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 12 

Summary 13 
Sustainable use of common-pool resources such as fish, water or forests depends on the 14 

cooperation of resource users that restrain their individual extraction to socially optimal 15 

levels. Empirical evidence has shown that under certain social and bio-physical conditions 16 

self-organized cooperation in the commons can evolve. Global change, however, may 17 

drastically alter these conditions. We assess the robustness of cooperation to environmental 18 

variability in a stylised model of a community that harvests a shared resource. Community 19 

members follow a norm of socially optimal resource extraction, which is enforced through 20 

social sanctioning. Our results indicate that both resource abundance and a small increase in 21 

resource variability can lead to collapse of cooperation observed in the no-variability case, 22 

while either scarcity or large variability have the potential to stabilize it. The combined 23 

effects of changes in amount and variability can reinforce or counteract each other depending 24 

on their size and the initial level of cooperation in the community. If two socially separate 25 

groups are ecologically connected through resource leakage, cooperation in one can 26 

destabilize the other. These findings provide insights into possible effects of global change 27 

and spatial connectivity, indicating that there is no simple answer as to their effects on 28 

cooperation and sustainable resource use.  29 

 30 

Keywords: social-ecological system; cooperation; norms; global change; collapse; common-31 

pool resource 32 

  33 
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1. Introduction 34 
Theoretical and empirical research has long been concerned with finding ways to overcome 35 

social dilemmas in natural resource use that arise when the individual short-term benefits 36 

from resource exploitation lead users to collectively overharvest (e.g. [1],[2]). While early 37 

research emphasized the need for government control or privatisation [1], recent empirical 38 

work has highlighted that communities are often capable of overcoming the dilemma and 39 

achieve sustainable resource use through cooperative self-governance [3]. Different 40 

mechanisms have been proposed for successful self-governance, such as communication, 41 

monitoring and sanctioning ([3], [4]) or reciprocity [5]. Ostrom [3] and others [6] have found 42 

that successful communities often establish social norms, i.e. “rule(s) or standard(s) of 43 

behaviour shared by members of a social group” [7], to discourage individual overharvesting.  44 

The social interactions that enable cooperation and the development of social norms in 45 

common-pool resources (CPRs), however, do not take place in a void or a static environment. 46 

CPRs are part of interlinked systems of humans and nature [8], so called social-ecological 47 

systems (SES). SES develop over time through micro-scale interactions of individual agents 48 

that spread to higher levels due to agents’ collective behaviour [9]. These include agent-agent 49 

interactions, e.g. when a norm-follower observes a norm-violation by another agent, and 50 

interactions between agents and resources in the form of extraction, monitoring or 51 

maintenance activities. Therefore, characteristics of the ecological system that affect agent-52 

resource interactions also shape individual and collective behaviour in SES. Properties of the 53 

resource system that have proven relevant in explaining successful self-governance in social-54 

ecological systems are, among others, the productivity of a resource, the mobility of the 55 

resource and its reproductive rate [10]. Recent empirical research on collective action for 56 

sustainable resource use hence tries to take attributes of the resource system into account, 57 

along with those of resource users and governance systems (e.g. [10], [11]). 58 

The role of bio-physical conditions for the evolution of cooperation and hence sustainable 59 

resource use becomes even more relevant in view of increasing pressures on resource systems 60 

by climate and other global change processes [12]. Their impact has the potential to 61 

drastically alter the environmental conditions under which collective action for sustainable 62 

resource use has been achieved in the past. Climate change, for instance, is likely to change 63 

the quantity and variability of resource flows, exacerbating existing resource scarcity and 64 

leading to more extreme events (see e.g. [13] and [14] p. 8 for the impact of climate change 65 

on water scarcity in arid regions).  Socio-political developments and human migration have 66 

the potential to alter the needs for natural resources such as land, water and marine resources, 67 

with potentially major impacts on today’s resource use patterns. With increased demand or 68 

variability comes increased uncertainty, which can put additional pressure on individual and 69 

collective action. This might lead to more incentives for opportunistic behaviour in situations 70 

where cooperative collective action was well-established before. The consequences of these 71 

changes for CPR management are to a large extent unknown.  72 

The impact of climate change on political stability and intra-state armed conflict has recently 73 

been the subject of increased attention in the climate change debate (see e.g. [15]). Results so 74 

far are inconclusive, showing that resource scarcity and variability can lead to an increase in 75 

conflict (see e.g. [16] , [17] ), but also foster cooperation. Similarly, there is an on-going 76 

debate about an increase in the potential of war over water with an increase in water stress. 77 

While some argue that the likelihood of conflicts will increase (e.g. [18], [19], [20]) others 78 

point out that history has shown that countries do not go to war over water but rather solve 79 

their water issues through trade (e.g. import of food) and international agreements ([21], [22], 80 
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[23]). Gizelis and Wooden [24] caution against deterministic direct links between resource 81 

state and conflict, highlighting the importance of domestic institutions in determining how a 82 

community or nation will react to a rapid or slow change in resources. 83 

The robustness of collective action to the impacts of global change thus remains an open 84 

question. The aim of this paper is to investigate the robustness of norm-driven cooperation in 85 

a CPR to changing resource availability. To this end we developed an agent-based model, 86 

henceforth termed CP-norm, of a community of norm-following and norm-violating 87 

harvesters that share a common resource. The model is inspired by the game-theoretic model 88 

presented by Tavoni et al. [25], henceforth TSL, but takes an agent-based approach that 89 

models community-level outcomes as they emerge from micro-level interactions. This allows 90 

us to test the approximations of the evolutionary game-theoretic TSL model and, given a 91 

good fit between the two, provides us with a theoretically sound basis on which we gradually 92 

build to add more realism to the model, such as stochastic resource flows, with-in group 93 

social dynamics and between group ecological dynamics. In the following we establish the 94 

base simulation model and test its validity by comparing the ensuing conclusions with the 95 

TSL model. We then explore different scenarios of resource scarcity and variability as well as 96 

cooperation within two socially separate groups that are ecologically linked. We conclude 97 

with a discussion of our findings in light of other empirical and experimental evidence, and 98 

discuss policy implications.  99 

 100 

2. A model of norm-driven cooperation in the commons 101 

Social dynamics 102 

We model a community of harvesters that collectively exploit a shared resource such as a 103 

groundwater reservoir, a fish population or a common pasture. Over time the community has 104 

identified the socially optimal extraction level. Restraining one’s resource extraction to this 105 

level has become a social norm, i.e. a shared rule of behaviour [26]. Harvesters can either 106 

follow the norm (norm followers or cooperators) or extract more for their own benefit (norm 107 

violators or defectors). Violation of the norm is sanctioned through social disapproval by 108 

norm followers. Social disapproval has been shown to be an important mechanism to promote 109 

compliance with social norms ([27], [3]). Fehr and Gächter [28] have showed in an 110 

experimental setting that cooperators experience strong emotions when observing free-riders. 111 

Such reactions are often manifested through disapproval towards the defectors, even when it 112 

is costly and it does not imply monetary gains for the cooperators (see also [29] for social 113 

disapproval in field experiments in Southeast Asia). In the presence of such behavioural 114 

drivers, second-order freeriding, i.e. when a subject cooperates but abstains from costly 115 

punishment, is rarely observed empirically [28]. For the purpose of this investigation we thus 116 

focus on first-order freeriding only, and assume that all norm followers sanction norm 117 

violators, provided that the proportion of cooperators is large enough.
1
  118 

Social sanctioning reduces the utility that norm violators receive from resource use. 119 

Conceptually, this is due to refusal of help by the cooperators’ community, for instance in the 120 

form of denial of access to community benefits directed towards defectors. For example, 121 

                                                
1
 See Sasaki and Uchida [30] for a model of social exclusion as a successful mechanism for cooperation in the 

presence of second-order free riding. Social exclusion in their model implies that norm violators are fully 

excluded from the benefits of the common good. This is contrary to the model presented here where social 

disapproval only leads to a reduction in utility as detailed below.   

Page 3 of 20

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



4 

 

Japanese villagers or Irish fishermen disapprove of community members who overuse the 122 

resource by depriving them of the benefits provided by cooperation in other economic 123 

activities ([31], [32]). Sanctioning is modelled as a behavioural response of individual norm 124 

followers to inequality, hinging on feelings of disapproval towards norm violators. To fix 125 

ideas, one can think of this setup as one where community members that extract more 126 

groundwater to irrigate their crops than socially accepted will be refused necessary harvesting 127 

machinery, or access to a market stand to sell their goods. In its most extreme version, 128 

inequality aversion may trigger spiteful reactions by norm followers, with material 129 

consequences such as crop destruction. This non-costly social disapproval does not involve 130 

any prior payment into a punishment pool. Furthermore, while sanctioning is carried out in 131 

peer-to-peer interactions it requires a large enough pool of cooperators in the community to 132 

be effective. It is thus neither pool- nor peer-punishment as distinguished by Sigmund et al. 133 

[33], but contains elements of both.  134 

The severity of the social sanction increases with the number of norm followers, as more 135 

harvesters disapprove of the free-riders (Figure S1). The larger the proportions of cooperators 136 

the more difficult it will be for a norm violator to find support to process or commercialize 137 

her harvest. The more the cooperative strategy is chosen, the larger the social capital in the 138 

community, which in turn enhances the strength of the sanctions towards norm violators. On 139 

the other hand, when cooperation and hence social capital is low, sanctioning is ineffective 140 

(i.e. disapproval by a minority of norm followers does not have much effect on the majority 141 

of norm violators, if at all). This is expressed in the relationship ����� = ℎ�	
��
  where �� is 142 

the proportion of cooperators in the community at a given time (�� = �

� ), h, t, g are parameters 143 

governing, respectively, the maximum sanctioning (asymptote), the sanctioning effectiveness 144 

threshold (displacement) and the growth rate of the function (see [34]  for an example of the 145 

role of social capital for social approval).  146 

In addition to depending on the number of norm followers in the community, the severity of 147 

social sanctioning is also influenced by equity considerations, leading norm followers to act 148 

more strongly against individuals extracting well above the accepted norm (and thus 149 

receiving much higher payoffs [35], [36]). Experimental research has shown that the degree 150 

to which individuals resent free riders increases with the ensuing income gap [28]. By 151 

modelling social sanctioning by norm followers as a function of the difference in payoffs, 152 

� = �����
��
, we allow for graduated sanctioning.  Graduated sanctioning consists in adjusting the 153 

sanctions to the severity and frequency of the offence, and it has proven to be an important 154 

feature of successful self-organizing systems ([37], [38], [33]). 155 

Resource Dynamics and Production  156 

The shared resource is modelled by the following equation: 157 

�	�� = �	 + � − � � ��
��� 

!
"
− # ∗ % ∗ �	        (2.1) 158 

where �	 is the resource at time t, � is the inflow, � is the natural discharge rate, �&'(  is the 159 

carrying capacity, # is the efficiency of extraction and % = )[���� + �1 − ����,] is the total 160 

extraction effort of the )-member community.	��	and	 �, 	are the extractive effort levels of 161 

the norm followers (cooperators) and norm violators (defectors), respectively.  162 

The TSL model assumes that resource inflow is constant. In reality, however, resource 163 

dynamics are rarely constant, but fluctuate intra- and inter-annually. We thus extend the 164 
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model to feature a variable resource inflow �̂, a random Gaussian variable with mean � and 165 

standard deviation 3. The outflow rate �4  varies according to the inflow.  166 

�	�� = �	 + �̂ − �4 � ��
��� 

!
"
− # ∗ % ∗ �	      (2.2) 167 

Agents earn the following payoff from resource exploitation: 168 

56 = 
7
8 9�%, �	� − ;�6        (2.3) 169 

Gross 56 increases with extraction level �6 and resource abundance �	, according to 9�%, �	�. 170 

The production function 9�%, �	� is modelled using the widely adopted Cobb-Douglas form 171 

with decreasing returns to scale (see Table S1 for details and Figure S2 for a sensitivity 172 

analysis of the coefficients of the Cobb-Douglas function). The harvesting costs are 173 

proportional to the effort �6, with the coefficient ; representing costs per unit effort. Figure 1 174 

shows the equilibrium resource levels for different levels of total effort (Fig 1a), the total 175 

production for different levels of total effort (Fig 1b), and total production for different 176 

resource levels (Fig 1c).  177 

Figure1 178 

Strategy updating 179 

Agents are either norm followers with a socially optimal extraction effort or norm violators 180 

with a higher effort. The magnitude of resource over-extraction by the norm violators, 181 

henceforth called the degree of cheating, is captured by the multiplier < in �, = < ∗ ��. The 182 

maximum degree of cheating considered in our analysis corresponds to the resource 183 

extraction that maximises individual benefits (the Nash equilibrium – see Tavoni et al. [25] 184 

for the calculations of socially optimal and private extraction levels). 185 

The utility = that agents receive from their payoff depends on the level of social disapproval 186 

they are exposed to, which is a function of the level of cooperation in the community and the 187 

payoff differences. C enjoy the entire (lower) payoff => = 5> ≥ 0, while D may see their 188 

higher payoff reduced due to social disapproval: =A = 5A − �� ≥ 0 (where the intensity of 189 

defection is measured by � = �����
��

). 190 

The agent-based model differs from TSL in that it explicitly models players as individual 191 

agents that interact locally and update their effort levels by imitating better performing 192 

strategies of other agents.  Pairs of players meet randomly to compare utilities =6,B . When the 193 

utility of agent i is below that of the opponent, it updates its extraction effort by imitating 194 

agent j’s with a probability equal to the normalized utility difference (cf. [39]).    195 

 if Δ6 = =6 − =B < 0 ⇒ 	�6 → �B  with probability = G7
|I7|�|IJ|

 and K, L ∈ NO, PQ   (2.4)  196 

We use a pairwise updating rate (one random agent updates each time step) as is common in 197 

simulations of evolutionary games, however we also explored higher updating rates, i.e. 198 

settings where more than one agent updates its effort within a single time step (Figure S3). 199 

The parameters and variables for the simulations as well as an overview of the functions are 200 

given in Table S1.A detailed model description using the ODD+D protocol [40] can be found 201 

in Table S2.  202 
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 203 

3. Impact of variable or increasing resource inflows 204 
 205 

Under constant resource conditions cooperation and hence sustainable resource use are stable 206 

when the community of cooperators is not too small and the norm violation is not excessive 207 

(see Figure 2a and [25]). In cases where the norm violation and the community of cooperators 208 

are both large, norm followers and norm violators coexist. Here, the reduction in utility 209 

resulting from social disapproval is balanced by the gains that few norm violators obtain from 210 

higher extraction of a resource that is only slightly overharvested (due to the high resource 211 

abundance in the presence of a large share of cooperators). The region of coexistence is 212 

sensitive to the maximum amount of sanctioning a community with high levels of 213 

cooperation can exert on norm violators (Figure S4). A decrease of the maximum sanctioning 214 

amount at high levels of norm violation decreases the area of coexistence in favour of larger 215 

areas of full defection. Similarly, when the community of norm followers is small the norm 216 

of sustainable resource use collapses and all members over-extract, leading to resource 217 

degradation.  218 

 219 

The results of the game-theoretic analysis and the agent-based simulations agree well (Figure 220 

S5), which suggests that we can deploy the potential of CP-norm for greater complexity to go 221 

beyond validation of the analytical model and introduce more realistic features. The 222 

robustness of the TSL model to assumptions about the specific functional forms of the social 223 

disapproval or resource functions has additionally been confirmed by [41]. They show that 224 

the qualitative behaviour of the model remains the same even when the social disapproval 225 

and the resource outflow functions are linear in the proportion of cooperators or resource 226 

level, respectively.  227 

 228 

3.1. Impact of variable resource inflow  229 

Under constant resource inflow and a maximum sanctioning level (ℎ) that is slightly lower 230 

than in the TSL model defectors dominate the whole parameter space for cheating levels of 231 

approximately 300 to 365% (red area extending across the whole range of initial proportion 232 

of fc in Figure 2a). When resource inflow is subject to small fluctuations (3 = 1� the 233 

coexistence equilibrium at the boundaries to this all-D area is destabilized leading to an 234 

expansion of the area of full defection (�� = 0) into regions where cheating levels are higher 235 

or lower (increase of the red area in Figure 2b). High levels of resource variability, on the 236 

contrary, destabilize the defector equilibrium for values of initial proportion of fc >0.6 237 

leading to a dominance of coexistence outcomes (disappearance of the red area and increase 238 

in light blue area in Figure 2c). Hence, the norm can be maintained with high resource 239 

variability even when norm violations are large (given that the initial level of social capital in 240 

the community is large enough). The percentage of cooperators in the coexistence is slightly 241 

higher than with no fluctuations.  242 

Figure 2 243 

The transition from resource variability enhancing defection to its enhancing cooperation 244 

happens around a resource variability of 3 = 10 where about 50% of simulation runs 245 

converge to coexistence (Figure 3a). Beyond this level of variability coexistence also expands 246 

to areas with lower initial proportions of C and the proportion of cooperators in the 247 

coexistence state increases.  The increase in size of the coexistence region as well as the 248 

increase of cooperation in the coexistence state under conditions of high resource variability 249 
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are consistent with the results of Tavoni et al. [25]. Under conditions of high resource 250 

variability, average resource availability is reduced because of the concavity of the resource 251 

function. This leads to reduced payoffs for both norm violators and norm followers. At the 252 

same time the costs of social disapproval that affect only norm violators remain constant 253 

because they are independent of resource variability. As a consequence a few norm violators 254 

switch strategy until the gains from overexploitation and the costs of social disapproval 255 

balance out, thus increasing the frequency of cooperation in the mixed equilibrium.  256 

The sudden collapse of cooperation under conditions of low resource variability was not 257 

predicted by TSL. Under conditions of low resource variability norm violators benefit 258 

occasionally from high inflow events while average resource availability remains almost the 259 

same. A random local encounter of a norm violator with a norm follower during such a high 260 

inflow event can cause the norm follower to change strategy. This initiates a slow process of 261 

changing proportions of cooperators in the mixed equilibrium until the resource is degraded 262 

up to a point where a situation of high resource inflow and subsequent increase in defection 263 

can tip the system into the defector equilibrium. This is accelerated by the decrease in social 264 

capital and hence sanctioning capacity of the community, which further destabilizes 265 

coexistence and results in the collapse of cooperation. 266 

3.2. Impact of changes in average resource flows 267 

Environmental change might not only lead to higher variability but also to changes in the 268 

average quantity of a natural resource. Lade et al. [41] investigate collapses of cooperation in 269 

the TSL model that arise through increasing inflow or changes in other properties of the 270 

system such as the costs of effort. Their results show that decreasing resource availability 271 

increases cooperation while increasing resource availability can lead to a collapse of 272 

cooperation and resources. The former is similar to a situation of high inflow variability 273 

where the average resource availability is reduced, while the latter corresponds to the effects 274 

of small variation where short term high abundance of resources benefits defectors.  275 

Our analysis confirms that the collapse of cooperation with increasing mean resource inflow 276 

occurs across the whole range of initial densities of cooperators (Figure 3b, red area for 277 

inflow values >50). Decrease of the mean inflow on the contrary leads to coexistence at lower 278 

initial densities of cooperation and an increase in the number of norm followers until for very 279 

low inflow values norm followers dominate (Figure 3b).  280 

Figure 3 281 

3.3. Combined effects of resource availability and variability 282 

Most likely, however, environmental change will impact mean resource flows and variability 283 

simultaneously. We test the effect of a combination of both for robustness of cooperation at 284 

different levels of initial cooperation and hence social capital in the community (Figure 4). 285 

When initial social capital is high (fc_init = 0.8) the pattern of collapse with mean inflow 286 

≥ 50 and enhanced cooperation with mean inflow < 50 remains (Figure 4a). The collapse of 287 

cooperation with increasing resource availability cannot be counteracted by large resource 288 

variability (which favours cooperation) except for a region of mean resource availability up 289 

to approximately 55. The collapse of cooperation that was observed for small resource 290 

variability at a mean inflow of 50 does not occur for average inflows < 50, indicating that the 291 

reduction of the average resource availability which favours cooperation has a stronger effect 292 

on outcomes.  293 
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When initial social capital is at intermediate levels (fc_init = 0.5) norm violators dominate for 294 

a constant inflow > 23. An increase in variability leads to coexistence and an increase of 295 

norm followers in the community at larger mean resource availability (Figure 4b). The higher 296 

the variability the higher average inflow levels at which coexistence can be found. Finally at 297 

very low values of initial social capital (fc_init = 0.3) where norm violators dominate under 298 

constant conditions changes in average inflow and resource fluctiations have only very 299 

limited effects. Once mean inflow drops very low (<11) norm followers dominate. A small 300 

region of co-existence with high numbers of norm violators exists at low levels of resource 301 

variability and mean inflows between c=10 and c= 20. Here increase of variabilty leads to 302 

increase of norm violators at the higher end (c = 20) and increase of norm followers at the 303 

lower end (c = 10). Coexistence disappears at higher variability where the community is 304 

either dominated by norm violators (at average inflows > 17) or norm followers.  305 

In general decreasing initial social capital in the community counteracts the benefits of lower 306 

mean inflow and areas of coexistence at low average resource inflow decrease. The quality of 307 

the transition from a community dominated by norm violators to one dominated by norm 308 

followers changes when moving from a community with high initial social capital to one with 309 

low. While in the former decreasing average inflow and increasing resource variability lead 310 

to coexistence that is dominated by increasing numbers of norm followers, in the latter theses 311 

changes lead to coexistence dominated by decreasing numbers of norm violators until in both 312 

cases the community switches to dominance of norm followers.  313 

Figure4 314 

 315 

4. Evolution of cooperation in socially separated but ecologically connected groups 316 
 317 

We now investigate a situation in which two socially independent communities of resource 318 

users are ecologically connected with each other, for instance through a shared aquifer. Each 319 

group (henceforth group 1 and group 2) has the same number of members ()) as the sole 320 

group in the above results and exploits its own resource �B, L ∈ N1,−1Q.  �B has identical 321 

characteristics to �, the unique resource modelled in (2.2), but is largely disconnected from 322 

��B, the resource that can be appropriated by the other group. However, there can be spill-323 

overs such that resource from the least depleted resource of the more successful group leaks 324 

towards the other one. We investigate the establishment of norm-driven cooperation under 325 

different assumptions on the strength of the leakage between the two resources (S�. Social 326 

disapproval and imitation operate as before, but are restricted to interactions within each 327 

group.  328 

The two resources and their connectivity are modelled by equation 3.1: 329 

 330 

�B,	�� = �B ,	+ � − � � �J,�
��� 

!
"
− # ∗ %	 ∗ �B,	 + ST��B,	 − �B,	U    (3.1) 331 

 332 

For positive values of S, a fraction of each groups’ resources is available to the other group, 333 

with the difference ��B,	 − �B,	 representing the net flow between the two. 334 

 335 

Figure5 336 

 337 

Page 8 of 20

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



9 

 

When the initial share of cooperators in group 1 is ���0� ≤ 0.65, leakage from the more 338 

cooperative group 2 has no effect on group 1, which remains in a state of widespread 339 

defection (Figure 5, upper two panels). At the same time the level of cooperation in group 2 340 

increases with S: increasing leakage reduces resource availability in group 2, which favours 341 

cooperation. Once initial shares of cooperators within group 1 increase beyond about 65%, 342 

we are in a region where a mixed equilibrium prevails in the base model. Here, the leakage 343 

from the more cooperative group 2 can destabilize the mixed equilibrium as seen by an 344 

increase in all-D outcomes for S = 0.1. With leakage of S ≥ 0.2 cooperation in Group 1 345 

collapses (Figure 5, middle left panel). An increasingly strong leakage provides for an 346 

overabundance of resources in group 1 which can lead to the cascading collapse of 347 

cooperation that we have also observed earlier with increasing resource availability. When 348 

both groups have identical ���0�, increasing resource connectivity (S� leads to collapse of 349 

cooperation in one of the two groups (Figure 5 bottom left panel). There is no clear pattern 350 

concerning which group’s cooperative coexistence collapses, which is expected as the 351 

collapse is the result of stochastic events. For ���0� = 1 in group 1, the interaction reverses 352 

and leakage between the resources of group 1 and group 2 destabilizes the mixed equilibrium 353 

in group 2.  354 

 355 

5. Discussion and Conclusions 356 

The focus of this study is on the robustness of cooperation, as measured by the rate of 357 

adoption of a strategy prescribing sustainable resource use. Specifically, we investigate the 358 

robustness to changes in resource availability caused by environmental change, as well as to 359 

the spatial connectivity of biophysical systems. Little research so far has investigated the 360 

impacts of complex structural and temporal characteristics of the social and ecological 361 

systems on the performance of coupled social-ecological systems. Ecological studies of 362 

resource or ecosystem collapse often neglect changes in agent behaviour arising from social 363 

or social-ecological interactions. At the same time, the finiteness, structure and dynamics of 364 

resources and the ecosystems they are part of are often neglected in studies of common pool 365 

resource use. This can lead to misleading results if the system is truly coupled, as 366 

demonstrated here and in [41].  367 

In our model a community of harvesters exploits a shared resource such as water from a 368 

groundwater aquifer. A norm of sustainable resource extraction is maintained through social 369 

sanctioning of norm violators. Norm followers disapprove of freeriding by excluding norm 370 

violators from the social capital needed to realize the full benefits of resource extraction. The 371 

interaction of this social mechanism with the resource dynamics determines the ensuing level 372 

of cooperation and state of the resource. Under constant resource inflow full cooperation 373 

obtains when the community social capital is large enough to be able to sanction norm 374 

violators, provided that the extent of the violation is not too large. Otherwise, a minority of 375 

norm violators coexists with a majority of cooperators, thanks to the large benefits of 376 

overharvesting a well maintained resource.  377 

These findings echo those of Sethi and Somanathan [42], who, in a setting involving three 378 

strategies (defection, cooperation without punishment, and cooperation with punishment), 379 

find that, in addition to a full defection equilibrium that is always stable, an equilibrium 380 

where defectors are wiped out can also be stable. Noailly et al. [43][44] extend Sethi and 381 

Somanathan’s model by embedding it on a network. They find coexistence of all three 382 

strategies when sanctions are imposed locally on neighbours. Note that coexistence and 383 

cooperative equilibria in these models always include cooperators and enforcers, thus issues 384 
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of second order freeriding prevail. Sasaki and Uchida [30] showed in a three-strategy model 385 

that social exclusion can overcome second-order freeriding even when it is costly and 386 

stochastic. Our model and results depart from these studies in important ways. The first 387 

difference is that here we focus on non-costly social sanctioning through disapproval rather 388 

than costly punishment; second, there are only two strategies as all cooperators engage in 389 

social disapproval; lastly, our mixed equilibrium involves the coexistence of cooperative and 390 

selfish types. This coexistence is consistent with the widely observed persistence of both 391 

behaviours in small groups, as shown by numerous studies in the laboratory and in the field 392 

[35].  393 

Our study complements the above-mentioned studies and previous work with the TSL model, 394 

by providing a systematic assessment of the consequences of temporal variability and spatial 395 

complexity for cooperation and by using a disaggregated modelling approach. The latter 396 

allows us to address macro-level dynamics as they arise from micro-level interactions of 397 

harvesters with a dynamic resource. One example is the collapse of cooperation with small 398 

resource fluctuations, a feature of the agent-based model that was not observed in the mean-399 

field TSL model. The break-down of cooperation is the result of a random local interaction 400 

between a norm follower and a norm violator at a moment when short-term high resource 401 

abundance provides an advantage to the norm violator. The decrease of cooperation and 402 

social capital slowly erodes the social norm, ultimately leading to a cascading collapse of 403 

cooperation and the ensuing tragedy of the commons. Such a situation qualifies as one that 404 

has the three preconditions for a crisis, according to Taylor [45]: weak governance, as the 405 

social disapproval does not guarantee eradication of defection; a threshold beyond which the 406 

system can tip into a different regime; and positive feedbacks that magnify the impacts of a 407 

shock. It also highlights the need to carefully consider the level of aggregation at which 408 

interactions are modelled. 409 

Similarly, cooperation breaks down when the average resource availability increases. Higher 410 

resource levels provide higher benefits to norm violators, which outweigh the losses they 411 

suffer due to exclusion from the social capital of the community. Resource scarcity, or an 412 

increase in resource variability, on the other hand can enhance cooperation and lead to an 413 

increase in the proportion of norm followers. Contrary to our findings, Richter et al. [46] have 414 

shown that resource scarcity can lead to a breakdown of cooperation in harvesting a common 415 

pool resource. In their model, cooperators adapt their effort to changing resource levels which 416 

increases the temptation to defect when resource become scarce. Empirical studies of 417 

cooperation in river basin management confirm the increase in cooperation with resource 418 

variability. Dinar et al. [23] and Ansink and Ruijs [47] found that the existence and stability 419 

of treaties for transboundary water sharing increased with resource fluctuations. In both cases 420 

the stability of an agreement was strongly dependent on the characteristic of the agreement, 421 

the benefit functions of the actors and the distribution of political power [47], or on the 422 

existence of other cooperation-enhancing mechanisms such as trade [23].  423 

Lastly we extended the agent-based model to include more realism with respect to the spatial 424 

characteristics of the ecosystem that provides the shared resource. Our results indicate that an 425 

ecological spill-over from a more cooperative group does not necessarily enhance 426 

cooperation in the less cooperative group. On the contrary, resource leakage can destabilize 427 

cooperation due to the positive feedbacks that arise when resources become more abundant. 428 

Fragmentation of the governance of a common pool resource can thus make cooperation 429 

more difficult, as random events can lead to a collapse of cooperation in one of the groups, 430 

under conditions where stable coexistence would prevail in a single group. Other research, 431 
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however, indicates that cooperation is more difficult to achieve in larger groups [3], thus 432 

potentially counteracting the benefits of less fragmentation. An interesting extension to our 433 

work would be to investigate the social-ecological dynamics of two or more groups that are 434 

connected ecologically and socially, for example through an institution or migration. We plan 435 

to include more social structure and adaptive responses to changes in resource availability in 436 

future extensions of the model.  437 

Overall, our results indicate that there is no simple answer to the question whether 438 

connectivity and environmental change has the potential to destabilize cooperation in natural 439 

resource use, leading to environmental degradation (and possibly conflict). In situations 440 

where communities have the social capital to maintain cooperation through social disapproval 441 

of norm violators, as may be the case here for appropriate initial conditions, reinforcing 442 

feedbacks between increase in returns from resource exploitation and decrease in 443 

effectiveness of sanctioning can cause collapse. But the opposite obtains, i.e. higher levels of 444 

cooperation fixate in the population, when decreasing returns strengthen the social norm. 445 

Whether one or the other feedback dominates depends on the magnitude of the resource 446 

variability and the direction of change in average flows. When both effects occur in 447 

combination they can either reinforce or counteract each other. In situations where 448 

environmental change leads to a strong increase in resource variability and a decrease in 449 

average resource availability, we would expect an increase in cooperation (under the 450 

conditions of our model settings). In situations where the two factors operate in opposite 451 

directions the picture is not as clear and outcomes will depend on the initial conditions, as 452 

well as on the degree of the impacts.  453 

The differences in the effect of changes in resource availability and ecological connectivity 454 

on cooperation highlight the important role of structural factors such as the characteristics of 455 

the actors, the institutional and governance settings, and the ecological conditions for 456 

determining the consequences of environmental change. Several recent studies emphasize 457 

that the role of institutions in mitigating the effect of climate-induced resource scarcity 458 

should not be underestimated ([23],[24],[47]). Informal rules such as the social norm 459 

modelled here can play an important role for the establishment of cooperation and may also 460 

be relevant for maintaining cooperation under resource scarcity. Policies to enhance the 461 

adaptive capacity of natural resource use, particularly of CPRs, may thus benefit from taking 462 

social norms and their role in stabilizing cooperation into account. Ultimately, however, it is 463 

the complex and non-linear interplay of social and ecological dynamics that determine the 464 

success of the cooperative strategy. It is thus important to take the coupling between the 465 

social and ecological subsystems into account when analysing cooperation on natural 466 

resource use.  467 
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 596 

Figure Legends: 597 

Figure 1: a) Equilibrium resource level �∗and b) total production 9 for different levels of 598 

total effort %, c) total production 9 for different levels of equilibrium resource level �∗ 599 

(corresponding to different total effort levels) 600 

Figure 2: Level of cooperation with increasing resource variability; (a) no resource variability 601 

(3 = 0�; (b) low resource variability (3 = 1�; (c) high resource variability �3 = 10�; dark 602 

blue indicates 100% cooperation, red indicates 0% cooperation. Maximum sanctioning 603 

ℎ = 0.333, for all other parameter values see Table S1.  604 

Figure 3: (a) Percentage of cooperative outcomes with increasing resource variability at a 605 

fixed degree of cheating < = 3.  Red colour indicates that 0% of runs result in a cooperative 606 

outcome. (b) Level of cooperation with increases in mean inflow �. μ = 3.0, initial �� = 0.8. 607 

For parameter values see Table S1. 608 

Figure 4: Level of cooperation for a combination of changes in mean and variance of 609 

resource flows, (a) initial  �� = 0.8,  (b) initial �� = 0.5, (c) initial �� = 0.3; μ = 3.0. For 610 

parameter values see Table S1. 611 

Figure 5: Level of cooperation in Group 1 (black) and Group 2 (red) with increasing strength 612 

of leakage S and increasing levels of initial cooperation in group 1 (��,]��0� in title of panel) 613 

with ��,]"�0� of group 2 fixed at 0.9. The lines indicate the median, the box below and above 614 

the 1
st
 and 3

rd
 quartiles respectively. S ∈ [0,0.5]. 615 

 616 

 617 
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