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1 Introduction

It is common practice for tax agencies worldwide to use observable characteristics of taxpay-

ers to partition the population into fairly homogeneous categories in order to better estimate

their incomes: all other things being equal, those who declare well below the estimate are

likely to be evaders and are audited, while those who declare about or above it are likely

to be compliant taxpayers and are not inspected. But this �cut-o¤�auditing policy (Rein-

ganum and Wilde (1985)) can lead to systematic mistargeting in the presence of common

shocks: in good years the category would be under-audited (bars and pubs in a heat-wave);

in bad years it would be over-audited (chicken-breeders in an avian-�u outbreak).

The present article focuses on the problem a tax agency faces when deciding its auditing

policy within each audit category in such scenario. To avoid systematic mistargeting, the

government needs contemporaneous data correlated with the common shock. I examine the

possibility of using the pro�le of declarations of the category as a signal of the shock expe-

rienced by them and show that, for a government facing a low-income declarer, the optimal

auditing strategy is (weakly) increasing in the other taxpayers� declarations. Intuitively,

these declarations, the more likely the shock was a positive one, and so the more likely that

someone who declares low income is an evader. Precisely this type of reasoning is presumed

(Alm and McKee (2004)) to be behind the method used by the IRS�s �Discriminant Index

Function�(DIF) to determine which taxpayers to audit.1

This policy introduces a negative externality among taxpayers: if someone increases her

declaration, everyone else�s probability of detection is increased. This changes the nature

of the evasion problem by creating a coordination game among agents: each one of them

has incentives to evade if most other people evade as well, and prefers to comply if most

of the rest are compliant. The resulting multiplicity of equilibria (and its associated policy

design problems) is avoided by the presence of an information asymmetry in favour of the

tax agency. A government�s innate �toughness�with respect to evasion is a parameter that

is its private information, enters its objective function and a¤ects its optimal policy: ceteris

paribus, tougher agencies will audit more intensively than softer ones. Since this parameter

is an agency�s private information, taxpayers need to estimate it in order to decide how much

income to declare and they do it based on the information available to them, namely, their

incomes and their signals. Each taxpayer�s previous experiences, conversations with friends

and colleagues and interpretation of news media constitute noisy signals of the government�s

type and are private information. The heterogeneity of signals makes di¤erent taxpayers

perceive their situations as di¤erent from other taxpayers�, and yet every one of them follows

the same income declaration strategy. This leads to the survival of only one equilibrium in

1 In page 301, they say: �(...) a taxpayer�s probability of audit is based not only upon his or her reporting
choices, but also upon these choices relative to other taxpayers in the cohort. In short, there is a taxpayer-
taxpayer game that determines each individual�s chances of audit selection.�
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which (usually) some people evade and others comply, a result that is empirically supported

and yet unlikely to be predicted by other tax evasion models.

Previous research on the area (started by Allingham and Sandmo (1972) and surveyed by

Cowell (1990) and Andreoni et al. (1998)) did analyse the e¤ect of asymmetric information

in the tax compliance game. Some only considered the presence of �strategic uncertainty�

(i.e., the uncertainty that taxpayers face in coordination games about which equilibrium will

be selected), usually generated by psychological and/or social externalities (Benjamini and

Maital (1985), Fortin et al. (2004), etc.). Others restricted their attention to the �funda-

mental uncertainty�faced by the taxpayers with respect to the type of agency (Scotchmer

and Slemrod (1989), Stella (1991), etc.). The present study, on the other hand, considers

both types of uncertainty and thus models the situation as a global game (Carlsson and van

Damme (1993), Morris and Shin (2002b)).

The closest references to the present article are Alm and McKee (2004), Basseto and Phelan

(2004) and Kim (2005). The �rst one is a laboratory experiment where the (ad hoc) auditing

policy is contingent on the distribution of income declarations, while the second and third

use the global game technique to determine the optimal tax system and the auditing policy,

respectively. This paper presents a theoretical analysis in which �unlike the laboratory

experiment� the agency�s optimal strategy is derived instead of assumed. The other two

studies employ the same technique that I use here, but while Basseto and Phelan (2004)

is concerned with the optimal tax system as designed by a government, this article focuses

only on the targeting aspect of one of the agencies of the government. Finally, Kim (2005)

generates the strategic interaction among taxpayers by adding a �stigma cost�to their utility

functions, whereas in my case it is the result of a cunning tax agency that sets its auditing

policy to maximise its objective function.

2 Model

The model focuses on the interaction between the tax agency (also referred to as �the

government�) and the taxpayers (or �agents�) within a given category. For simplicity, I

will use �population of taxpayers� and �common shocks� to indicate the members of the

category and the shocks faced by them, and not those of the whole population (i.e., the set

which is the union of all the categories), unless indicated otherwise.

The timing of the game is as follows: First, actors receive their pieces of private information

(the agency its type �, the taxpayers their incomes y and signals s). Then taxpayers submit

their income declarations d and pay taxes accordingly. Finally, the agency undertakes audits

and collects �nes (if any).
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2.1 Taxpayer problem

Taxpayer i�s problem consists of choosing how much income to declare in order to maximise

her expected utility.

Taxpayers are uniformly distributed on the [0; 1] segment and their income is their own

private information. Agents are assumed to be risk-neutral, so that their utility is a linear

function of their disposable income:

ui = yi � tdi � ai � fi 8i 2 [0; 1] (1)

where yi 2 f0; 1g is agent i�s gross (taxable) income, t 2 (0; 1) is the income tax rate,

di 2 f0; 1g is agent i�s income declaration, ai 2 f0; 1g is an indicator function de�ned as

ai =

(
1 if agent i is audited

0 if agent i is not audited
(2)

and fi is the �ne agent i should pay if audited, de�ned as

fi =

(
(1 + &) t (yi � di) if di < yi

0 otherwise
(3)

(& 2 (0; 1) is the surcharge rate that has to be paid by a caught evader on every dollar of
evaded taxes).

Taxpayers know all the parameters of the problem. They also know the probability distri-

butions of the other players�private information (the agency�s type � and other taxpayers�

signals sj 6=i), though they do not know their realizations. Taxpayers�incomes are assumed

perfectly correlated to re�ect the fact that common shocks a¤ect similar agents in similar

ways: in �good years�(which occur with probability  2 (0; 1)) everyone gets a high income
(yi = 1 8i 2 [0; 1]) and in �bad years�(which occur with probability 1� ) everyone gets a
low income (yi = 0 8i 2 [0; 1]). Accordingly, all this knowledge constitutes the taxpayer�s
information set, Ii.

In order to decide how much income to declare, a taxpayer i needs to estimate as accurately

as possible the auditing policy of the agency with respect to herself, ai. Since the decision

on ai is made by the agency after all tax returns are submitted (i.e., after it observes the

vector of income declarations d), taxpayers know that the audit decision will be a function

of the declaration pro�le d and the agency�s type �, and so they will estimate them using

all their available information: E [ai (d; �) j Ii].

One of the elements included in taxpayers�information sets, private signals convey informa-

tion about the government�s type and are, on average, correct. They re�ect the information

about the agency�s type that taxpayers get from all available sources: media news, previous
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experiences, conversations with colleagues and friends, etc. Formally,

si := �+ "i 8si 2 S (4)

where S is the signal�s domain and "i is the error term, which is assumed to be white noise

(E ("i) = 0 8i), uniformly distributed on the [�"; "] segment, and independent of income yi,
other taxpayers�errors "j 6=i and the government�s type �.

The taxpayer problem is therefore

max
fdig

E [u (di; ai (di;d�i; �)) j yi; si] (5)

which can be re-written as

max
fdig

yi � tdi � fi � E [ai (di;d�i; �) j yi; si] (6)

The optimal declaration will be a function of the taxpayer�s income and her (subjective)

probability of detection if she evades, d� (yi; E [ai (0;d�i; �) j yi; si]). Hence, two cases need
to be considered: one when yi = 0 and the other when yi = 1. In both, agent i has to decide

whether to declare low (di = 0) or high income (di = 1).

The �rst case is straightforward and is characterised in the following proposition:

Proposition 1 In bad years (yi = 0 8i 2 [0; 1]) taxpayers always declare truthfully. For-
mally,

d� (0; E [ai (0;d�i; �) j 0; si]) = 0 8si 2 S j � (7)

where S j � is the signal�s domain conditional on the value of the agency�s type.

Proof. From the comparison of the expected utilities an agent with low income (yi = 0)

gets when she declares low income (E [u (0; ai (0;d�i; �)) j 0; si] = 0) and when she declares
high income (E [u (0; ai (1;d�i; �)) j 0; si] = �t).

In good years (i.e., when yi = 1), a low-income declaration leads to an expected utility of

E [u (0; ai (0;d�i; �)) j 1; si] = 1� (1 + &) t �E [ai (0;d�i; �) j 1; si], while a high-income one
yields E [u (1; ai (1;d�i; �)) j 1; si] = 1� t.

Taxpayers�decisions depend on the comparison between the two as follows

d� (1; E [ai (0;d�i; �) j 1; si]) =

8><>:
0 if E [ai (0;d�i; �) j 1; si] < P

2 [0; 1] if E [ai (0;d�i; �) j 1; si] = P
1 if E [ai (0;d�i; �) j 1; si] > P

(8)

where P := 1
(1+&) is the probability of detection that eliminates evasion.
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Intuitively, in good years taxpayers evade only if their subjective belief about the probability

of being audited is not too high. This implies that an agent�s declaration is (weakly)

increasing in her expectation over the probability of detection.

Combining the results for bad and good years (proposition 1 and equation 8), the solution

to the taxpayer problem is

d� (yi; E [ai (0) j yi; si]) =

8>>>><>>>>:
0 if yi = 0

0 if yi = 1 and E [ai (0;d�i; �) j 1; si] < P
2 [0; 1] if yi = 1 and E [ai (0;d�i; �) j 1; si] = P
1 if yi = 1 and E [ai (0;d�i; �) j 1; si] > P

(9)

from which it is clear that an agent�s declaration is (weakly) increasing in her gross income.

The latter results are summarised in the following proposition:

Proposition 2 A taxpayer�s optimal declaration strategy is: (1) (weakly) increasing in her
(subjective) expectation over the probability of detection E [ai (0;d�i; �) j yi; si], and (2)
(weakly) increasing in her gross income yi. Formally,

(1) @d�(yi;E[ai(0;d�i;�)jyi;si])
@E[ai(0;d�i;�)jyi;si] > 0 (2) @d�(yi;E[ai(0;d�i;�)jyi;si])

@yi
> 0 (10)

Proof. By direct inspection of equation 9.

Further characterizing a taxpayer�s optimal declaration strategy, the next proposition shows

how it is in�uenced by private signals:

Proposition 3 In good years, a taxpayer�s optimal declaration strategy: (1) is a step func-
tion, (2) is (weakly) increasing in her private signal si, and (3) it is the same for all tax-

payers. Formally,

(1) d� (1; si) =

8><>:
0 if si < ŝ

2 [0; 1] if si = ŝ

1 if si > ŝ

(2) @d�(1;si)
@si

> 0 (11)

where ŝ := ~�+ 4+�
5 " (2P � 1), � 2 (0; 1) and ~� := 1� .

Proof. For the �rst part, see appendix. For the second part, by direct inspection of equation
11.1. For the third part, it is the result of ŝ being a constant that is independent of the

identity of the taxpayer whose strategy is being studied.

The intuition is straightforward: the higher the signal received (si := � + "i from equa-

tion 4), the higher is the taxpayer�s (subjective) expectation over the government�s type
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�, meaning that the agent believes that, very likely, she faces a tough agency and, thus,

a high probability of detection. This decreases the (subjective) expected return of evasion

and makes compliance more attractive, which leads the taxpayer to (weakly) increase her

income declaration.

The �nal part of the proposition highlights the fact that, though having di¤erent private

signals, all taxpayers agree on the �switching point� below one should evade and above

which one should comply. This result is going to be used later on in order to �nd the

equilibrium of the game.

Note also that, as expected, each �type�of taxpayer (de�ning agent i�s �type�as its private

information pair (yi; si)) has a unique optimal strategy: taxpayers with low income (yi = 0)

ignore their signals and always declare low income; taxpayers with high income (yi = 1) do

take into account the signals they receive and declare income as shown in equation 11.1.

2.2 Tax agency problem

Narrowly de�ned, a tax agency�s objective is to raise revenue. More generally, its problem

consists of determining which citizens should be audited and which ones should not.

An agency, therefore, chooses its auditing strategy in order to minimise its targeting errors.2

These errors can be of two types: Negligence and Zeal. A negligence mistake occurs when a

�pro�table audit�is not undertaken. A zeal error takes place when an �unpro�table audit�

is carried out.

An audit is de�ned as �pro�table�if the �ne obtained if undertaken more than compensates

for the cost of carrying it out (formally, if fi > c, with fi being the �ne �as de�ned in

equation 3�and c 2 (&t; (1 + &) t) the cost of the audit). It is assumed that an audit that
discovers an evader is always pro�table, while an audit that targets a compliant taxpayer is

always unpro�table. Formally, if �i = 1 means that auditing agent i is pro�table, then

�i :=

(
1 if yi = 1 and di = 0

0 otherwise
(12)

Hence, a negligence error (Ni) occurs when the audit is pro�table (�i = 1) and it is not

undertaken (ai = 0). On the other hand, a zeal error (Zi) occurs when the audit is not

2The analysis also holds if the �expected net revenue�(taxes plus �nes minus enforcement costs) is used
as the agency�s objective function.
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pro�table (�i = 0) and yet it is undertaken (ai = 1). Formally,

Ni :=

(
1 if �i = 1 and ai = 0

0 otherwise
Zi :=

(
1 if �i = 0 and ai = 1

0 otherwise
(13)

For the rest of the article, and due to the fact that they make the problem more tractable,

I will use �without loss of generality�the following two error functions:

Ni := (1� ai) (1� di) yi Zi := ai [1� (1� di) yi] (14)

Di¤erent agencies can, however, value each kind of error di¤erently. If � 2 � is de�ned as
the weight attached to negligence errors, the loss in�icted by agent i on an agency of type

� can be expressed as

Li := �Ni + (1� �)Zi (15)

The parameter � is the agency�s �type� and it is assumed to be its private information.

Henceforward, I will call �tough� those agencies with high values of � (which bear a high

loss when an evader is not caught) and �soft�those with low values of � (which bear a high

loss when a compliant taxpayer is audited).

The government knows all the parameters of the problem and its own private information

(its type �). It does not know taxpayers� incomes or signals, though it does know their

probability distributions. More importantly, it observes the vector of declarations d, and

can therefore make its auditing policy contingent on it. Accordingly, all this knowledge

constitutes its information set, IG. Conditional on it, the agency�s estimated loss from

agent i is

EG [Li] := E [Li (yi; di (yi; si) ; ai (di;d�i)) j IG] = E [�Ni + (1� �)Zi j d; �] (16)

which can be re-expressed as

EG [Li] = � (1� ai (d)) � EG [(1� di) yi] + (1� �) � ai (d) � f1� EG [(1� di) yi]g (17)

The aggregate expected loss is therefore

E [L (y;d (y; s) ;a (d)) j d; �] :=
Z
si2Sj�

EG [Li] dG (si j �) (18)

where S j � is a signal�s domain, conditional on the value of �, andG (si j �) is the cumulative
probability distribution of agent i�s signal conditional on the agency�s type being � (this

distribution is consistent with equation 4 and the paragraph immediately after it).

The agency�s problem is to choose the auditing strategy a(d) as to minimise the aggregate
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expected loss. Formally,

min
fa(d)g

E [L (y;d (y; s) ;a (d)) j d; �] (19)

The solution to this problem depends on the actual pro�le of declarations d observed by

the agency, which means that there are 3 interesting cases to consider: 1: when everyone

declares high income (d = 1, 1 := (1; :::; 1)), 2: when some people declare high income and

others declare low income (d 6= 1 and d 6= 0, 0 := (0; :::; 0)), and 3: when everyone declares
low income (d = 0).3 The results are summarised in the following proposition:

Proposition 4 For every taxpayer, a �-type agency�s optimal auditing strategy is as follows:

a�i (di;d�i; �) =

8>>>>>><>>>>>>:

0 if di = 1

0 if di = 0, d = 0, and � < ~�

2 [0; 1] if di = 0, d = 0, and � = ~�

1 if di = 0, d = 0, and � > ~�

1 if di = 0, and d 6= 0

(20)

where ~� := 1�  and  2 (0; 1) is the probability of a good year.

Proof. In the appendix.

Intuitively, the proposition says that an agency�s optimal auditing decision with respect

to a given taxpayer i depends on the taxpayer�s decision di, the declarations of all other

taxpayers d�i, and the agency�s type �. When at least one person declares high income (and

so d 6= 0), the government knows for sure �thanks to the perfect correlation assumption�
that the shock was a positive one (it was a �good year�), and so the optimal strategy

consists of auditing everyone who declares low income (a�i (0;d�i 6= 0; �) = 1, since they are
evaders) and not auditing anyone who declares high income (a�i (1;d�i; �) = 0, since only

�rich� taxpayers ever declare high income, and so their declarations are truthful). When

everyone declares low income (and so d = 0), the government cannot tell whether it faces

a population of �poor� compliant taxpayers or one of �rich� evaders. The optimal policy

therefore depends on how tough the government is (i.e., how high � is) and how likely it is

for the taxpayers to face a good year (i.e., the value of ). If the agency is rather tough (�

is rather high), the optimal policy consists of auditing everyone (and the same is true if the

probability of a good year, , is high). Otherwise (if the agency is rather soft or a bad year

is very likely), it is better for the agency to audit no one.

3As a desirable feature of the agency�s optimal auding strategy, I will impose the condition that it should
be �ex-post horizontally equitable�, that is, that identical agents should be treated equally. In this setting,
it means that those who declare the same income should be either all audited or not one of them audited
by the agency. Formally,

ai (di = k) = aj (dj = k) 8i; j; k

9



These results are summarised in the following proposition:

Proposition 5 For every taxpayer, a �-type agency�s optimal auditing strategy is: (1)
(weakly) increasing in the agency�s type �, and (2) (weakly) increasing in the probability

of a good year . Formally,

(1)
@a�i (di;d�i;�)

@� > 0 (2)
@a�i (di;d�i;�)

@ > 0 (21)

Proof. By direct inspection of equation 20.

Further characterizing the agency�s optimal strategy, the next result describes how it de-

pends on the taxpayer�s own declaration as well as on every other taxpayer�s declarations:

Proposition 6 For every taxpayer, a �-type agency�s optimal auditing strategy is: (1)
(weakly) increasing in every other taxpayers�declaration dj 6=i, and (2) (weakly) decreasing

in the taxpayer�s own declaration di. Formally,

(1)
@a�i (di;d�i;�)

@dj 6=i
> 0 (2)

@a�i (di;d�i;�)
@di

6 0 (22)

Proof. By direct inspection of equation 20.

Intuitively, this means that the agency audits individuals who declare high income with a

lower probability than those who declare low income (as is standard in tax evasion models).

The novelty of the present study is in the result of equation 22.1, which shows that a loss-

minimising agency would use the information conveyed by the vector of income declarations

(or the average declaration, which in this case is a su¢ cient statistics) when deciding its

optimal policy. In particular, the declarations of other taxpayers provide contemporaneous

information about the likelihood of a given income shock, improving the targeting pro�-

ciency of the agency that can thus perfectly distinguish between truthful and untruthful

declarations when the pro�le of declarations is di¤erent from 0.

The latter result has a crucial e¤ect on the whole tax evasion game and, in combination with

that of equation 10.1, makes taxpayer i�s optimal declaration strategy a (weakly) increasing

function of the other taxpayers�declarations:

Proposition 7 Taxpayers�declarations are (weakly) strategic complements. Formally, for
every j 6= i,

@d�i (yi; si)

@dj 6=i
> 0 (23)

Proof. Directly from propositions 2 and 6.
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This proposition opens a second channel through which a higher signal leads to a higher

declaration (in addition to the one described in proposition 3): a high signal means that

other taxpayers are also likely to receive high signals �and to declare high income too�

which increases the expected probability of detection and makes compliance relatively more

attractive (i.e., provides incentives to (weakly) increase the amount of income declared).

Even more importantly, this result transforms the nature of the tax evasion problem, be-

cause it creates a coordination game among the taxpayers on top of the cat-and-mouse

game that each one of them plays against the agency and that is usually the only one con-

sidered by the literature. The strategic complementarity between taxpayers�declaration,

however, is not an inherent characteristic of the game, but rather one that is created by the

agency in its attempt to minimise its targeting errors. Indeed, it is the fact that the audit-

ing strategy is an increasing function of other taxpayers�declarations (Proposition 6) that

creates the strategic complementarity. That is, a cunning agency, willing to minimise its

targeting-related losses, designs its optimal auditing strategy by introducing some strategic

uncertainty (i.e., by creating a coordination game between taxpayers) that improves its abil-

ity to distinguish compliant from non-compliant agents and thus decreases the occurrence

of targeting mistakes.

3 Equilibrium

A priori, the generation of a coordination game among taxpayers does not look as a good

idea for the agency because this kind of games present multiple equilibria, which make

policy design a complicated matter. Nevertheless, this di¢ culty is overcome thanks to the

presence of a second source of uncertainty (called �fundamental uncertainty�) that allows

for the tax evasion problem to be modelled as a �global game�(Carlsson and van Damme

(1993), Morris and Shin (2002b)).4

This equilibrium-selection technique eliminates all but one equilibria owing to the introduc-

tion of some heterogeneity in taxpayers� information sets in the form of the noisy private

signals they receive and that convey information about the government�s private informa-

tion parameter � (the source of the �fundamental uncertainty�). Thus, taxpayers do not

observe the true coordination game (as they would do if signals were 100% accurate), but

slightly di¤erent versions of it. This is the case since taxpayers with di¤erent signals would

work out di¤erent estimates of the agency�s type � and other people�s declarations d�i, and

so of their probabilities of detection. The optimal declaration strategy, however, is one and

4 In other applications (bank runs, currency crises, etc (Atkeson (2000))), this technique has been criticised
because of not taking into account the coordinating power of markets and prices. This criticism is greatly
mitigated in the case of tax evasion, since there is no �insurance market against an audit� to aggregate
information about the government�s type (the �fundamental�, in global games jargon).
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the same for every �type�of taxpayer (propositions 1 and 3). The rationale for this result

goes along the lines described in the paragraph immediately after the proof of proposition

7: my own signal gives me information about the possible signals that other taxpayers may

have received and, more importantly, about the signals that they cannot have received, thus

allowing me to discard some strategies that they cannot have followed. The application of

this process iteratively by every taxpayer leads to the elimination of all strictly dominated

strategies and leaves only one optimal strategy to be followed by every taxpayer (Morris

and Shin (2002a)), namely, the ones in propositions 1 and 3.

As a consequence, once the private information variables (the agency�s type � and taxpayers�

incomes and signals (y; s)) are realised, the equilibrium will be unique.

However, depending on the value of �, the equilibrium can present di¤erent features, as

shown in the following proposition:

Proposition 8 The unique equilibrium of the tax evasion game looks like one of the follow-

ing cases: (1) Full evasion (� < ŝ� "): in good years, every taxpayer evades and nobody is
audited, (2) Partial evasion (ŝ � " < � < ŝ + "): in good years, taxpayers with low signals
(si < ŝ) evade and are audited with certainty while those with high signals (si > ŝ) comply

and are not audited, and (3) Full compliance (ŝ + " < �): in good years, every taxpayer

complies and everyone who declares low income is audited. In bad years, every taxpayer

declares truthfully in all three cases. Formally,

Full evasion Partial evasion Full compliance

d� (0; si) 0 0 0

d� (1; si) 0

8><>:
0 if si < ŝ

2 [0; 1] if si = ŝ

1 if si > ŝ

1

a�i (di;d�i; �) 0

(
0 if di = 1

1 if di = 0
1

(24)

Proof. Follows directly from the optimal strategies of the players (propositions 1, 3 and 4)

and the characterisation of the equilibrium in terms of the average declaration (proposition

9 below).

Since in bad years taxpayers declare low income in every scenario, the three cases are

characterised (and labelled) according to the actions taken by taxpayers in good years. The

full evasion case occurs when the agency is so soft (� < ŝ � ") that all taxpayers know it
will audit nobody who declares low income, and so everyone evades. The opposite occurs

in the full compliance case, in which the agency is so tough (ŝ + " < �) that all taxpayers

know it will audit everyone who declares low income, and so everyone complies. The partial

evasion case occurs when the government is not too soft nor too tough (ŝ� " < � < ŝ+ ")
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and so rich taxpayers cannot tell for sure whether everyone else will evade or will comply,

though all of them would like to do as most taxpayers do (strategic complementarity).

They therefore follow the optimal strategy described in proposition 3, which means that the

average declaration will be greater than zero. The agency, observing this, would know for

sure that true income is high and so will audit everyone who declares 0 and nobody that

declares 1.

A straightforward corollary of the previous proposition is the one that links the average

declaration (and so the level of evasion) and the government�s type:

Proposition 9 In bad years (yi = 0 8i 2 [0; 1]), the average declaration is zero ( �d� = 0),
as is the level of evasion (�� = 0). In good years (yi = 1 8i 2 [0; 1]), the corresponding
values are as follows:

Full evasion Partial evasion Full compliance

Average declaration �d� 0 �+"�ŝ
2" 1

Level of evasion �� 1 1� �+"�ŝ
2" 0

(25)

Proof. In the appendix.

This shows that, as expected, evasion is lower the tougher the government is.

Building on these results, one can further characterise the three cases:

Proposition 10 The payo¤s of the players in the three possible scenarios are as follows:

Full evasion Partial evasion Full compliance

Taxpayer/

Bad year
0 0 0

Taxpayer/

Good year
1

(
1� t if di = 1

1� (1 + &) t if di = 0
1� t

Tax

Agency
� 0 (1� ) (1� �)

(26)

Proof. Follows directly from the de�nition of the payo¤ functions of the players (equations

6 and 18), their optimal strategies (propositions 1, 3 and 4) and the characterisation of the

equilibrium in terms of the average declaration (proposition 9).

In bad years a taxpayer�s payo¤ is a direct consequence of her declaring truthfully her low

income and getting no punishment or reward for doing so, regardless of the value of �. The

other two actors� payo¤s, on the other hand, are di¤erent depending on the case under

consideration. In good years, with full evasion, every taxpayer evades and, since no one is
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audited, each one of them keeps their gross income. In turn, since the agency audits no one,

it su¤ers an expected loss of � because with probability  the year is a good one and so

everyone is an evader who is not caught (negligence errors) and with probability 1�  the
year is a bad one, everyone complies and nobody is audited (no zeal errors). Analogously,

with full compliance, all taxpayers comply and so their disposable income is simply their

gross income minus their voluntarily paid taxes, 1 � t. The expected loss of the agency is
now (1� ) (1� �) because with probability  the year is a good one, everyone complies
and nobody is audited (no negligence errors) and with probability 1� the year is a bad one
and everyone complies but is audited anyway (zeal errors). The most interesting scenario

is, however, the partial evasion one. Here, the agency makes no targeting error whatsoever,

thus reaching the best outcome it could aspire to. The rationale behind this result is that

some taxpayers will evade (those with low signals) while others will comply (those with

high signals) and so the agency can perfectly distinguish evaders from compliant taxpayers,

which implies that evaders are always caught (their payo¤s are equal to gross income minus

�ne, 1 � (1 + &) t) while compliant taxpayers are never targeted (they get payo¤s equal to
gross income minus taxes 1� t). This means that the government is better o¤ when it can
create a coordination game among agents but, especially, when it in turn makes taxpayers

take di¤erent actions (some evade, others comply), thus getting valuable information about

the true income of the population and increasing its targeting accuracy.

To conclude the characterisation of the equilibrium, it is important to analyse how more

accurate signals a¤ect the level of evasion and the agency�s payo¤:

Proposition 11 More precise information (formally, a lower ") leads to: (1) (weakly) less
compliance if the agency is soft ((weakly) more if it is tough), and (2) a (weakly) higher

expected loss if the agency is soft ((weakly) lower if it is tough). Formally,

(1) @ �d�

@"

(
> 0 if � < ~�

6 0 if � > ~�
(2) @EL�

@"

(
6 0 if � < ~�

> 0 if � > ~�
(27)

where ~� := 1� .

Proof. In the appendix.

The proposition highlights the fact that the impact of better information depends on the

type of the agency. This is at odds with previous studies, which usually �nd that better

information is bad for the government, through the argument that less accurate information

increases the risk borne by taxpayers who, assumed to be risk averse, have therefore more

incentives to comply.

Though compelling, this argument cannot be applied to the present case because here agents

are assumed risk neutral. Yet, what matters is that the relationship between compliance

(or expected loss) and accuracy of information is not intrinsically (weakly) increasing or
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decreasing, but rather one whose shape depends on the type of the government. Intuitively,

when an agency is soft (� is low) it dislikes targeting compliant taxpayers and so would

audit with a very low probability. For signals of a given precision " > 0, agents will estimate

the probability of detection and decide their income declarations accordingly. If the signals

became more precise (if " decreased), agents would be more aware of the fact that the

agency is soft (in the extreme case, when " = 0, they would know it with certainty), and so

would expect a lower probability of detection, which in turn makes evasion relatively more

attractive and leads to lower compliance and, accordingly, higher losses for the government.

An analogous story can be used when the agency is tough (� is high): it abhors letting

evaders get away with their cheating and therefore audits with a very high probability. In

this case, an increase in precision makes taxpayers more aware of the fact that the agency

is tough, and so they expect a lower return for evasion due to the higher probability of

detection. This, in turn, leads to an increase in compliance and a corresponding decrease

in the agency�s expected loss.

4 Discussion

As every other model, the one developed here is built around some simplifying assumptions

that make it more tractable and elegant, but also more restrictive and unrealistic.

Indeed, it could be argued that tax agencies do not follow a �bang-bang�policy such that

either everyone is audited or nobody is, but rather one where a fraction of the population

is audited while the rest is not. The �rst approach is a direct consequence of the �ex-post

horizontal equity� condition, while the second one would �t a situation that satis�es the

condition of �horizontal equity in expectation�. The former is a stronger version of the

latter, but also leads to situations where those who declare equal amounts are e¤ectively

treated equally, a desirable feature of an optimal auditing policy in my view. However, if

the second approach were used, the results would not be signi�cantly di¤erent from the

ones presented in the text, the only �major�di¤erence being that a tough agency would not

audit everyone, but rather just a fraction of the population su¢ ciently large as to eliminate

all incentives to evade (with the added bene�t that the enforcement costs will be lower due

to the smaller number of audits undertaken).

Also unlikely to be found in the real world is the dichotomous character of income assumed

here. When more than two levels of income are allowed, the auditing decision with respect to

a given individual depends on the relative position of the taxpayer�s declaration compared to

the rest of the population�s: if it is among the highest ones, then the taxpayer is audited with

a given probability, usually between 0 and 1, contingent on the agency�s type and decreasing

in the amount declared; if it is not, the agency knows the taxpayer is lying and audits her
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with certainty. When only two levels of income are considered, this policy collapses to the

one presented in the present article.5

Along similar lines, it is clear that the assumption of perfect correlation among the tax-

payers�incomes is an implausible one. However, it is just intended to capture the fact that

usually taxpayers that belong to the same category are homogeneous in most aspects, in-

cluding income. Relaxing it will not change the (qualitative) results, as long as the common

shocks are maintained as the main source of income variability. This ensures that there is

still a signi�cant degree of correlation among incomes and, therefore, that other taxpayers�

declarations convey useful information about the common shock that a¤ects the category.

Even more important, what really matters for the analysis is the fact that incomes within

a class are more homogeneous than the signals received by its members, such that the dif-

ferences among them are mainly due to disparate perceptions of the government�s type.

Thus, the assumption of perfect uniformity allows observing the e¤ect of the fundamental

uncertainty unadulterated by the presence of income heterogeneity, and so the analysis is

greatly simpli�ed.

Finally, the importance of the partitioning of the taxpayer population into fairly homo-

geneous categories is highlighted by the fact that the above mentioned �relatively high

correlation�condition is achieved when the category consists of agents that are very similar

to each other in terms of their �observables� (age, profession, gender, etc.), since in this

case their idiosyncratic shocks will be relatively small compared to the category-wide ones.6

However, since the partitioning problem is an issue this paper is not concerned with, the

only related matter worth discussing here is the type of classes that favours the present

model. And since the latter clearly relies on some degree of uniformity within the class,

its predictions are more likely to �t the data from classes with a large number of rather

homogeneous people (e.g., unskilled manufacture workers or non-executive public servants)

than the ones from small and/or heterogeneous classes.

5 Conclusion

The question of a tax agency�s optimal auditing strategy in the presence of common income

shocks is relevant because it is not unusual for such shocks to be the main source of income

variability for a group of fairly homogeneous taxpayers. Under these circumstances an

agency�s best policy consists of auditing those who declare low income with a probability that

5Also, irrespective of the levels of income allowed, if they are bounded above (i.e., yi 6 ymax 8i 2 [0; 1]),
the agency would never audit those who declare ymax. In the more realistic case of unbounded domain, the
probability of detection simply decreases as the declaration increases, as is standard in the literature.

6These �observables� refer to variables that are exogenous to (or costly to manipulate by) the agents,
and so do not include taxpayers�current declarations.
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is (weakly) increasing in the declarations of the other taxpayers in the category. Intuitively,

the higher these declarations, the more likely the shock was a positive one, and hence the

more likely that someone who declares low income is an evader.

Implementing this policy does not require new information to be gathered by the agency,

just using the available information better. Yet, it changes the nature of the problem for

the taxpayers: on top of the standard cat-and-mouse game each one of them plays against

the agency, they also play a coordination game against each other, a game they would not

play if the policy were not contingent on the average declaration.

The heterogeneity in private signals eliminates the policy design di¢ culties that the multi-

plicity of equilibria appears to generate and paves the way for modelling the problem as a

global game which not only is more realistic, but also predicts a unique equilibrium which

is consistent with empirical evidence.
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A Appendix

Proof. Proposition 4

The agency problem consists of choosing an auditing strategy in order to minimise its

expected loss (see equations 17 and 18). As indicated in the paragraph immediately after

equation 19, three cases need to be considered:

1. d = 1: Since nobody with a low income would ever declare 1 (proposition 1), the

agency knows it is a good year (y = 1) with certainty. The expected loss from

each agent (equation 17) reduces therefore to EG [Li (1)] = (1� �) � ai (1;1), which
is increasing in the audit decision ai (1;1), and so the agency sets it equal to zero for

everyone.

2. d 6= 1 and d 6= 0: The agency can again infer that the year was a good one (y =
1), since at least one taxpayer declared high income. The expected loss from each

agent (equation 17) now becomes (after some algebraic manipulation) EG [Li (d)] =

� (1� ai (di;d))�(�� ai (di;d))�di. Without loss of generality, assume that a fraction
� 2 (0; 1) of the population declared 0 (i.e., evaded) and the remaining 1�� declared 1
(i.e., complied). Each one of the evaders generates an expected loss of EG [Li (0;d)] =

� (1� ai (0;d)), and each one of the compliant taxpayers generates an expected loss of
EG [Li (1;d)] = (1� �)�ai (1;d). The aggregate expected loss is therefore EG [L (d)] =
� � EG [Li (0;d)] + (1� �) � EG [Li (1;d)]. This expression is a decreasing function of
ai (0;d) and an increasing function of ai (1;d), and so the agency sets them equal to

1 and 0 respectively.

3. d = 0: In this case the agency cannot determine with certainty whether it is a

good or bad year. The expected loss from each agent (equation 17) thus becomes

EG [Li] = � (1� ai (0;0)) � EG [yi] + (1� �) � ai (0;0) � f1� EG [yi]g. Using Bayes�
rule, the government�s posterior belief about the type of year conditional on knowing

that everyone declared 0 reduces to the prior expectation , and so the expected loss

per agent is now EG [Li] = � (1� ai (0;0)) �  + (1� �) � ai (0;0) � f1� g, which is
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increasing in ai (0;0) if � < 1 �  and decreasing if � > 1 � , so that the agency
would set ai (0;0) equal to 0 if � < 1 � , to 1 if � > 1 �  and to any value in the
[0; 1] interval if � = 1� .

Combining the results of the three cases, equation 20 is obtained.

Proof. Proposition 3

In good years, taxpayers know that if any one of them declares high income, every one

who declares low will be audited for sure. Thus, if a taxpayer expects at least one other

agent to comply, she would rather comply. This means that agent i will only evade if two

conditions are met: (1) her belief about the probability of detection is su¢ ciently low, and

(2) she expects everyone else to evade as well. Formally, (1) E [ai (0;d; �) j si] < P , and (2)
E [E [aj (0;d; �) j sj ] j si] < P 8j 6= i.

The �rst equation is simply the condition for evasion as presented in equation 8. The second

one means that agent i expects everyone else to evade as well, that is, that she expects every

other taxpayer�s condition for evasion to be met as well. The two equations are therefore

self-consistent if and only if they hold when d = 0, that is, when everyone evades. Thus,

the equations become

(10) E [ai (0;0; �) j si] < P
(20) E [E [aj (0;0; �) j sj ] j si] < P 8j 6= i

(28)

Consider �rst condition 28:10. The expected probability of detection conditional on agent

i�s information set is given by

E [ai (0;0; �) j si] =
Z
�2�jsi

Z
s2(Sj�)�(Sj�)

ai (0;0; �) dG (s j �) dF (� j si) (29)

where F (� j si) is the probability distribution of the agency�s type (conditional on agent i�s
signal taking the value si), � j si is the domain of the agency�s type (conditional on agent
i�s signal taking the value si), G (s j �) is the joint probability distribution of the signals
(conditional on the agency�s type taking the value �), and (S j �)� (S j �) is the domain of
the vector of signals s (conditional on the agency�s type taking the value �).

Since the vector of declarations is �xed at 0, the expression simpli�es to

E [ai (0;0; �) j si] =
Z
�2�jsi

ai (0;0; �) dF (� j si) (30)

Bearing in mind that the agency�s optimal strategy when everyone declares low income is

as indicated in equation 20 (lines 2, 3 and 4), three cases need to be considered:
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1�.1. if ~� < si � ", and since signals are uniformly distributed around � (equation 4 and
the paragraph immediately after it), taxpayer i�s expected probability of detection

(equation 30) is equal to E [ai (0; �) j si] =
R si+"
si�" (2")

�1
d� = 1, and so greater than

P . Hence, following her optimal strategy (equation 8), she will comply:

di = 1 if ~� < si � " (31)

1�.2. if si � " < ~� < si + ", the expression becomes E [ai (0; �) j si] =
R si+"
~�

(2")
�1
d� =�

si + "� ~�
�
(2")

�1, and so agent i will evade (assuming that equation 28:20 is also

satis�ed) only if this expression is not greater than P , that is, if and only if si <
~�+ " (2P � 1). Agent i�s optimal strategy in this case is therefore

di =

8><>:
0 if

2 [0; 1] if

1 if

~�� " < si < ~�+ " (2P � 1)
si = ~�+ " (2P � 1)

~�+ " (2P � 1) < si < ~�+ "

(32)

1�.3. if si + " < ~�, the expected probability of detection is 0, and so agent i would evade

(assuming equation 28:20 is also satis�ed):

di = 0 if si + " < ~� (33)

Combining the three cases (equations 31, 32 and 33), the optimal strategy for agent i is

(again assuming equation 28:20 is also satis�ed):

di =

8><>:
0 if si < ~�+ " (2P � 1)

2 [0; 1] if si = ~�+ " (2P � 1)
1 if si > ~�+ " (2P � 1)

(34)

Consider now equation 28:20 and compute E [E [aj (0;d; �) j sj ] j si]. It is given by

E [E [aj (0;d; �) j sj ] j si] = E
"Z

�2�jsj

Z
s2(Sj�)�(Sj�)

aj (0;0; �) dG (s j �) dF (� j sj) j si

#
(35)

which, as before, can be simpli�ed to

E [E [aj (0;d; �) j sj ] j si] = E
"Z

�2�jsj
aj (0;0; �) dF (� j sj) j si

#
(36)

Again, we need to consider three cases:

2�.1. if ~� < sj�", using equation 31, equation 36 becomes E [E [aj j sj ] j si] = E [1 j si] = 1.
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2�.2. if sj � " < ~� < sj + ", using now equation 32, the above mentioned equation becomes
E [E [aj j sj ] j si] = E

h
sj+"�~�
2" j si

i
=

E[sj jsi]+"�~�
2" = si+"�~�

2"

2�.3. if sj + " < ~�, using equation 33, we get E [E [aj j sj ] j si] = E [0 j si] = 0.

But, unlike the case of condition 28:10, we cannot consider each case individually because

agent i does not know the value of agent j�s signal sj (and so whether case 1, 2 or 3 is

in place), while she did know her own signal si when dealing with condition 28:10. The

computation of E [E [aj j sj ] j si] must therefore take into account the likelihood of each of
the three case, i.e.,

E [E [aj j sj ] j si] = prob
�
~� < sj � " j si

�
� 1 +

prob
�
sj � " < ~� < sj + " j si

��
si + "� ~�

�
(2")

�1
+ (37)

prob
�
sj + " < ~� j si

�
� 0

which can be re-expressed as

E [E [aj j sj ] j si] = 1� prob
�
sj < ~�+ "

�
+h

prob
�
sj < ~�+ "

�
� prob

�
sj < ~�� "

�i
� si + "�

~�

2"
(38)

where the conditioning on the value of si is omitted for simplicity.

Using the de�nition of a signal (equation 4) for agents i and j, agent j�s signal can be

re-written as sj = si � "i + "j , and so

E [E [aj j sj ] j si] = 1� F"j�"i
�
~�+ "� si

�
+h

F"j�"i

�
~�+ "� si

�
� F"j�"i

�
~�� "� si

�i
� si + "�

~�

2"
(39)

where F"j�"i (x) is the probability distribution of "j � "i. Since "i and "j are random

variables uniformly distributed in the [�"; "] interval, the probability distribution of "j � "i
is

F"j�"i (x) =

8>>>><>>>>:
0 if x < �2"

1
2

�
1 + x

2"

�2
if �2" < x < 0

1� 1
2

�
1 + x

2"

�2
if 0 < x < 2"

1 if 2" < x

(40)
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Thus,

F"j�"i

�
~�+ "� si

�
=

8>>>>><>>>>>:

0 if ~�+ 3" < si

1
2

�
1 +

~�+"�si
2"

�2
if ~�+ " < si < ~�+ 3"

1� 1
2

�
1 +

~�+"�si
2"

�2
if ~�� " < si < ~�+ "

1 if si < ~�� "

(41)

and

F"j�"i

�
~�� "� si

�
=

8>>>>><>>>>>:

0 if ~�+ " < si

1
2

�
1 +

~��"�si
2"

�2
if ~�� " < si < ~�+ 3"

1� 1
2

�
1 +

~��"�si
2"

�2
if ~�� 3" < si < ~�� "

1 if si < ~�� 3"

(42)

Now, the �rst two cases of equation 41 and the �rst of equation 42 require si to be large

(si > ~� + "), but this would lead agent i to declare high income based on condition 28:10.

Hence, I will concentrate on the remaining cases, which can be reduced to the following

three:

2�.1�. If si < ~� � 3", then F"j�"i
�
~�+ "� si

�
= 1, and F"j�"i

�
~�� "� si

�
= 1, and

so E [E [aj j sj ] j si] = 0. Thus, agent i believes every other agent j would evade

(E [E [aj j sj ] j si] = 0 < P ), and so she evades.

2�.2�. If ~� � 3" < si < ~� � ", then F"j�"i
�
~�+ "� si

�
= 1 and F"j�"i

�
~�� "� si

�
= 1 �

1
2

�
1 +

�
~�� "� si

�
(2")

�1
�2
, and so E [E [aj j sj ] j si] = 1

2

�
1 +

�
~�� "� si

�
(2")

�1
�2
��

si + "� ~�
�
(2")

�1, which is negative, and so strictly smaller than P . Again, agent i

expects everyone else to evade, and so she evades.

2�.3�. If ~��" < si < ~�+" (2P � 1) < ~�+", then F"j�"i
�
~�+ "� si

�
= 1� 1

2

�
1 +

~�+"�si
2"

�2
and F"j�"i

�
~�� "� si

�
= 1

2

�
1 +

~��"�si
2"

�2
, and so

E [E [aj j sj ] j si] = 1�

241� 1
2

 
1 +

~�+ "� si
2"

!235+
2641�

�
1 +

~�+"�si
2"

�2
2

�

�
1 +

~��"�si
2"

�2
2

375 si + "� ~�
2"

(43)

In order to make the analysis simpler, de�ne

vi :=
si+"�~�
2" ; 0 < vi < P < 1 (44)
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Equation 43 can therefore be re-written as a cubic function of vi: E [E [aj j sj ] j si] =
1
16vi

h
17� (4vi � 3)2

i
(represented by the solid thick line in �gure 1).
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Figure 1: Horizontal axis: �i. Vertical axis: �i (hollow-dots line), E [E (aj j sj) j si] (thick
solid line), linearisation (solid-dots line), P (horizontal line at 0:875).

For agent i to evade, this expression must be below P . De�ne the threshold value of vi (that

is, the one that ensures E [E [aj j sj ] j si] = P ) as ~v. Formally,

1

16
~v
h
17� (4~v � 3)2

i
:= P (45)

The threshold ~v is always smaller than P : since P can only take values in the
�
1
2 ; 1
�
interval,

E [E [aj j sj ] j si] is always greater than vi (the hollow-dots line in �gure 1) in the relevant
range vi 2

�
1
2 ; 1
�
, and so E [E [aj j sj ] j si] = P for ~v < vi.

In order to �nd a closed form solution, I linearise E [E [aj j sj ] j si] around vi = 1
2 , and get

the expression

E [E [aj j sj ] j si] �
1

8
(10vi � 1) (46)

(the solid-dots line in �gure 1). The threshold (using the linearisation in equation 46) is

de�ned by 1
8 (10v

� � 1) := P , that is, v� := 1
10 (1 + 8P ).

Since the linearisation (equation 46) over-estimates the true function (equation 45) for the

relevant ranges of vi 2
�
1
2 ; 1
�
and P 2

�
1
2 ; 1
�
, then the linearised threshold underestimates

the true threshold (v� < ~v). This can be seen graphically in �gure 1: the thresholds

are found at the intersection between the di¤erent functions and the horizontal line that

represents P (in the �gure, assumed to take the value 0:875). It can be seen that the
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true function intersects this line at a higher value of vi than the linearised function or,

equivalently, that the true threshold is higher than the linearised one. Since vi and si are

positively related (equation 44), we can �nd the equivalent thresholds, ~s and s�, namely,
1
16

~s+"�~�
2"

�
17�

�
4 ~s+"�

~�
2" � 3

�2�
:= P and s� := ~�+ 4

5" (2P � 1).

Thus, the linearisation will under-estimate evasion: for agents with signals in the (s�; ~s)

range the linearisation advises them to comply, when they should evade. Hence, the results

based on the linearisation can be used as a lower bound for the level evasion. Along the

same lines, one can de�ne P as an upper bound (v+ := P and s+ := ~�+ " (2P � 1)), since,
if such bound were used, agents with signals in the (~s; s+) intervals would evade when they

should comply.

The �nding of upper and lower limits allows therefore to parameterise the threshold as a

weighted average of the two: v̂ := �v+ + (1� �) v� = �P + (1� �) 1+8P10 , or

ŝ := �s+ + (1� �) s� = ~�+ 4 + �
5

" (2P � 1) (47)

which is the threshold level as de�ned in proposition 3 (� 2 [0; 1] is the weight attached
to each limit: when � = 1, evasion will be over-estimated, when � = 0; evasion will be

under-estimated). Thus, agent i would evade only if her signal is low enough, that is, if
~�� " < si < ŝ < ~�+ ".

In summary, the analysis for conditions 28:10 and 28:20 (needed for agent i to declare low

income) leads to the following results:

� From 28:10, for agent i to evade si < ~�+ " (2P � 1) is needed (equation 34);

� Condition 28:20, in turn, requires: si < ~�� 3", ~�� 3" < si < ~�� ", and ~�� " < si < ŝ
(cases 20:10:, 20:20: and 20:30:, respectively), which simplify to si < ŝ.

Since ŝ 6 ~�+ " (2P � 1), it is straightforward to see that this leads to an optimal strategy
for agent i that is identical to the one described in proposition 3.

Proof. Proposition 9

The average declaration is de�ned as

�d :=

Z
si2(Sj�)

di (1; si) dG (s j �) (48)

which, given the taxpayer�s optimal strategy in good years (equation 3), can be interpreted

as the fraction of the population that gets a signal above the threshold ŝ.

Depending on the value of �, three cases can occur:
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1. Full evasion (� < ŝ� "): Even the person with highest signal (i.e., si = �+ ") would
evade. Formally, �d :=

R �+"
��" (0)

1
2"ds = 0.

2. Partial evasion (ŝ � " < � < ŝ + "): Those with signals between � � " and ŝ

evade, those with signals between ŝ and � + " comply. Formally, �d :=
R ŝ
��" (0) �

1
2"ds+

R �+"
ŝ

(1) 1
2"ds =

�+"�ŝ
2" .

3. Full compliance (ŝ+ " < �): Even the person with the lowest signal (i.e., si = �� ")
would comply. Formally, �d :=

R �+"
��" (1)

1
2"ds =1.

The level of evasion is simply the fraction of the population that �in a good year�gets a

signal below the threshold ŝ. That is, � = 1� �d.

Proof. Proposition 11

Consider �rst the full evasion case (� < ŝ�"). Since the �generalised threshold�ŝ is de�ned
as in equation 47, the condition � < ŝ� " becomes

" <
~�� �
2�

(49)

where � is de�ned as � := 1
2

�
1� 4+�

5 (2P � 1)
�
.

Since � 2 [0; 1] and P 2
�
1
2 ; 1
�
, � can only take values in the interval

�
0; 12
�
. Also, since the

noise of the signals cannot be negative, it must be the case that

0 < " (50)

Combining equations 49 and 50, the full evasion case requires 0 < " <
~���
2� , which is only

feasible if � < ~� (i.e., full evasion is only feasible if the government is soft).

In the full compliance case (ŝ+ " < �), the condition ŝ+ " < � becomes

" <
�� ~�
2 (1� �) (51)

Combining equations 51 and 50, the full compliance case requires 0 < " < ��~�
2(1��) , which is

feasible only if ~� < � (i.e., full compliance is only feasible if the government is tough).

Finally, the condition needed for the existence of the partial evasion case (ŝ�" < � < ŝ+")
becomes " > max

n
~���
2� ;

��~�
2(1��)

o
. If � < ~� it becomes " >

~���
2� . If

~� < �, it is " > ��~�
2(1��) .

Summarising the results so far, there are two cases to consider: (1) if the government is soft

(� < ~�) the full evasion case arises when the noise is low (" <
~���
2� ) and the partial evasion
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one when it is high; and (2) if the government is tough (~� < �) the full compliance case

occurs when the noise is low (" < ��~�
2(1��) ) and the partial evasion when it is high.

Hence, using proposition 9, the average declaration in each of the two cases is given by

(1) �d� =

(
0 if

� +
~���
2" if

0
~���
2�

< " <
~���
2�

< "

(2) �d� =

(
1 if

� +
~���
2" if

0
��~�
2(1��)

< " < ��~�
2(1��)

< "

(52)

It is straightforward from here to prove the �rst part of the proposition by simply computing

the derivative of �d with respect to ".

For the second part, using the two cases considered above and proposition 10, the expected

loss of the agency is as follows

(1) EL� =

(
� if

0 if

0
~���
2�

< " <
~���
2�

< "

(2) EL� =

(
0 if

(1� ) (1� �) if

0
��~�
2(1��)

< " < ��~�
2(1��)

< "

(53)

The computation of the derivative of EL� with respect to " yields the result.
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