pβ)/

√
n


= Op(
√
nξ 2κ

1
2 −α) = op(1),

by C2(iii). Next, write

ℓ2n(r, u) = rA′P ′U/
√
n + A′

QruQ−1
− ruI


P ′U/

√
n.
Since the convergence ru(A′P ′U/
√
n)→d ruΩ1/2Wd(1) follows

from the proof of Theorem 2 and C1, it remains to verify that

sup
r∈[0,1]

∥A′
QruQ−1

− rI

P ′U/

√
n∥ = op(1).

One has ∥A∥ = O(ξ) and
P ′U/

√
n
 = O(

√
κ) by Assump-

tion C2(ii). Next, with Q ru = P ′
ruPru/[rs][ut] we have

sup
r,u∈[0,1]

 [rs]
s

[ut]
t

Q ruQ−1
− rI

 ≤ sup
r,u∈[0,1]

Q ru − I
 Q−1

− I


+ sup
r,u∈[0,1]

Q ru − I
+

Q−1
− I
+ o(1/n).

From (27) and Horn and Johnson (1990, pp. 335–336),Q−1
− Iκ

2 = Op

κξ 2


n−1

+ △


= Op

κξ 2/n


,

with the last step following from Assumption C2(i). Similarly, one
has

sup
r,u∈[0,1]


[rs]
s

[ut]
t

2 Q ru − Iκ
2

= sup
r,u∈[0,1]


[rs]
s

[ut]
t

2

Op


κξ 2

[rs][ut]
+

κξ 2 △ru

[rs]2[ut]2


= Op


κξ 2/n


. (60)

Therefore,

sup
r,u∈[0,1]

∥A′
QrQ−1

− ruI

P ′U/

√
n∥ = Op


κξ 2
√
n


= op(1), (61)

with the last step following from Assumption C2(iv). �

Lemma 5. Under the assumptions of Theorem 4, as n → ∞,

supr∈[0,1] ∥Ŝ∗
n (r, u)− Ŝn(r, u)∥ = op(1).

Proof of Lemma 5. We have

∥Ŝ∗

n (r, u)− Ŝn(r, u)∥ = ∥(Â′Q−1
− A′)P ′

ruÛru/
√
n∥,

and thus

sup
r,u∈[0,1]

∥Ŝ∗

n (r, u)− Ŝn(r, u)∥

≤ ∥Â′Q−1
− A′

∥ sup
r,u∈[0,1]

∥P ′

ruÛru/
√
n∥ =: dn,1dn,2. (62)

We will show that

dn1 = Op


ξ 2


κ

n
+ κ−α


, (63)

dn2 = Op(κ
1/2

+
√
nξκ−α), (64)

which imply

dn1dn2 = Op(ξ
2√κ/

√
n + ξ 2κ−α)Op(

√
κ + ξ

√
nκ−α)

= Op(κξ
2/

√
n + ξ 3κ1/2−α

+ ξ 3κ−2α√n) = op(1),

by Assumptions C2(iii) and C2(iv). To see this, write

dn1 = ∥Â′Q−1
− A′

∥ ≤ ∥Â − A∥∥Q−1
− Iκ∥

+ ∥A∥∥Q−1
− Iκ∥ + ∥Â − A∥.

Horn and Johnson (1990, pp. 335–336), (27) and C2(i) lead to
∥Q−1

− Iκ∥ = Op(ξ
2κ/n).

To obtain (63), we need an upper bound on ∥Â − A∥. Newey
(1997) showed that Â = (Â1, . . . , Âd) equals


D(p1; m̂), . . . ,
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D(pκ ; m̂)
′
with probability approaching one as n → ∞. Recalling

D(·; m̂) =

D1(·; m̂), . . . ,Dd(·; m̂)


, the ith column of Â− A can be

written as

Âi − Ai =

Di(p1; m̂)− Di(p1;m), . . . ,Di(pκ ; m̂)− Di(pκ ;m)

′
,

i = 1, . . . , d.

Using linearity of Di(g; m̂) in g , write

∥Âi − Ai∥
2

= (Âi − Ai)
′(Âi − Ai)

= |Di

(Âi − Ai)

′p; m̂

− Di


(Âi − Ai)

′p;m

|

≤ C |(Âi − Ai)
′p|∞|m̂ − m|∞,w

≤ C∥Âi − Ai∥ξ |m̂ − m|∞,w,

with the first inequality following from Assumption C4. Therefore
∥Âi − Ai∥ = Op(ξ |m̂ − m|∞,w), for i = 1, . . . , d. This allows the
bound

∥Â − A∥
2

≤ tr

(Â − A)′(Â − A)


=

d
i=1

∥Âi − Ai∥
2

≤ Cξ 2|m̂ − m|
2
∞,w.

Thus by (32),

∥Â − A∥ = Op

ξ 2

χ1/2

+ κ−α


= op(1),

by Assumption C2(ii)–(iv), completing the proof of (63).
Next note that

dn,2 ≤ sup
r,u∈[0,1]

∥P ′

ru(Ûru − Uru)/
√
n∥ + sup

r,u∈[0,1]
∥P ′

ruUru/
√
n∥

= dn,21 + dn,22.

As in the proof of Lemma 4,

dn,21 ≤ sup
r,u∈[0,1]

∥P ′

ru(Mru − Pruβ)/
√
n∥

+ sup
r,u∈[0,1]

∥Qru∥∥
√
n(β̂ − β)∥.

From (58) it is seen that the first term on the right is Op(
√
nξκ−α).

By (23), ∥(β̂−β)
√
n∥ = Op(

√
n(χ1/2

+κ−α)) = Op(
√
κ+

√
nκ−α)

from Assumption C2(ii), whereas by (60), supr,u∈[0,1] ∥Q ru∥ =

Op(1)+ Op(κξ
2/

√
n) = Op(1) by Assumption C2(iv). Thus dn,21 =

Op(κ
1/2

+
√
nξκ−α). Finally,

dn,22 = sup
r,u∈[0,1]


[rs][ut]

st

1/2

∥P ′

ruUru/


[rs][ut]∥

= Op(
√
nχ) = Op(

√
κ),

by Assumption C2(ii). Hence, dn,22 = Op(κ
1/2), which proves

(64). �

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.08.001.
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