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1. Proofs: main results

PrROOF OF PROPOSITION 1
Pefine the set

O={n=(m,....n)" €R"|If € cl(F) st 5= f(X;),Vi=1,...,n}
We can rewrite the optimization problem as finding #,, such that
f, € argmax é,(n),
neo
where £,,(n) = L 3" £,(;), and where
Yo — B(np), if 7; € dom(B);
limy-, o0 Yia — Bla), if n; = —oc;
bi(mi) = ¢
limg-soc Yia — B(a),  if the EF is Gaussian, Poisson or Binomial, and 1; = oo
—00, if the EF is Gamma and #; € [0, oc].

.

Note that £, is continuous on the non-empty set © and SUPyco gn(n) is finite.

Moreover, by Lemma 3 in Section 2, © is a closed subset of the compact set R”, so

is compact. It follows that ¢, attains its maximum on 6, so S’n # 0.
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To show the uniqueness of #,,, we now suppose that both 1, = (m1,....7.)7
and 19 = (g1, .. .,ngn)T maximize ¢,,. The only way we can have m; = oo is if
the family is Binomial and ¥; = 1. But then £;(—oc) = —oc, so we cannot have

72 = —oo. It follows that n, = (9, +n5)}/2 is well-defined, and 77, € ©, since © is
convex. Now we can use the strict concavity of I, on its domain to conclude that
Ny =1y =1,

"To prove Theorem 1, we require the following lemma, which says (roughly) that
if any of the additive components (or the intercept} of f € F are large somewhere,

then there is a non-trivial region on which either f is large, or —f is large.

LEMMA 1. Fiz a > 0. There exists a finite collection C, of disjoint compact

subsets of [—2a,2a]? each having Lebesque measure af least (é%)d, such that for any

F2 (L fare),

1
Inax maX{igtfj f(x); inf, —f(X)} e maX{Lf}[lga |fi{zadls -, Sup | falza)l; QICE}-
Proor. Let 1nax{suplzl|5aif1 (@1} .. 8upy,, <q fa(za)|, 2]c]} = M for some
M > 0. Recalling that f1(0) = ... = f3(0) = 0, and owing to the shape restrictions,

this is equivalent to

max{lfl(—a)ls |f1(a)|! tr Ifd("a)|= [fd{a)LQlcl} = M.

We will prove the lemnma by construction. For j = 1,...,d, consider the collection

of intervals

D - {[—2a=—a],[a,2a]}, if I; € {2,3,5,6,8,9);
’ {[—za,—a], (~a/(4d), a/(4d)), [a,2a]}, if I; € {1,4,7).

Let Cy = {x%_, Dy : D; € D;}, so that |Co| < 3%. The two cases below validate our

construction:

(a) max {|fi{—a)|,|f1{a)],....|fa(=a)|,|fs(a}]} < AL. Then it must be the case

that |c| = /2 and, without loss of generality, we may assume ¢ = A//2. For
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j=1,...,d,if l; € {2,3,5,6,8 9}, then due to the monotonicity and the fact
that f;(0) = 0, either
wje{i%fc‘z,,fa.] filws) 2 0 or a:jeir[;f,m] fi(z5) 2 0.
For I; € {1,4,7}, by the convexity/concavity, sup, ¢/ —a/qad)a/aa) [fi(2) <
M /(4d). Hence

i = - 1/2 = M/4.
max }ilelgf(x) > —-dM/(4d) + M /2 /4

(b) max {|fi(—a)|,|f1(e)l.....|fa(=a)|,|fala)l} = M and || < M/2. Without
ioss of generality, we may assume that fi(—a) = M. Since f1{(0) = 0 and

|fi{a)] £ M, we can assume [; € {1,3,4,6}. Therefore, inf, ¢i o, o] f1{z1) =

M. Let
[—a/(4d),a/(4d)], ifl; € {1,4,7}
D; = < [a,2d], if 1; € {2,5,8}
[-2a, —al, if I; € {3,6,9}
for j=2,...,d Now for C = [-2a, —a] x x?zsz, we have

iggf(x) > M —(d—-1)M/{4d) — M/2 > M/4.

PROOF OF THEOREM 1
For convenience, we first present the proof of consistency in the case where the EF
distribution is Binomial. Note that for the Binomial family the response Y is scaled
to take values in {0,1/7,2/T,...,1} for some known 7 € N, where T is the total
number of trials. Consistency for the other EF distributions listed in Table 2 in the
main text can be established using essentially the same proof structure with some
minor modifications. We briefly outline these changes at the end of the proof.

Since the proof is rather long, we give here a brief, high-level description of the
main ideas. In Step 1, we give a lower bound Ly for the scaled partial log-likelihood
£,(-) in the limit as n — oo. This is helpful, because it allows us to conclude that any

[ € cl(F) for which lim sup,,_, o0 £n(f) < Lo -1, say, cannot belong to S, for large n.



4 Yining Chen and Richard J. Samworth

In particular, in Steps 2 and 3, we use this technique to show that when n is large,
any element of S, must be bounded on [~a, a}? for every @ > 0 (independent of n)
and the concave/convex components must be Lipschitz. In Step 4, we show that our
reduced class of functions is a Glivenko-Cantelli class (i.e. satisfies a uniform law of
large numbers). Since the population-level scaled partial log-likelihood is uniguely
maximized at the true fy, we can then conclude in Step 5 that when n is large, any

maximizer of £,(-) over cl(F) must belong to a small ball around fo, as required.

Step 1: Lower bound for the scaled partial log-likelihood. It follows

from Assumption 1) and the strong law of large numbers that

liminf sup £a(f) 2 lim Gu(fo) = E{g™" (fo(X)) fo(X) — B(fo(X))}
T feal(F)

almost surely. We define Ly = E{g7*(fo(X)) fo(X) — B(fo(X)}.

Step 2: Bounding |f,| on [~a,a] for any fixed a > 0. For M > 0, let

(1)

We will prove that there exists a deterministic constant M = M(a) € {0, 0o) such
that, with probability one, we have S, C ¢l (}"a! M(Q)) for sufficiently large n. To this
end, let C, = {C1,...,Cn} be the finite collection of compact subsets of [—2a, 2a]d

constructed in the proof of Lemma 1, and set

M:rriB‘l( ~Lot 1 )
minlngN:te{o,l} P(X cCrY = f)

Let

T

. 1
k. € argminlim sup sup - E {Y;f(X;) - B(f(xz‘))}I{x,eCkmf,e{o,l}}-
ISREN 1220 pea(mFan) | imt
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Then

limsup sup £,(f)
T fed (F\Faa)

1 n

< lim sup Sup -

{Yif(Xe) — B(f (X)) ix,¢cn. uvig{a}}
nrreo ,fEC](f\fa‘AI) =1

) 1 T
+lmsup - sup -~ > {Yif(Xi) - B(f(Xa)Hix,ec,. nvie(o)
T e (F\Fan) | i=L

' 1 1
< max tmsup - sup 3 {Vif(Xi) - B xgauvgony ()
red{AFa) i1

1 Ti
+ min limsup  sup = Z{Yif(xi) = B(f(XiHx.ecinvieoy (3)
1€k<N noec fe::l(f\]—"a.m) [t

Now (2) is non-positive, since Yin — B(n) = Yin — log{1 +&") < 0 for all n € R and
Y€ {0,1/T.2/T,...,1}. We now claim that the supremum over f € cl{F\F, »)

in (3) can be replaced with a supremum over f € F\F, ;. To see this, let
Qo= 1{n=0n....0)  €R™:3f € l(F\ Fons) s.t. s = f(Xy),Vi=1,....n}.

Suppose that (n™) € O is such that the corresponding (f™) € cl(F \ Fua) is a

maximizing sequence in the sense that

L=, .
- > {Vif™Xs) = BE™ X)) H(x,ecinviefo )
=1

n

1
' su =S VX)) - BUA(Xi) yx.ecny, ‘
fed(]—‘\pf,,‘M) n g{ F(X) (f(Xi)Hix.ecnvie{o1)

By reducing to a subsequence if necessary, we may assume 1 — 1°, say, as m -+ oo,
where ¥ = (7¥,..., 7%} € R". Since, for each m € N, we can find a sequence

(f™*)e € F\ Faus such that f™% - ™ pointwise in R as k — oo, it follows that

we can pick k,, € N such that f™%(X;) — n? asm — oo, foralli =1,...,n.
Moreover, (m1,...,7m) = =S¢ {Yin; — B(ni)}lix.ec.ny,ef0.1}} 18 continuous on

R”, and we deduce that {f™*=) e F\ Fa,ar is also a maximizing sequence, which

establishes our claim.
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Recall that by Lemma 1, for any f € F\F, ar, we can always find Cj- € C, such

that

ma.x{ inf f(x), inf —f(x)} > M/A.

Combining the non-positivity of (2) and our argument above removing the closure

in (3), we deduce by the strong law of large numbers that, alimost surely,

lim sup sup ()
A 00 fEC] (J:‘\.Fa,m)

< max{ - BOM/OP(X € Cpe, Y =0),  {-~M/4— B(~-M/Q)}IP(X & Cy.,Y = 1)}

= in  P(X€&C,Y =1)B(M/4) = Lo—1,
B léksrfl\},lt%{o,l} ( k )B(M/4) 0

where, we have used the property that B(t) = {+ B(—t) for the penultimate inequal-
ity, and the definition of M for the final equality. Comparing this bound with the
result of Step 1, we deduce that S, Ncl (f \Fa, M) = ¢ for sufficiently large n, almost
surely. But it is straightforward to check that cl(F) = cl(F, ) Ucl(F\ Foar), and
the result follows.

Step 3: Lipschitz constant for the convex/concave components of f,

on [—a,a). For My, My > 0, let
F
Fa M My = {f ~(fr fae) € Faar 2 |fi{z) — filze)l € Mol — 20, V21, 20 € {—a, a],
Vi with [ {1,4,5,6,7,8,9}}.

For notational convenience, we define W{a) = M(a) -+ M(a 4 1) + 1. By Lemma 4

in Section 2,

HFonr(@) Nel(Far1a1(ar1)) € A(Forsio)wim)-

From this and the result of Step 2, we have that for any fixed a > 0, with probability
one, S, Cdl (fa, M(a.),ﬂ-’(a)) for sufficiently large n.

Step 4: Glivenko—Cantelli Classes.

For,a>0, M; >0, My >0and j=1,...,d, let

‘Fa-,iwl,f\-fz = {f : Rd - Rtf(x) = f(x)l{xe{—a,a}d}a f € fa,.Ml,ﬂl-J'g}



On-line supplementary material for 'Generalized additive and index models with shape constraints’

and

(ﬁa,Ml,Mg)j = {f :RY — R‘f'(x) = [i(25)1 {xe[a,a)9}

for some f % (f1,..., fa.¢) € fa,M],Mg}-

We first claim that each (F, a1, a4,); 15 a Px-Glivenko-Cantelli class, where Py is
the distribution of X. To see this, note that by Theorem 2.7.5 of van der Vaart
and Wellner (1996), there exists a universal constant C' > 0 and functions g,{j, g}_f :
R — [0,1] for k= 1,..., Ny with Ny = ¢2M:C/¢ guch that E]gg(}flj) - g{:(Xij)} <
€/(2M7) and such that for every monotone function g : R -» [0,1], we can find
k* e {1,..., N1} with gf. < g < gl.. By Corollary 2.7.10, the same property holds
for convex or concave functions from [~ea,a] to [0, 1], provided we use N, brackets,

where Na = exp{C(1 + #& 12 2M; /e)/2). Tt follows that if J corresponds to a
274,

monotone compoenent, then the class of functions

9k () = 2My(gk (7)) = 1/ imelaarys G5 (2) = 2M0 (95 (25) = 1/2)Lxea,a)e).

for k. =1,..., Ny, forms an e-bracketing set for (.7:}_, M, Mz)j in the L;(Px)-norni.
Similarly, if j corresponds to a convex or concave component, we can define in the
same way an e-bracketing set for (%, a,, M2)j of cardinality Ny for (Fyar,, M2)j. We
deduce by Theorem 2.4.1 of van der Vaart and Wellner (1996) that each {F,, Mth)j
is a Py-Glivenko—Cantelli class. But then

sup
FEFo a1y ivag

n d n
%Zf(xf)—ﬁ‘lf(x)l <S>, swp [lij(Xij)“Efj(le)a
1=1

T =1 i=1 f‘je(j"-u,.\{]‘j\fg)j i

50 ]:"a, My M, 18 Px-Glivenko~Cantelli. We now use this fact to show that the class

of functions
Haory A = {h-f :RIXR -+ R | hy(x,y) = {9f(x)=B(f (%)) Fixel-aae} f € fa,M],Mg}

is P-Glivenko—Cantelli, where P is the distribution of (X,Y). Define f*, f** :
Rd X R - R by f*(X, y) =Y and f**(x) y) = l{xefua,a]d}' Let‘

Fi={f1RIxRoR| f(x,y) = f(x),f € Fors, 002 }»

7
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let Fo = {f*} and let Fy = {f**}; finally define ¢y : R x R xR —= R by ¢ (u,v,w} =
{vu — B(u)}w. Then H = @{Fy, Fa, F3), where

U(F1, Fo, F) = {0 fr(x.y), folx, ), fa(x,0)) : L € Fu, fa € Fo, f3 € Fs}.

Now F1,F3 and F3 are P-Glivenko-Cantelli, 9 is continuous and (recalling that

[Y'| <1 in the Binomial setting),

sup sup sup [¥(f1(x,y), fo(x,¥), fa{x.y)) < Mi{d + 1) + B(My(d + 1)),
F1EF) f2€Fy f2a€F

which is P-integrable. We deduce from Theorem 3 of van der Vaart and Wellner
{2000) that Hg a1, ar, I8 P-Glivenko—Cantelli.

Step 5: Almost sure convergence of f,. For € > 0, let

&U&x{ﬂR“ﬁR

sup mm-mmns%,

XE[—ao.an}d

where we suppress the dependence of B,(fg) on ap in the notation. Our aim to show
that with probability 1, we have S, N cl(F\ Be{ fo)) = { for sufficiently large n. In

Lemma 5 in Section 2, it is established that for any € > 0,

((a*) = E{Y fo(X)—B(fo(X) } l{xei-a* o]}

- sup E[{Yf(X) - B(f(X))}I{XG[Aa‘,a*]“’}]
FEFap o) wiap) \Be (fo)

(4)
is positive and a non-decreasing function of ¢* > a5 + 1. Since we also have that
(in the Binomial setting), —log2 < g !(t)t — B(t) < 0, we can therefore choose
a* > ag + 1 such that

[E{Y fo(X) ~ B(fo(X))} Lixgl-a a3 ]| < ¢(a®)/3. (5)

Let

Fr = Cl(}—au,M(au)\Be(fO)) n Cl(faqul,M(au-‘rl}\Be(f()))
N CI(Fa*,]\J(a')\BE(fG)) 0 Cl(Fa*-!-},M(a*+1)\Be(fD})'
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Observe that by the result of Step 2, we have that with probability one, S, C
Frucl(B{ fo)) for sufficiently large n. By Lemma 6 in Section 2,

- Y; WMWY > Lo = C(a*

{fseu}a - Z{ J(Xi) - B(f(Xs))} 2 Lo~ Cla )/3}

C sup {Yif(Xs) — B(f(Xi)) 1 (x.cimar ar)s
{fe( Fag. wttegh, wiag)(Fax argam st 1riamys 1 ) \NBe{fo) T Z el .

(6)
1 o
+ ?lélg;t ; {Yir(Xs) = B{A(X) N x,gf-a 0}y = Lo~ Cla )/3},

Here the closure operator in (6) can be dropped by the same argument as in Step 2.

Now note that
{hf RIXR = R hylx,y) = {yf(x) = B(F (%))} {xeloara)}s
I € (Fan,M(ao) Wiae) O -Fa*,M(a*)—,bl,lﬁ-"(a.‘)+1)\B€(fO)} C Har Ma-y41,W (@ )+15

so the class is P-Glivenko-Cantelli, by the result of Step 4. We therefore have that
with probability one,

I iy 2 DO B
- fe(}'an,.m,,ﬂ)_w{,,(,)ﬂf‘;svlig(n'Hz,u'cavyu)\B((fn)E[{Yf(X) - B(f(X))}l{XE[_a”’ak;d}]
< E[{Y fo(X) = B(fo(X)}L{xe|-a- ar}3] — (a7 (7)
< Lo —2((a")/3, (8)

where (7) is due to (4), and where (8) is due to (5). In addition, under the Binomial
setting, for every n € N,

sup — Z {Yif (Xi) = BUA(X) X, g-ar a1}

fef‘n

n

1
< - Zsup {}’;t - B(t)}l{xig[_a[*|av}d} <0 (9)

n
i1 teR
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We deduce from (6), (8) and {9) that with probability one, S, C cl(B,( fo)) for suf-
ficiently large n. Finally, since ¢l (Bf( f{))) li—asaol? = Be(fo)li—ay,a0p4, the conclusion
of Theorem 1 for Binomial models follows.

Consistency of other EF additive models. The proof for other EF models
follows the same structure, but involves some changes in certain places. We list the

modifications required for each step here:

e In Step 1, we add a term independent of f to the definition of the partial
log-likelihood:

- 1 —
ACEESS [mf(xn CB(f(X) - swp {Yit— B}
Lo tedom(B}
Note that
Y2/2 if EF is Gaussian;
sup {Yit — B(t)} ={ YilegV; - Y; if EF is Poisson;
tedom{B)

~1-logy; if EF is Gamma.

This allows us to prove that E{f,(fo)} € (—00,0] in all cases: in particular, in
the Gaussian case, E{fy(fo)} = —¢0/2; for the Poisson, we can use Lemma 7
in Section 2 to see that E{f,(fo)} € [~1,0]; for the Gamma, this claim follows
from Lemma 8 in Section 2. It then follows from the strong law of large
numbers that aimost surely

liminf sup Z N=zE E, 0 =: Ly.
it sup ()2 B} = Lo

e In Step 2, the deterministic constant M = M (a) € (0, 00) needs to be chosen
differently for different EF distributions. Let C; = {C,...,Cn} be the same

finite collection of compact subsets defined previously. We then can pick

{=Lat1 : o Gan-

4(\/n1inlgk5!\’ ]P’(Xeczk,t}’lsn 4 1) if EF is Gaussian;
o Lyl : e P :
M = 4(mim$kﬂ P(“Xecky=1) - l) if EF is Poisson;

2(—Lo+1) : ‘
4(min]ﬂg w(xneck,lgyge) + 4) if EF is Gamma.
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e Step 3 is exactly the same for all the EF distributions listed in Table 2 in the

main text.
e In Step 4, we define the class of functions

Haaty 1y = {hf RIXxRoR |

h’f(xs y) = [yf(x) - B(f(x})) - tedsup(B){yt - B(t)}] I{xélka,a]d}\ fe fa,]\h,ﬂh}‘

In the Gaussian case, we can rewrite hs(x,y) = —%{'y - f(x)}gl{xe[ﬁ,a!ajd}. By
taking the P-integrable envelope function to be

FOo) = {4 Mild+ D Leoagy 2 sup ihyGu )l

FEF, ay a1y
we can again deduce from Theorem 3 of van der Vaart and Wellner (2000)
that ﬂa, ay a1, 18 P-Glivenko—Cantelli. Similarly, in the Poisson case, we can
show that ?A{a,Mh A, 18 P-Glivenko~Cantelli by taking the envelope function to
be F(x,y} = {yMi(d + 1) + e*h (@+1) 4 g 4 ylogy}l{xei_a’a]d}_
The Gamma case is slightly more complex, mainly due to the fact that dom(B) #

K. For 6§ > 0, let

Hg,ﬂ—:{hﬂ/fg = {hf : Rd X R - R |

hi(x,y) = {yf(x) + log(max(—£(x),8)) ~ 1 +1log ¥} 1 (xe|—aa). f € fa,Ml,Mz}-
Again, we can show that ?'lg,M}, A, 18 P-Glivenko-Cantelli by taking the enve-
lope function for ﬂgthMz to be F(x,y) = {yMi{d+1)+|log & +|log(M; (d+
NI+ 1+log y}l{xe{_a’a]d}.

e Step 5 for the Gaussian and Poisson settings are essentially a replication of

that for the Binomial case. Only very minor changes are required:

(a) where applicable, add the term — sup;cg [Yt—B(#)] to {Y fo(X)~B(fo(X))}
and {Y f(X) — B(f(X))}; make the respective change to {Y;f{X;) —
B{f(Xa})} and {yf(x) - B(f(x)}};



12 Yining Chen and Richard J. Samworth
(b} change Lo to Lo;

(¢) change %a",ﬂ{(a')+1,T"["(a“)+1 to }qa*,ﬂ«[[a*)+1,1-’t"(a-‘)+l;
{(d) rewrite (9) as

n

1
sup — [Yéf(Xi) - B(f(X;)) —sup{Yit — B{t)}|1(x,¢[~a,a)7) < O.
.fe}-n je1 telk

'T'he analogue of Step 5 for the Gamma distribution is a little more involved.
Set 8 = infye[_qo—1 004114 —So(x) /€? > 0. Note that the above supremum is
attained as fy is a continuous function. Then one can prove in a similar fashion

to Lemma 5 that

= E[{Y fo(X) + log(—fo(X)) + 1 +1og ¥ }1xcia0 1,0041)4})

- sup E{Yf ) + log(max(~f(X},d0)) + 1 +1og ¥ } I{xe(~0y—~1,a041]2}] > O-
FeFag miapy wiag) \Be (o

Next we pick a* > ag + 1 such that
iE[{Yf{}(X) + log{—fo(X)) + 1 + log Y}l{xﬁ_m ,a*]d}H <¢/3
and 6" = infyer_g- 1 g0 41¢ —~fo(x)/e2. Write
F* = (-Fau,M(au).IfV(au) N Fa‘,M(a*)+1,1ﬂ-’(u.’)+l)\BE(fG)-

With 7~ defined as in Step 5, we have

{ sup 2 —Z{Yf )+ log(~ (%) + 1 +10g¥:} 2 Lo —¢/3)

feFs 1

1
- {fsx;p —Z{hf (Xi) + log(max(~f(X;), 6o)} + 1+ log ¥; } 1x, e[ ap—1.a04 114}
D

1 *
+ fﬁl‘.;:p ;?: Z {Yf + log(max( f(X;), é )) +1+log Y':‘l}1{XiE[fa*,a."]d\{—ao—i,au+l]‘i}
€ i=1

+ SUp Z {Yif (Xi) +log(— f(Xs)) + 1 +108 Y }Lix, ¢ avarje} > Lo~ C/3}-
€ i=1

Again we apply Glivenko—Cantelli theorem to finish the proof, where we also
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use the fact that

Sup E{Y /(X) + log(max(=f(X),8")) + 1+ 108 ¥ }xel- o arJo\(—a0— 1 aos 1) |

SE{Y folX) +log(— fo(X)) + 1 + log Y Hixei—ar a1\ ~ao—Tap+ 1]} -

We now indicate how to extend the proof of Theoremn 1 to cover the SCLSE
defined in Section 7. Here we assume assumptions 1, 2 and 4, but weaken 3 by
only requiring that

Yi = fo(Xi) + e,

for i = 1,...,n, where E(¢|X;) = 0, Var(g|X;) = ¢ and fy € F. The proof is
almost identical to that for the Gaussian case, with the only minor complication
being that we need to redefine M in Step 2. Specifically, we can set

2—Lg+1)
M=4 ‘A
(\/minlgng P(X & C, Y] < M*) -t ),

where

1/2
M* = 21/2( sup  fo(x)? + ¢ + 1) .

x€{—2a,2q¢
This choice of M ensures that P(X € Cy, Y| < M*) > 0 for each k, because
(M*YP(X € G, |Y| < M™) > (M™)P(X € Cy) ~ E(Y?1ixeq,))
> {(ﬂf*)z -2 sup fg(X)Q - 2(}50}?(}( < Ck} > 0.
x€&[-2q,2a]"

PRrROOF OF COROLLARY 1
By Theorem 1, we have

sup [, —col = sup [fn(0) — fo(0)|=0

faefn frn€Sn
almost surely, as n — 0o. Moreover, writing I; = {0} x ... x {0} x [~ag, ag] x {0} x
... x {0}, we have

d d

sup > supfages) = Jojla)l = sup Y sup |fa(x) — fol3) = & + col 50,
fre8, =1 i€[-a0,a0] a8, 351 %15
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almost surely, using Theorem 1 again and the triangle inequality.

PROOF OF PROPOSITION 2

Fix an index matrix A = (a1,..., Q) € R¥™, For any sequence A1 A2 . ¢
RI*™ with limp o |A* — Allp = 0, where i - |l denotes the Frobenius norm, we
claim that limy_,e [[(A*)TX; —~ ATX; |l = 0 for every i = 1,...,n. To see this, we
write AF = (af,...,ak). Tt then follows that

kil

HARTX; — ATX | = 1((Ak)sz-} (ATX,),

=~

m d
Z‘Z‘Aﬂi

h=1 j=1

Xl Z(‘Agh ) v <X llzavm||AY — Al — 0
<5 [ - 407}

=
j_L

Ms

h=1

I}

as k — oo, where we have applied the Cauchy-Schwarz inequality twice. Now write

Zi={Zn,..., Zm,) = ATX; for every ¢ = 1,...,n and take

a® =  max  |Zy|

Since { J37—, Far,ar = F (where F,. 57 is defined in (1), although d should be replaced

there with m), it follows that

lim sup En(f; (Z1, Y1), ..+, (20, Ys)) = sup £, (f; (Z1,Y1),... . (25, Yy)) = Au(A).

Mo fer, feF

Therefore, for any ¢ > 0, there exist M, > 0 and f* Z (fl s €®) € Fuepa,
such that

(£ 20V, (i, Y)) 2 AnlA) - .
We can then find piecewise linear and continuous functions S5 o such that
[ Zi) = f{(Zi;) forevery i = 1,...,n, j = 1,...,m. Consequently, the additive

function f**(z) = 3771, f*(2;) + ¢* is continuous. It now follows that

liminf A (A%) > Lminf &, (£ ((A%)7X, 7). .., (AR X, Vo))
k—o0 k—o0

= gn(f**; (le}/'.i)r sy (Zihyﬂ,))
=0 (f*55(20, Y1), (Zn, V) 2> An(A) — €.
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Since both € > 0 and the sequence (A*) were arbitrary, the result follows.

PRrROOF OF THEOREM 3

The structure of the proof is essentially the same as that of Theorem 1. For the sake
of brevity, we focus on the main changes and on the Gaussian setting. Following the
strategy used in the proof of Theorem 1, we work with the logarithm of a normalised

likelihood here:

L(fiA) = (£ (ATXL 1), (ATXG, Ya))
; T T , 1 Zn
= gn(f; (A X1, Y’l): Sy (A X, }n)) - sup {Y;t - B(t)}
n i—1 tedom{B)

LSy
i=1

So in Step 1, we can establish that ]Efn( foi Ap) = —¢o/2.
In Step 2, we aim to bound f! on [—a, a)? for any fixed ¢ > 0. Three cases are

considered:

(a) If m > 2 and Ly, € Ly, then f;{ is either convex or concave. One can now use
the convexity/concavity to show that limsup,,.., . SUPxe| g a4 | Flx)| < M{a)
almost surely for some deterministic constant M(a) < oo that only depends
on a. See, for instance, Proposition 4 of Lim and Glynn (2012) for a similar
argument.

{b) Otherwise, if L, ¢ Ly, we will show that there exists deterministic M(a) €

(0, 0¢) such that with probability one,
Sn € Gaxria) (10)
for sufficiently large n, where we define
g;j,M = {fj R 5 R | fl(x) = f(ATx), with f € Fan and A € A‘S}.

To see this, we first extend Lemma 1 to the following:

15
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LEMMA 2. Fiza > 0 and § > 0, and set § = min(, d~1). For every f1(x) =
f(ATx) = P fj{a?x) + ¢ with f z (fi,-- s fm,c) and A € A%, there
exists @ convex, compact subset Dy of [-25“1/2ad, 25“1/2ad]d having Lebesgue

measure (—zga)d such that

max{ inf fl(x), inf —f‘r(x)} = %ma,x{ sup |filz1)},..., sup |fm(zm)i,2ic|}.

x€D xeD s 1] <a om|<a

(11)

PROOF. First consider the case m = d. Note that every A € 4% is invertible.

In fact, if A is an eigenvalue of A, then §*/2 < |A] < 1, where the upper bound

follows from the Gerschgorin circle theorem (Gerschgorin, 1931; Gradshteyn

and Ryzhik, 2007). Let C1,...,Cyn be the sets constructed for f in Lemma 1.
Then, writing v for Lebesgue measure on RY,

1 a d
i -1 S [ i ) > P — .
i va((AN)TCk) 2 porers min valG) 2 (2d) -

and
U (AT)10y, € (AT)"V[-24,20)¢ C [-26712ad, 26204,
1<k<N
Thus (11) is satisfied. To complete the proof of this lemma, we note that for
any m < d, we can always find a d x (d —m)} matrix B = (84,...,8,_,,) such
that

(1) 18l = 1 for every j = 1,...,d —m.

(ii) ﬁgﬁk =0forevery 1< j<k<d-—m.
(iii) ATB = 0.
Let A; = (A,B), so the modulus of every eigenvalue of A belongs to the
interval [min(6'/2,d~1/2), 1. Since f(x) = f(ATx) = F(ATx) with f'(z) =
2oier filzg) + ¢ for every z = (21,...,24)" € RY, the problem reduces to the

case m = d.

Then, instead of using the strong law of large numbers to complete this step, we

apply the Glivenko-Cantelli theorem for classes of convex sets (Bhattacharya
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and Rao, 1976, Theorem 1.11). This change is necessary to circumvent the
fact that the set Dy depends on the function f7 (via its index matrix A).

(c) Finally, if m = 1, then the Cauchy-Schwarz inequality gives that A = A% with
8 =d~!. Thus (10) still holds true.

Two different cases are considered in Step 4:

(a) If m > 2 and L,, € £,,, then without loss of generality, we can asswme

L., € {1,4,5,6}™. It is enough to show that the set of functions

1
Qa!MhMQ = {hf : Rd xR =R h,f(x,y) w —§{f(x) — y}21{xe[wa!a}a}

with f: RY 5 R convex, sup {f(x} < M,

x&[—a,a}

and |f(x1) — f(xg)| < Mallxy — x3|| for any x;,%s € [—a,a}d}

is P-Glivenko-Cantelli, where P is the distribution of {X,Y). This follows
from an application of Corollary 2.7.10 and Theorem 2.4.1 of van der Vaart
and Wellner (1996), as well as Theorem 3 of van der Vaart and Wellner (2000).

(b} Otherwise, we need to show that the set of functions

1 2
GO rtonty = {h»f,A TREXR = R | hpalx,y)=— §{f(ATX) Y} xel-aaq)

with f € Foar, ar, and A € A5}

is P-Glivenko—Cantelli. The proof is similar to that given in Step 4 of the proof
of Theorem 1. The compactness of A%, together with a bracketing number
argument is used here to establish the claim. See Lemma 9 in Section 2 for

details.

Proor oF COROLLARY 2
This result follows from Theorem ! of Yuan {2011) and our Theorem 3. See also

Theorem 5 of Samworth and Yuan (2012) for a similar type of argument.

17
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2. Proofs: auxiliary results

Recall the definition of © from the proof of Proposition 1.

LEMMA 3. The set © is a closed subset of R™.

PROOF. Suppose that, for each m € N, the vector g™ = (p}*,...,n™) belongs
to ©, and that '™ — 17 = (;1,....,7.)7 as m — oc. Then, for each m ¢ N, there
exists a sequence (f"™*) & F such that f™%(X;) — nrask—socfori=1,...,n

It follows that we can find k,, € N such that f™%(X;) — #; as m — oc, for each
i=1,...,n.

For 7 =1,...,d, let {X(i),j}i\;jl denote the distinct order statistics of {X;;}iL,
(thus N; < n if there are ties among {X;;}7.,). Moreover, let

Vi = {(—o0, Xy 5} Xy, 5 Xeop b - [ X w150 Xwoygls (X (v).55 000 3,

and let V = ><‘l ~1¥j. Thus |[V| = H?:z(Nj + 1) and the union of all the sets in V

is RY, Writing fmbw 2 (f™ R ;l’k'”',cm*k"'), we define a modified sequence
- -F d -
™~ (f fm fd &) at x = (x,...,2q)7 € R by setting
(Xu+1;,1"ﬂ?j)f;-"'k’”(xtfm) (s =Xy D (X)) e
Xiirng =Xy Aty =X 5 if 25 € {X(f‘}*j’X(”l)fj]
Fme N (Xeys—za ) 75 (Xays) (-’i’“j”—)\(lu)fm M (X ) T
j (®5) = Xs =X + Nemg = X if zj € (00, Xy,
(Nowi=wi ) 7 (X —13.4) (IJ_X(N -1 J)fm (Xiwpa) .
Xewpra=X(Nj-11 4\<N Wi AN 1 ifz; € [X(Nj)sj’OO)?

and & = ¢™*» Thus each component function fm is piecewise linear, continuous

Ko FITL fe ot -
TP and f™ is piecewise affine and

FX) = frka(X,) = ny for ¢ = 1,...,n. The proof will therefore be concluded

and satisfies the same shape constraint as i

if we can show that a subsequence of ( fm) converges pointwise in R. To do this,
it suffices to show that, given an arbitrary V € V, we can find a subsequence of
(f™iv) (where f™iy denotes the restriction of f™ to V) converging pointwise in R.
Note that we can write

Frv(x) = (@) (x" 1"
for some a™ = (a?*,... ,a.ng)T € R, If the sequence (a™) is bounded, then we

can find a subsequence {a™*), converging to a € R%"! say. In that case, for all
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x € V, we have f"|y(x) — a7 (x7,1)7, and we are done. On the other hand,
if (a™) is unbounded, we can let 5 = argmax;.; g1 {aj |, where we choose the
largest index in the case of ties. Since ;7 can only take d+ 1 values, we may assume
without loss of generality that there is a subsequence (™) such that ;7% = d + 1
for all k£ € N and such that a}}; — oo as k -+ co. By choosing further subsequences

if necessary, we may also assume that

T my T
a a .
1 d - ~ T __ . &
( Tk 1t ) ﬂ(ala---aad) =.a,
Gg11 B

say, where & € [—1, l]d. Writing V) = {x ¢ V : (&7, 1)(x7, N = 0}, Vl"” = {x €
V@ D" DT >0 and V7 = {xe v @7 D) 1D < 0}, we deduce that

for large k,
e ma T oo if VT
. 7 a] ad T T iIrxe 1
fﬂulv(x)__:a?ml ey T , 1 (X ,1) —F
d+ i . B
a a i
41 d+1 ~oc Hxel.

It therefore suffices to consider f’”*‘lvl. We may assume that & # 0 (otherwise

Vi = 0 and we are done), so without loss of generality assume @4 # 0. But themn,

for x € Vi,
.}E’mkh/l (x) — (amk)T(xT} I)T = (bvm)T(xg‘Md)! 1)T,
where x(_g) = (21,...,24-1)7, and where b™ = (b7*,... b™) ¢ RY, with by =
(Lt’lkwg?—k&'f()r =1 d-—-laﬂdb?nk_am'k “,a'_;qi Apnlvi the s t
; i i=1,...,d d = CGgrq Fyal pplyig € Sale argumen

inductively, we find subsets V3,..., Vg1, where Vi D V3 D ... D Vjy;, where V; has
dimension d— j and V41 = 0, such that a subsequence of ( fm*') converges poiniwise

inRforallxe V\ V.

Now recall the definitions of Fy ar, Foar, a1, M(a), Wia) and B fo) from the

proof of Theorem 1.
LEMMA 4. For anya > 0, we have Ci(.Fa!j\f(a))ﬂci(.Fa_i_LM(a_i_l)) c cl(fa’M(a_}’W(ﬂ)).

Proor. We first consider the case M{a) < M{a+1). Suppose f € cl (.Fa’ M(a)) a

ci(]’aﬂ! M{G_}_])), so there exists a sequence (f*) such that f* ¢ Fa,m(q) and such
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that #% Z ( FE, . Fh ) converges pointwise in R to f. Qur first claim is that

there exists a subsequence {f*) such that fo ¢ Fos1,0at13+1 for every m € N,
Indeed, suppose for a contradiction that there exists K € N such that for every

k> K. we have f* ¢ Far1,M@+1)41- Let
o [+ o 3 &) & 3 1-‘
b = W) = (o DL @D A a1 et 1] 2164

It follows from our hypothesis and the shape restrictions that Max;.i, . od+1 b;? >

M(a+1)+1 for k > K. Furthermore, we cannot have argmax;.| o4, bé”f =2d+1

for any k > K, because 2|c*| = 2|f*(0)] < M(a) < M{a+1)+1 for every k € N. We
therefore let 5% = argmax;_y o4 b%, where we choose the largest index in the case
of ties. Since j* can only take 2d values, we may assume without loss of generality
that there is a subsequence (5%7) such that 7% = 24 for all m € N. But, writing

xo = {0,....0,a + )T € R?, this implies that
1760) = £(0)] = Tim_|£"(x0) = A (0)] = tim [f5"(a+ 1) > Mla+1)+ 1

On the other hand, since f € cl (FHH’M(QH)), we can find (f'm) € Fas1,0(a+1) such

that f™ Z (fm,..., fé”,ém) converges pointwise in R to f. So

[f(x0) = f(O)] = lim |f™(x0) = f™(0)] = lim |ff"(a+1)| < M{a+1).
This contradiction establishes our first claim. Since Fa M@y N FartMaint: €
Fa,M(a), W (a), We deduce that f € cl(F, ara)w () In the case where M(a) < M(a+
1).

Now if M{a) > M{a + 1), then for every f € Cl(Fa’JM(G)) M Cl(faJrLM(aH)),
there exists a sequence (£¥) such that % € Fat1,M(a+1y and such that f * converges
pointwise in R to f. By the shape restrictions, Farimar) € Fo M(a): SO fte

Fabﬂf(a). Consequently, f'l“ = Fa,A:{(Q)J}[f(a) as above, so [ € ¢l (‘Fagﬂ,j{a)’p{f(a)).

LEMMA 5. Under assumptions 1 - 4, for any a, My, Mg, e > 0,

E{Y fo(X) - B(fo(X)) }ixel—am1 at1]4)]

> sup E[{Yf(X) - B(f(X))} l{Xe[wa—},a-i-l}"}]-
FeFa ney a1 \B. (fo)
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PROOF. Since B’ = g™*, we have that for every x € [—a—1,a+1]%, the expression

E{Y /(X) ~ B(f (X)X = x} = g7 (fo(x)) f(x) — B(f(x))

is uniquely maximized by taking f(x) = fo(x). Moreover, since f; is continuous
by assumption 4, it is uniformly continuous on [-a —1,a +1]¢. We may therefore
assume that for any ¢ > 0, there exists v(¢) > 0 such that |fo ;(21) — fo(z2)| < ¢
for every j = 1,...,d and every 21,23 € [~a — 1,a + 1] with |21 — 22| < ~(€).
For any f € Fo a0, \Be{fo), there exists x* = (z7,...,2%)7 € [~a, ] such that

Lf(x*) ~ fo(x*)] > €. Let Cx-q = x;-l:iDj C [~a - 1,a + 1]¢ where
(2%, 2} + min{y(55),1}] ifi; =2
D; = [33; ~min{y(55), 1}:::;“] if Iy =
{m;‘ - 111in{ﬁz%,'};(4—ii),1},$;f -{—min{ﬁﬁ,q(ﬁ),l}] it € {1,4,5,6,7,8,9).

Define Cy- 5 similarly, but with the intervals in the cases [j =2 and l; = 3 ex-

21

changed. Then the shape constraints ensure that max{infxec,. , [f(x)~fo (%)}, infxec,. , [f(%)—

fo(x)l} > /2. But the d-dimensional Lebesgue measures of Cy. ; and Cx-2 do not
depend on x”, and min{P(X € Cy. ;). P(X € Cx-2)} is a continuous function of x*,
so by assumption 2, we have

£= inf min{P(X € Cx 1), P(X € Cx-2)} > 0.

x"E[—a,a]¢

Moreover, writing f, = infye[wa-1,a+1)t fo(x) and fy = SUPxe(—a—1,a+1) fo(X}, and
using the fact that s = [{g™1(fo(x))fo(x) = Bfo(x))} — g™ (fo(x)s — B(s)}] is

convex, we deduce that

E[{Y fo(X) ~ B(fo(X))} L(xel-a-1.0t 1))

- sup E[{Yf(X) - B(f(x))}1{Xe{~a—1,a+1]d}]
FeFa ary ap\Be (o)

2§  inf inf {97 {(fo(x))fo(x) = B(fo(x))} - {7 (fo(x))t — B(1)}]

XE[—a—-1a+1]7 jt- fo(x)|>e/2

> -1—562 inf_ (g1 (s) > 0.
167 self —¢/2,Fo+e/2)
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LEMMA 6. For any o* > ag + 1, we have

N Faptan\Bel ) 1 el(Fas 1 nrgau s\ Belfo)) 1 el Foe araey\Belfo)

2 01(fa~+1,M(m+1}\Be(fo)) < 01((}'—a0,n-1(a0),111'(a0) ﬂfa‘.z\f{a*)+l,l’l"(a*)~11)\Be(f0)>-

ProOF. The proof is very similar indeed to the proof of Lemma 4, so we omit

the details.

Recall the definition of f,,( fo) from the proof of Theorem 1 in Section 1.

LEMMA 7. Suppose that Z has o Poisson distribution with mean p € (0,00).
Then

plogp <E(ZlogZ) < plogp + 1.
It follows that, under the Poisson setting, E{l,(f3)} € [~1,0}.

ProOOF. The lower bound is immediate from Jensen’s inequality. For the upper
bound, let Zy = (Z — p)/\/f, so B(Zy} = 0 and E(Z) = 1. Tt follows from the
inequality log(1 4+ z) < z for any z > ~1 that

E(Zlog Z) = E[(u + viuZo){log 1 +1og(1 + Zo/ Vi) (2,5 - ym} )
< E[(u+ ViZo)(og p + Zo/ /1))
= plog pu + (log p + 1)/RE{Zo) + B(Z3) = plog p + 1.

Finally, we note that

Elu(fo) = E[E{Y fo(X) ~ B(fo(X)) - Y leg ¥ + Y|X}]
=E{eX fo(X) - E(Y log Y |X)} € [-1,0}.

LEMMA 8. In the Gamma setting, under assumptions 1 and 8, E{l,(fo)} €
("0050)'
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ProOF. Since =Y fo(X)}X ~ I'(1/dg, 1/¢q), we have

Ely(fo) = E[E{Y fo(X) = B(fo(X)) —log ¥ + 11X }] = E[E{log(~Y fo(X))|X}]
= log o + 1p(1/¢0) € (—00,0),

where 2p (-} denotes the digamma function.

LEMMA 9. In the Gaussian setting, under assumplions 1 and 2 and conditions

2 and 3,
oty 0y = {th RYXR = R | hya(x,y) =~ “{f ATx) y}gl{xeiwa,uld}
with f € Fors, ar, and A € AJ}
is P-Glivenko-Caniells.

PrOOF. Following the argument in Step 4 of the proof of Theorem 1, it suffices

to show that

(ﬁa,]\h.;\f@)j = {f - R? %Rif(X) = fila] X} {xe[-a.a7)
for some f % (fis ooy fmo€) € Fag anond oy € R? with ot = 1}

is P-Glivenko-Cantelli for every j = 1,..., m. In the following, we present the proof
in case {; == 2. Other cases can be shown in a similar manner.

By Theorem 2.7.5 of van der Vaart and Wellner (1996), there exists a universal
constant €' > 0 such that for any € > 0 and any ag € R?, there exist functions
gr, g8 R = [0,1) for k = 1,..., N3 with N3 = ¢*C/¢ gych that Elgf (ed X) ~
g (el X)| < €/(4M)) and such that for every monotone function g : R — 10,1}, we
can find k* € {1,..., N3} with gk < g < g}c{. Since X has a Lebesgue density, for
every k£ we can find Té:’, 'rg > ( such that

€

£
Elgr (g X)~gi (ag X—7)| < ox~  and  Elgf (e X+1¥)—gf (el X)] <

T BM, = 8M;°
By picking 7 = min{TlL, ... ,TJI\},TIU . ,1'}\{ }/a (which implicitly depends on cy),

we clalm that the class of functions

9% (%) = 2M(gj: (g x~70)~1/2) {xe (a0} G (X) = 201 (g% (0 X+70)~1/2) L fxe(-a.a)

23
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for k = I,...,N3, form an ebracketing set in the L, {Px)-norm for the set of

functions

]-_fj{;; = {f (R le(x) = f(aTx)l{xe{__a’a]d}, with f: R — R increasing,

sup [ f ()] < My and o — aolh < T}.
zclR

To see this, we note that

T

sup la’x — al'x| < 7a.

loo—aolls <7, x€{—0,a}d

It follows by monotonicity that for k= 1,..., Na,

E|g (X) — g (X)| < 2MiE|g (0d X + 7a) — gf (af X)| + 2M,E| g (aTX) — g (o X)]

+ 2A{1E|g£’(agX) - g;f(agx - T(l)l < i + % + i = ¢,

Therefore, {g¢, 5¢ },{,Vil is indeed an e-bracketing set.

Now for every ag € R? with llayfly = 1, we can pick T(op) > 0 such that a
finite e-bracketing set can be found for ]—': }’\Z(a”). Since {ap € RY : |jogll; = 1} is
compact, we can pick o, ...,af " such that

{ag e R gl =1} | {eeR¥:a-afi <reh).
k=1, ,N*
Consequently, for every e > 0, a finite e-bracketing set can be found for (.77& M, M2)j.
Finally, we complete the proof by applying Theorem 2.4.1 of van der Vaart and

Wellner (1996).

3. Running time
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Table 1. Average running time (in seconds) of SCMLE, SCAM,
GAMIS, MARS, Tree, CAP and MCR on problems 1, 2, 3 with sam-
ple sizes n. = 200, 500, 1000, 2000, 5000 in the Gaussian setting.

Problem 1
Method | n=200 | n =500 | n = 10600 | n = 2000 | n = 5000
SCMLE 0.13 0.34 0.90 1.86 7.35
SCAM,q 0.91 1.72 417 7.43 18.59
SCAMs, 5.69 9.91 20,72 39.21 100.45
GAMIS 0.11 0.20 0.46 1.46 3.93
MARS 0.01 0.01 0.02 0.05 0.12
Tree 0.01 0.01 0.02 0.03 0.08
CAP .61 1.75 2.47 3.86 8.60
MCR. 30.17 411.80 - - -
Problem 2
Method | n =200 | n =500 | n= 1000 | n = 2000 | n = 5000
SCMLE 0.67 (.18 0.37 0.88 3.03
SCAM,q 2.85 3.27 6.26 12.22 29.78
SCAMaq 3.62 9.90 20.72 39.21 100.45
GAMIS 0.11 0.20 0.44 1.39 3.92
MARS 0.01 0.01 .02 0.04 0.09
Tree 0.01 0.01 0.02 (.03 0.07
CAP G.11 0.32 0.55 0.97 1.93
MCR 33.31 427.98 - . -
Problem 3
Method | n =200 | n =500 | n= 1000 { n = 2000 | » = 5000
SCMLE 0.35 0.95 2.37 5.41 20.21
SCAM,s | 23.08 25.77 38.60 70.67 143.91
SCAMap 91.65 141.50 121.41 154.12 249.44
GAMIS 0.45 0.60 110 3.19 8.09
MARS 0.01 0.02 0.04 0.08 0.22
Tree 0.01 0.02 0.03 0.05 0.12
CAP 0.10 0.37 0.99 1.83 4.20
MCR 26.61 303.40 - - -
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Table 2. Average running time (in seconds) of SCMLE, SCAM and GAMIS on
problems 1, 2, 3 with sample sizes n = 200,500, 1000, 2000, 5000 in the Poisson
and Binomial settings.

Problem 1

Model Method | n=200 | n =500 | n = 1000 | n = 2000 | n = 5000
SCMLE 0.33 0.78 1.76 3.98 13.08
Poisson | SCAM, 1.24 2.40 4.92 9.99 30.54
SCAMyg 6.11 13.11 24.31 51.38 111.52
GAMIS 0.25 0.50 1.00 2.43 7.08
SCMLE 0.24 0.53 1.23 3.22 9.51
Binomial | SCAM;, 0.80 1.09 1.92 5.24 9.06
SCAMqg 2.47 4.13 6.53 11.52 22.65
GAMIS 0.25 0.47 0.93 2.49 6.66
Problem 2
Model Method | n =200 | n =500 | n = 1000 | n = 2000 | n = 5000
SCMLE 0.20 0.41 0.84 1.80 5.10
Poisson | SCAM;yy 1.97 2.67 5.17 11.34 25.35
SCAMygy 7.55 12.28 18.81 29.24 64.14
GAMIS 0.24 0.42 0.94 2.43 6.62
SCMLE 0.16 0.35 0.72 1.49 4.63
Binomial | SCAM;q 1.82 3.06 6.38 9.60 25.87
SCAMa2, 7.37 11.28 19.01 33.47 76.68
GAMIS 0.24 0.47 0.94 2.34 6.59
Problem 3
Model Method | n =200 | n =500 | n= 1000 | n = 2000 | n = 5000
SCMLE 0.90 2.29 5.59 12.68 42.58
Poisson | SCAMyy 8.85 16.93 22.77 39.69 77.08
SCAMy | 25.01 42.43 56.53 69.89 146.92
GAMIS 0.91 1.62 2.99 7.02 19.01
SCMLE 0.46 1.10 2.50 5.37 18.54
Binomial | SCAMp 5.80 6.29 8.73 14.10 30.07
SCAMy 16.98 24.78 38.20 56.47 115.68
GAMIS 1.18 1.53 2.83 6.93 16.41
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Table 3. Average running times (in seconds) of different methods for

the shape-constrained additive index models (Problems 4 and 5).

Problem 4
Method | n =200 | n =500 | n=1000 | n = 2000 | n = 5000
SCAIE 4.36 6.61 12,20 23.50 69.52
851 26.10 112.44 411.16 1855.37 -
PPR 0.01 0.01 0.01 0.02 0.05
MARS 0.01 0.03 0.05 0.10 0.25
Tree 0.01 0.01 0.01 0.03 0.03
CAP 0.48 1.24 1.90 3.02 6.69
MCR 38.21 496.54 - - -
FProblem 5
Method | n =200 | n =500 | n=1000 | n = 2000 | n = 5000
SCAIE 3.78 8.76 20.32 62.68 203.20
PPR 0.01 0.02 0.03 0.05 0.12
MARS 0.0t 0.01 0.02 0.03 0.04
Tree 0.01 0.01 0.01 0.02 0.03
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