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Abstract

In large panels of financial time series with dynamic factoucture on the levels or returns,
the volatilities of the common and idiosyncratic composeoften exhibit strong correlations,
indicating that both are exposed to the same market véyastiocks. This suggests, alongside
the dynamic factor decomposition of returns, a dynamicofadecomposition of volatilities or
volatility proxies. Based on this observation, Barigozzddallin (2016) proposed an entirely
non-parametric and model-free two-step general dynanstofapproach which accounts for a
joint factor structure of returns and volatilities, andoalk for extracting the market volatility
shocks. Here, we go one step further, and show how the samstépapproach naturally pro-
duces volatility forecasts for the various stocks undedystdn an applied exercise, we consider
the panel of asset returns of the constituents of the S&Pi@Exi over the period 2000-2009.
Numerical results show that the predictors based on ourstep-method outperform existing
univariate and multivariate GARCH methods, as well assfaitor GARCH models, in the pre-
diction of daily high—low range—while avoiding the usuabptems associated with the curse of
dimensionality.

JEL ClassificationC32, C38, C58.

Keywords Volatility, Dynamic Factor Models, GARCH models.

1 Introduction

Decomposing asset returns and risks or volatilities intommon market-driven, component and an
individual, idiosyncraticone, is one of the main issues in financial econometrics,makagement,
and portfolio optimization. Well-known theoretical resuuch as the Asset Pricing Theorem, indeed,
show that market-driven risks cannot be diversified awayljenihdividual ones can be eliminated

tSupported by the IAP research network grant P7/06 of thei@eigovernment (Belgian Science Policy).



through portfolio diversification. Some of the first econdriaeillustrations of this are Connor and
Korajczyk (1986) for returns and Engle and Marcucci (20@8)vblatilities.

The very definition of anarket volatilityconcept, however, calls for the analysis of a large num-
ber of individual stocks—typically, a large panel of stoaKatility proxies, or a large panel of stock
returns (from which volatility proxies are to be extractedarge enough that it provides a good pic-
ture of the entire market. Such an analysis unavoidably mitosthe usual challenges associated
with high-dimensional observations—here, moreover, withadditional complexities of a time se-
ries context, where both auto- and cross-correlations|l tdgs, play crucial roles. Since the advent
of the “big data” revolution, the analysis of high-dimensbtime series has attracted much interest,
in conjunction with the surge of activity in the estimatiohhigh-dimensional covariance matrices,
and has become one of the most active areas of time seriesreetits. A number of procedures
have been proposed, of which the so-catlgdamic factor model methogdsnder their various forms
(exact, approximate, static, finite/infinite factor space¥ so far have been the most successful.

Essentially, two distinct approaches to the analysis gfdgranels of volatilities can be found in
the literature:(i) the analysis of directly observed series of volatility pesx and(ii) the estimation
of conditional heteroskedastic models for returns.

() When the panel under study itself is a large panel of vaatiroxies (as realized volatilities
or adjusted log-ranges), a factor analysis on such pantiie iIsiommon way to cope with high-
dimensionality issues—see Engle and Marcucci (2006),gBari et al. (2014), Luciani and
Veredas (2015), or Ghysels (2014), for recent contribstionthat context. But the question
then naturally arises of how those volatility proxies hagemobtained (presumably, from some
unreported primitive large panel of returns). Moreover,raal analysis of volatility proxies
only can tell one part of the story. Indeed, optimizing finahportfolios by minimizing total
risk (variance) and maximizing total return, while alsoit@kinto account the existence of
non-diversifiable market-driven components requirgsrd analysis of returnandvolatilities.

(i) Multivariate conditionally heteroskedastic models doite a unified framework for such joint
analysis by defining volatilities as conditional variancésobserved returns. Among those
models are the multivariate stochastic volatility modetsHarvey et al. (1994), the GARCH-
DCC model by Engle (2002), and the composite likelihood GAR®@odels by Engle et al.
(2008)! to quote only a few. However, being parametric, those maalkssiffer of the “curse of
dimensionality”: estimation, even panels of moderate, seggidly becomes unfeasible. In order
to overcome this problem, and in agreement with the CapisakfPricing Model (CAPM) idea
of a market shock affecting all components of a financialxpdctor structures on the returns
have been developed jointly with GARCH modelling for thetatfactors: see, for instance, Ng
et al. (1992), Harvey et al. (1992), Diebold and Nerlove @9&an der Weide (2002), Connor
et al. (2006), Sentana et al. (2008), or Rangel and Engle2j20All those factor models,
however, arestatic and mainly of theexacttype (strictly no idiosyncratic cross-correlations);
thus, they do not fully exploit the time series nature of tle@ad They cannot account for
idiosyncratic cross-sectional dependencies, which ajlyido exist in large datasetsa fortiori,
they cannot take into account the idiosyncratic contrdyuto the total volatility.

In both cases, the relation between returns and marketlitglaemains (fully or partially) un-
explored, hence unexploited. In factor models for volka#i (approach(i)), common factors are

We refer to the surveys by Bauwens et al. (2006), Asai et 8062 and Silvennoinen and Terasvirta (2009) for
comprehensive reviews of the subject.

2Recently, Fan et al. (2013, 2015) improved on this specifieeisby allowing for sparsity in the idiosyncratic covadan
matrix of returns; but then, they just discard the idioswticrcontribution to total volatility.



interpreted as driving “market volatility” but nothing céme said about their relation to returns, as
returns are not included in the analysis. On the other handpmditionally heteroskedastic factor
models for returns (approach)), volatility factors are typically identified as the condital standard
errors of the return-common factors—a gross oversimptifioaas factor models for returns do not
carry any information on a possible factor structure foratitities (see Barigozzi and Hallin, 2016,
for details and empirical confirmation).

A global point of view, with a joint analysis of returns andlaiities in a high-dimensional
setting, is therefore highly desirable. Barigozzi and Hal2016) propose such an analysis, with a
two-step dynamic factor approach of the problem based oggheralor generalized dynamic factor
modelintroduced in Forni et al. (2000): a first dynamic factor miqoiecedure, applied to the panel
of returns, is extracting a (double) panel of volatility pies which, in a second step, is analyzed via
a second dynamic factor model procedure. Barigozzi andrH@016), however, are focused on the
objective of recovering volatility market shocks. Here,goeone step further, and show how the same
two-step approach, possibly combined with an applicatidB ARCH techniques, naturally produces
forecasts of conditional volatilities.

Now, (conditional) volatilities are commonly defined as (benditional) standard errors of returns
(conditional on past values). This creates a tension witlegd dynamic factor models, which are en-
tirely based on L projection techniques, hence deviations from best lineadiptors rather than from
conditional expectations. These two points of view are iswaconciled (e.g., in ARMA-GARCH
models, cfr. Francq and Zakoian, 2004) by imposing stronigentoise assumptions on conditionally
standardized innovations. Such assumptions are highlpadd unrealistic in the high-dimensional
context considered here; moreover, they are quite cortinahge spirit of general dynamic factor mod-
els. Rather than imposing such assumptions, we prefer gingiglightly the concept of (conditional)
volatility, which we throughout define as square roots ohftitonal) expectations of squared linear
innovations (that is, squared residuals fromprojections). In the present context, that definition,
moreover, naturally takes place after the decompositiartoins into common and an idiosyncratic
components, yieldingwo volatilities—one for the common (market-driven) companehreturns,
and a second one for the idiosyncratic component. See 8s@iand 3 for details.

In an applied exercise, we consider the panel of asset setirthe constituents of the S&P100
index from 26" January 2000 through"@ecember 2009—a period comprising the recent Great Fi-
nancial Crisis—and compare the forecasts produced by aasstep methods with the few feasible
alternatives available in the literature: univariate andtivariate GARCH and static factor GARCH
models. As a benchmark, we adopt adjusted intra-daily logeaas originally advocated by Parkin-
son (1980), and then also by Alizadeh et al. (2002) and Breasmhnd Gallo (2010), among others.
Numerical results on different time windows between 200F 2009 indicate that the forecasts based
on our two-step methods outperform, often quite signifigaat! their competitors.

The paper is organized as follows. Section 2 presents thest@mgeneral dynamic factor proce-
dure we are proposing. Section 3 deals with the forecastinlglggm, and Section 4 provides empirical
results for the S&P100 panel. Finally, in Section 5, we codeland discuss possible extensions.

2 Themethod

2.1 A two-step general dynamic factor model

The observation we are dealing with is anx T' panel of stock returns or levels, that is, the finite
realization of a double-indexed stochastic process, ofdle Y := {Y;;| i € N, t € Z}, wheret
stands for time and for the cross-sectional index identifying the stocks. This T panel either
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can be considered a collection @fobserved highly interrelated time series (len@th or a unique
observed time series in dimensian As bothn andT" are “large”, (n, T')-asymptotics, where both
andT tend to infinity, are considered throughout.

LetY, :={Y,: = (Y1, Yor,...,Yn)'| t € Z} denote then-dimensional subprocess ¥f, and
consider the following assumptions.

ASSUMPTION(AL). For all n € N, the vector procesY,, is strictly stationary, with mean zero and
finite variances.

ASSUMPTION (A2). For all n € N, the spectral measure &, is absolutely continuous with re-
spect to the Lebesgue measure[emr, 7], that is, Y,, admits a spectral density matriX-,,(6),
0 € [—m, ).

We say thafy’ admits adynamic factor representationith ¢ factors ifY;; for all i and¢ decom-
poses into &common” component{ X;; }, and aridiosyncratic” component{ Z;; } such that

q
Yo = Xu+Zy= Z bi(L)ugt + Zir, 1 €N, teZ, (2.1)
k=1

(L, as usual, stands for the lag operator), and

(i) the g-dimensional vector process := {u; = (uirug: ... uq)|t € Z} is orthonormal zero-
mean white noise;

(ii) the idiosyncratice-dimensional processés, := {Z,; = (Z1;Zs ... Zn)'|t € Z} are zero-
mean second-order stationary for anywith -a.e. bounded (as — oo) dynamic eigenvalues;

(i) Zi, anduy,, are mutually orthogonal for any, h, t; andts;

(iv) the filtersb;; (L) are one-sided and square-summabe® . v? < oo for all i € N and
m=1

ikm
k=1,...,q;
(V) ¢ is minimal with respect toi]-(iv).

This actually defines thgeneralor generalizeddynamic factor model (GDFM), of which all other
factor models (in the econometric time series literature)particular cases; in vector notation, (2.1)
also takes the form

Yoi =Xt +Zns =Bo(L)uy+Zyny, neN, tel. (2.2)

For anyf € [—m, 7], denote by\y., 1(0), ..., Av.nn(8) the eigenvalues (in decreasing order of
magnitude) of¥y ., (6); the mapping® — Ay.,i(f) areY,’s dynamic eigenvaluesThe GDFM
decomposition (2.1) can be identified by means of the folhgnassumption.

ASSUMPTION (A3). For someq € N, the gth dynamic eigenvalue &, (), A\y.n q(6), diverges
asn — oo, #-a.e. in[—m, «r|, while the(q + 1)th one Ay, 4+1(8), is 6-a.e. bounded.

More precisely, we know from Forni et al. (2000) and Forni d&mppi (2001) that, given As-
sumptions (A1) and (A2), Assumption (A3) is necessary affiiicgent for the proces¥ to admit the
dynamic factor representation (23 Hallin and Lippi (2014) moreover provide very weak primetiv
conditions under which (2.1), hence Assumption (A3), hdtdsomeg < ~o.

3Those references in Assumption (A1) only assume secorgf-stationarity, though. We are assuming strict statioypari
in order to apply factor model methods to non-linear trarmsftions of they,'s.
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The decomposition (2.2) df,, induces (with obvious notation) decompositions
FY;n,k = FX;n,k + FZ;n,k and 23Y,n(e) = EX,n(e) + Z)Z,n(a)

of Y,,’s cross-covariance and spectral density matrices, , := E[Y,, ;Y , ,] andXy.,(0), re-
spectively. ’

SinceY,, decomposes into two componerXs, and Z,, (to avoid confusion in the sequel, we
call them“level-common” and “level-idiosyncratic”), whereX,, is driven by theg-tuple {u,} of
commonor market shocksand Z,, is orthogonal to the same, two distinct sources of volgtéite
to be expected: the volatility originating in the shocksvigy the level-common componenis,,
(volatility of level-common components), and the vol&iloriginating in the shocks driving the level-
idiosyncratic componentz,, (volatility of level-idiosyncratic components).

The analysis of volatilities, traditionally, is based o @wtocovariance structure of some non-
linear transform of innovation processes—something titofamodel decomposition (2.1) at first
sight does not provide. For the common compor¥nt however, such residuals can be obtained
from recent results by Forni and Lippi (2011) and Forni et(2015b,a). As for the idiosyncratic
component¥,,, since they are only mildly cross-correlated, componesgwesiduals, without much
loss of information, can be obtained via univariate AR fgtifisee Forni et al., 2005; Luciani, 2014;
Luciani and Veredas, 20185).

Assume, without loss of generality and for the simplicitynotation, that: is an integer multiple
of (¢+1), thatis,n = m(¢+1) for somem € N. Forni and Lippi (2011) and Forni et al. (2015b) show
that, under Assumptions (A1)-(A3) and the mild additionahdition of a rational spectrum, there
exist anm(q+1) x m(q+1) block-diagonal matrix of one-sided filtens,, (L) with m blocksA ) (L)
of dimension(q + 1) x (¢ + 1) such that the VAR operatofd,, — A,,(L)) arefundamentafor X,,,
and a full-rankn x ¢ matrix of constant#l,, such thatY,, admits a VAR representation of the form

(L, — Ap(L) Yoy = How + (I, — Ap(L) Zpy = Hyuy +Zy,y, neN, teZ (2.3)

whereZ,, := (I, — A, (L)) Z,, is idiosyncratic, i.e. only hag-a.e. bounded (as — oc) dynamic
eigenvalues.

The form of the extreme-right-hand side of (2.3) is of pailac importance. It shows, indeed, that
the filtered pane(I,, — A,,(L)) Y., where the AR filters imA,,(L) can be estimated vigy + 1)-
dimensional AR fitting, admits atatic factor model representation: the common shaaki (2.3)
indeed are loaded statically via the matrix loadifis. Those shocks, their loadings, and ﬁ:l,gt,’s
therefore can be recovered from the observations by meammaditional static factor methods—as
described, for instance, by Stock and Watson (2002) or BaiNgp (2002)—applied to the filtered
panel(L, — A (L)) Yo

Denote bye := {e;; := (H,u;);|¢ € N, ¢t € Z} the double-indexed process of those level-
common residuals. The-dimensional (but singular, being thedimensional linear transform of
a g-dimensional white noise) subprocass:= H,u of e is the innovation process &f ,’'s common
componeniX,,, hence is zero-mean second-order white noise. Here angbthoat,linear innovation
or innovationis to be understood in a linear; lcontext:e,, is thus the difference betweég,, and its
projection onto its own past—which coincides with its patien onto the past oY ,, sinceZ,, (hence
alsoZ,) is orthogonal (all leads and lags) X,:

eir = Xit — Prof* |[Xy], i€N, teZ,

4Sparse VAR fitting is a feasible alternative, which we did cmtsider here.



where the notation Prﬁj1 denotes projection onto the Hilbert space spanned up to(tirmel) by
the X,,;'s (equivalently, the Hilbert space spanned up to time 1) by u or bye,). The conditional
expectation ot? is what we define here as the squared volatility of level-cam@omponentX ;;:

V)Q(;it|t—1 = E[e?t|Xn,t,1 ] (2.4)

= Ele4|w_1...]=E[e}lens—1...] 1<i<n, neN, teZ

Note that (in the absence of further assumptio‘ri,%)im_1 here is not a conditional variance, as the
conditional mean ot;;, unlike the unconditional one, needs not be zero. Nor is iexqgrectation
conditional on the past oY ,,—unlessX,, andZ,, are assumed to be independent (which is the type
of assumption the AR-(G)ARCH literature typically makeb)evertheless, being the square root of
the conditional expectation of the squared deviatiorXgf from its best Ly predictor, Vx;;;—1, I
the Ly context of dynamic factor models, fully qualifies as a vditgticoncept.

As for the Z;;'s, being idiosyncratic, they are only mildly cross-coateld, and a componentwise
residual analysis only overlooks negligible informatiafle therefore assume, for ea{:ﬁm t e},
a univariate AR representation, of the form

(1—ci(L))Zy =vi, €N, tez, (2.5)

where the AR filters:;(L) are one-sided, square-summable, and such that the roots)of 0 all

lie outside the unit dise. Denote byv := {v;|i € N, t € Z} the corresponding double-indexed
process of residuals: the;'s are zero-mean second-order white noise, and constheterivariate
innovations of the level-idiosyncratic componeﬁ;@. The corresponding-dimensional subprocess

is denoted asr,, := {vnt = (vie,v2t,...,vnt)/[t € Z}. By univariate innovationhere, we mean
that{v; } is the (linear) innovation of;; considered as a univariate process, the past of which, typi-
cally, is a strict subspace of that ﬁt%t

Vit = Zit — ProjtZ_il[Zt] 1€ N, te Z,

where the notation Prg_j1 denotes projection onto the Hilbert space spanned up to(tirel) by

the Z;;’s. The conditional (on the past untit — 1) of Z—t) expectation ob? is what we define here
as the squared volatility df;,’s idiosyncratic component

Vi1 = EWilZiv1.. . ] =Epilvig1...], i€N, teZ (2.6)

Actually, that squared volatility is an approximation te téxpectation of?, conditional on the
past until(t — 1) of then-dimensional vector proce, .

At this point, one could think of recombining the two mutyadirthogonal shocks affecting each
individual return, and proceed with a volatility analysistioe n x 7" panel of(e;; + vi)'s. Merging
those two sources of volatility is not good statistical pice though, as the couplés;;, v;;) clearly
carry more information than the sunis; + v;;). As in Barigozzi and Hallin (2016), we therefore
proceed with a joint volatility analysis of thevon x T panels at hand.

Classical volatility analyses are based on the autocawegiatructure of volatility proxies—some
non-linear transform of the residuals resulting from soewad-order fit. Define, for any fixede N,
the level-common and level-idiosyncratic log-volatiljtyoxies

sy :=log(e?) and wj :=log(v?), ieN, teZ. (2.7)

SSparse or low-dimensional VAR representations are alsasilpitity.



The advantage of logarithmic proxies over squared residies in the fact that they can be analyzed
via additive factor models without imposing any tricky gosiy constraints (see also Engle and
Marcucci, 2006, for a similar definition).

Just as the original observations, thgs andw;;'s constitute double-indexed processeandw,
hence, for finitex andT, twon x T panels

S 1= {Snt = (811,82, .-, smt) |t €Z} and wy, := {wy s = (Wi, wor, . .., wne) |t € Z}.

Asn is large, a dynamic factor model approach again naturaligrerthe picture.
If the two panels (2.7) and (2.7) are to be analyzed via gédgreamic factor model techniques,
we need the existence of spectral densities, witAndg,, exploding eigenvalues, respectively.

ASSUMPTION (B1). The second-order momert$s?| and E[w?] are finite for alli € N and, for

all n € N, the spectral densities ef, andw,, are absolutely continuous with respect to the Lebesgue
measure ovef—m, ], that is, s, and w,, admit spectral density matrice&s.,(#) and X,.,(0),
respectively, fo € [—m, 7].

ASSUMPTION(B2).

1. There existg, € N such that the;sth eigenvalue),, .. (6) of Xg.,,(0) diverges asy — oo,
g-a.e. in[—m, ], while the(gs + 1)th one,\g.p, 4. +1(6), is #-a.e. bounded.

2. There existg,, € N such that they,th eigenvalue\y,,, 4., (0) of Xy.,,(6) diverges asr — oo,
g-a.e. in[—m, ], while the(g,, + 1)th one,\y.p, 4., +1(0), is #-a.e. bounded.

As argued in Hallin and Lippi (2014), such an assumption iseeely natural and mild: why
would a data-generating process with “unbounded complexia weird system with increasingly
many exploding dynamic eigenvalues—provide a good appration to the finitetn, T') situation
under study? Assumptions (B1) and (B2) jointly imply thatleaf the two panels of log-volatility
proxies admit a dynamic factor representation witindg,, common shocks, respectively. Barigozzi
and Hallin (2016) show that this is empirically justified tbe financial data considered in this paper,
with, moreovergs = ¢, = 1.

The fact thay;, = ¢, = 1 implies a degenerate block structure which consideraibhpkiies the
analysis described (for generglandg,,) in Hallin and LiSka (2011) and Barigozzi and Hallin (2016):
writing s;; for s;; — E[s;] andwy; for w;; — E[w;:], we have the decompositions

§it = Xsjit + §s;it = ds;i(L)gt + fs;ih (RS N7 te Z7 (28)
ﬁ)it = Xwsit + gw;it = dw;i(L)gt + gw;ih (RS N, te Z, (29)
or, with obvious vector notation,
§n,t = Xsn,t + £s;n,t = Ds;n(L)gt + és;n,ta n e N> te Z> (210)
Vci’n,t = Xwin,t + ﬁw;n,t = Dw;n(L)Et + éw;n,t, n e N, te Z, (211)

such that the same propertigés () of decomposition (2.1) hold. Thg’s here are the linear innova-
tions of thexs., /'s and thexw.,.¢'s.®

Moreover, those univariate shocksnaturally qualify as thenarket volatility shocksand their im-
pact on volatilities (estimation of impulse-response figms, etc.) is studied in detail in Barigozzi and
Hallin (2016). Here instead we focus on the estimation offthe components arising from (2.10)-
(2.11), which we then use for computing multi-period ahealdtlity forecasts for the common and
the idiosyncratic components of each individual stockmetn the original panel.

®That is, the difference betweeg. . : andxs..: and their projections onto their respective pasts—whish abincides
with their projections onto the past @+, Wy ¢ ).



2.2

Estimation

A superscriptl’ is used for estimated quantities, as opposed to populaties.oWhile in Barigozzi
and Hallin (2016) we considered estimation for arbitrargnbers of factors in returns and volatilities,
here we limit ourselves to the simpler case of one factorlipaels as suggested from the empirical
application in Section 4.

221 Step 1. estimating the level-common and level-idiosyncratic shocks

Estimation of the level-common and level-idiosyncratindmations is in six steps.

(i)

(i)

(iii)

(iv)

v)

(Vi)

Start with the lag-window estimator of the spectral dgnsittrix of the returns

T-1

1 kN
T KO
2Y;n(e) = % Z K <B_> e I‘Y;n,kv
k=—T+1 T
whereI‘g;mk =T ZtT:| k41 Yn,tY:17t,| i 1S thekth lag estimated autocovariance of returns

andK(-) a suitable (see Forni et al. (2015a) for details) kernel ioncwith bandwidthBr.
Compute the eigenvectery., | (¢) corresponding t&1., (¢)'s largest eigenvalugy,., | (6).

The estimates of the spectral density matrices of theJemgimon component proceXs, and
the level-idiosyncratic on&,, are p* stands for the transposed complex conjugatp)of

Ei,n(e) = )‘g;n,l(e)pg;n,l(e)pgtn,l(g) and Eg,n(g) = Eg,n(e) - Ei,n(H%
respectively.

By classical inverse Fourier transform B, , (¢), estimate the autocovariancE§ ,, ., k € Z
of the level-common components.

Assuming, for simplicity, that = 2m for somem € N, consider then diagonal2 x 2 blocks of
theT'%.,, ,'s. From each block, estimate (via standard AIC or BIC, thefeXValker methods)
the order, and the coefficients, oRalimensional VAR model. This yields, for thith diagonal
block, an estimatoA ()7 (L) of the autoregressive filtex (") (L) appearing in (2.3), hence an es-
timator A”(L) of A,,(L): putY} := (I, — AT(L)) Y, andTD =771y, YT, YT,

Projecting théN/iT’s onto their first largest static principal component (nbithe first principal
component of[‘gn O) provides an estimate! of the level-common innovation process.

Note that separate identification Hf. andu” such thae! = HZ v is not required (although
possible; see Barigozzi and Hallin, 2016, for details).

The estimator of the idiosyncratic componéty is thenZ” := (I, — AT(L)) YT — el
Fitting a univariate AR model (the order of which identifieid gtandard AIC or BIC methods)
to each of the: components oZ!, denote by’ the resulting: x 1 vector of residuals.

The results of Forni et al. (2015a) establish the consigtersn, T — oo, of all those estimators.
Note that the cross-sectional ordering of the panel has padton the selection of thiedimensional
blocks in stepif). Each cross-sectional permutation of the panel would tealistinct estimatore’
andv’ sharing the same asymptotic properties. These estimatorthen be aggregated into a unique
one by simple averaging (after an obvious reordering ofrtbeimponents). Although considering
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all n! permutations is clearly unfeasible, in practice, as stebby Forni et al. (2015a), a few of them
are enough to deliver stable averages (which therefore atehing the infeasible average overqall
permutations). In Section 4, we repeat staps({/) 100 times over randomly generated permutations.

2.2.2 Step 2: recovering the market volatility shocks

The estimated innovations’ andv! obtained in Step {v)-(vi) are the starting point of the block-
factor analysis of Step 2, itself consisting of two parts.

(viii) From the components @ff andv’, compute the estimated and centered log-volatility prox-
iess! andw! asin (2.7).

(ix) Repeat step§)-(vi) of Section 2.2.1, on then-dimensional joint panehl of centered log-
volatility proxiess? andw? resulting from(viii).” That involves a lag-window estimator

T-1
ET (6) - i Z K k eikeI\T
n;2n T orx My n;2n,k>
k=—T+1

of the 2n x 2n spectral density, wherB?, .= T='3 0 MM x| 1S thekth lag
empirical autocovariance of then x 1 vector of log-volatility proxies and{(-) a suitable
kernel function with bandwidttdZ; which will depend also on the bandwidiby of step(i) of
Section 2.2.1. Stefiv) (performed ornQTm) produces &n-dimensional block-diagonal VAR
operator (withn two-dimensional diagonal blocks) of the fortly, — GI ., (L)). Step(vi)

2n;m
eventually yields estimated common components of the tgtility proxies
T T
X _ H..
Xopon = | o | = (Mon = Gy (@) p” | € (2.12)
Xw;n Hw;n

whereH[,, andHY, ., aren x 1, ands" is scalar. Here again, full identification of the shack
is not required. The estimated idiosyncratic componenthefog-volatility proxies then are

T T T
é’r];Qn =Ny — Xn;Qn‘

As already mentioned, the consistency,naandT tend to infinity, of all estimators derived in
this section is carefully established in Forni et al. (2Q1%#here they are computed from observed
data. Here, those estimators are based on the estimatedltiity proxiess’ andw’ obtained in
Section 2.2.1. A formal consistency proof thus is neededwhiith consistency rates, is the subject
of ongoing research.

3 Forecasting

The factor decomposition (2.8)-(2.9) for thg's andw;;’s yields, for the squared innovations of the
level-common and level-idiosyncratic components, thetiplidative factor models

e =exp (Xt + &t T Elsul), €N, teZ, (3.1)
v, = exp (Xwsit + &wit + E[wir]) ieN, telZ. (3.2)
"Namely,n};, i =1,...,2n is eithers]; or ;. for somej = 1,...,n.

8Due to block-diagonality, inverting the VAR filters only ngiges the inversion of two-dimensional VARs.



Those squared innovations thus each consist of a produatafcomponents (namelyxp xs:it
andexp & for e?t, exp Xw;it andexp &y for vft) and a scale factor. Hence, we have four compo-
nents containing information on volatilities, to be takatoiaccount in the construction of volatility
predictions.

To this end, we propose two approaches. The first one (Setidris entirely based on the factor
models discussed in the previous sections: from these, Vi@ lmear predictors of log-volatility
proxies, to which we apply the exponential transformati¢®4)-(3.2) to compute predictions of
the level-common and level-idiosyncratic squared inriovate?, and v, respectively, that can be
interpreted as squared volatility forecasts.

In the second approach (Section 3.2), we combine our twgesi@neral dynamic factor model
with a heuristic application of GARCH techniqusfter computing the transformations as in (3.1)
and (3.2), we fit a GARCH model on each of the four componeRrtsxs.it, €xp &s:it, €XP Xw:its
andexp &y Details are provided in Sections 3.1 and 3.2; both appemcilong with some com-
petitors, are implemented in the empirical exercise ofiSeet.

3.1 Prediction of squared volatilities (approach 1)

From representations (2.8) and (2.9), and using similatioot as in Section 2.1, we obtain the linear
predictors

k*

Xsiijt+1lt = Prof[xsit+1] = Z ds;i k16—, 1EN, tE€Z, (3.3)
k=0
h*

Xwiit+1lt = PrOf [Xwiit+1] = Z dwih+1€t—n, €N, tE€Z, (3.4)
h=0

where the sums are truncated at some pre-selected1agsi*, and the coefficientss.;;, andd.y.ix
are the coefficients of the impulse-response functidagL) and dy,.;(L), respectively. Up to the
truncation,xs.; +1/¢ @Ndxw;i 11| CONstitute optimal one-period ahead linear predictorterHilbert
spaces spanned up to tim®y log(e?) andlog(v3), of xs.i++1 and xw:i++1. Moreover, when re-
stricted toxs.t+1 Of Xw:+1, the projections in (3.3)-(3.4) also coincide with the patjons onto the
past up to time of (s, ¢, Wy, 1).

Next, with little loss, the idiosyncratic componewts;; and&..;; of the log-volatility proxies can
be modeled separately as univariate AR processes (as wa &ithp 1 of estimation for the level-
idiosyncratic ones). This yields “univariate” linear pigadrs (in the sense of Section 2.1)

f

Csiipri)t = Zws;i,éJrl'fs;i,H, teN, tez, (3.5)
{=0
m;

gw;i,t-i—l\t = Z ww;i,m+1§w;i,t—m7 1€ N7 te Z7 (36)
m=0

where the orderg; andm; are determined, for example, via BIC.

9By heuristicwe mean that we do not impose the assumptions guaranteaingpiisistency or the optimality of the
method hold.
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From (3.3)-(3.5) and (3.4)-(3.6), and using transfornrati@3.1)-(3.2), we construct predictions
of the level-common and level-idiosyncratic squared iranlimnSeZ%tJrl andvithl as

6?,t+1|t = exp (Xsit1)t +Espiprrpe + Elsie]), €N, tel, (3.7)
Ui2,t+1|t ‘= €xp (Xw;i,t+1|t + &wiit1)t E[wit]) , 1EN, tel. (3.8)

In the finite-sample case, when observing a sample of Iefigtr » time series, after replacing
the expectationg&|s;;] and E[w;;] with the corresponding sample means, and the exact coafficie
ds:ij, dwiij, Vs;i; andi)y,.;; With estimated ones, the above expressions yield oneepatiead fore-
castse; 1., ;- andv? 1., , - of squared innovations. Those forecasts can then be renethiito a
single forecast for each individual stock. Indeed, singe andv; ;.1 are mutually orthogonal, it is
natural to add up the predictions:

T 2T 2T L _
Evyiryr = Crpr T Virgyr =1 (3.9)

This approach can of course be straightforwardly genemlia any multi-period ahead forecast.
From Step 2 of estimation, the estimators of the market shecind the coefficientd in (3.3)
and (3.4) are readily available, thus the linear predicf8r3)-(3.4) can be immediately computed. On

the other hand, estimation of thecoefficients in (3.5)-(3.6) requires an additional steining n
univariate estimations. Moreover, since log-volatiit@re known to display long-memaory, a possible
alternative model to consider is the univariate heterogeséR (HAR) model by Corsi (2009) from
which linear predictors can be computed in a very similar.way

Some caveats are in order, though. First, let us recall ¢haand v2 are just squared linear
innovations—not squared deviations from conditional exgigons. Hence, their expectations are not
conditional variances, unless Gaussian assumptionsargstwhite noise assumptions on the noise
driving the AR representations 6f.;; and{y,.;; are made. Moreover, unless a further assumption is
made that idiosyncratic returns are mutually strictly ogbnal,v? only takes into account the uni-
variate past ofZ;;; a similar remark holds fofs.; 41, and&,,.; ;11),- Such assumptions, which are of
the same nature as those underlying classical VARMA-GARGidets, are quite unlikely to hold in
this context, and contradict the spirit of factor model noeith Therefore, we will refrain imposing
them. Second, the optimality propertiesegf;., , - andv? ., , - as predictors of? 7, ; andv? .,
of the linear Ly type, hold in the space of their log-transforms, and do ngiste&xponentiation. For
all those reasons, the forecasts proposed here should biele@ud somewhat heuristic. Heuristic as
they may be, however, their performance quite often apgedrs better than their competitors’ when
dealing with real data: see Section 4.

3.2 Prediction of squared volatilities (approach 2)

The volatility forecasts developed in Section 3.1 are based, features in the space of the log-
transformdog e?,tﬂ andlog Ui2,t+1' As an alternative, one may prefer combining the factor agqin
with GARCH techniques—much in the spirit of the factor GARGtédels considered in the litera-
turet?, but exploiting the more elaborate two-step dynamic faotethod developed here.

For each of the four quantities appearing in (3.1)-(3.2)camthink of a conditional heteroskedas-
tic GARCH dynamic scheme of the form

exp (XS;it) = wS;’itVsz;z'tv exXp (Es;it) - hs;iteg;z’tv (S N7 te Z (310)
€xXp (Xw;z't) = Ww;itygv;z‘ta €xXp (éw;it) = hW;itE%v;it, 1e€N, teZ (3-11)

05ee, for instance, Diebold and Nerlove (1989); Harvey e{1192); Sentana et al. (2008); Hafner and Preminger
(2009).
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with
Pi qi
Wsiit =  Ts;i + Z Ugii k. €XP (Xs;i,t—k) + Z ﬂs;i,éws;i,t—éa (XS Na te Za (312)

k=1 (=1
v} ai

hs;z’t = Cs;it Z Gs:i k. CXP (gs;i,t—k) + Z bs;i,éhs;i,t—éa 1eN, tez, (3.13)
k=1 =1

Di qi
Wwiit = Ywi T+ Z Qi ke €EXP (Xw;i,t—k) + Z ﬂw;i,éww;i,t—b 1eN, tez, (3-14)

k=1 /=1
by 4

hw;it = Cw; + Z Qi ke €XP (gw;i,t—k) + Z bw;i,ﬁhw;i,t—éa (RS N, te Z, (315)
k=1 /=1

where the orderép;, ¢;), (p},q}), (Pi, Gi), and(p;, ¢F) can be determined, for example, via BIC. The
standard GARCH assumptions with the addition of indepecelerf the common and idiosyncratic
components of the volatility panel here would take the form

ASSUMPTION (C). The processess.;, €s.i, Vw:i, €w: are i.i.d. with mean zero and unit variance.
Moreover,vs,; and eg.j, Vw:; and ey.j, Vs;; @and vs.j, V. aNd 1y, €5 andeg.; , and ey,,; and ey,
respectively, are mutually independent at all leads and fag anyi, j € N.

Those assumptions, clearly, are ad hoc: independence pées srunnatural in the 4 framework
of factor models, which are entirely based on second-ordanemts. A heuristic application of the
estimation techniques derived from those assumptionsriiebess yields forecasts that work quite
well, and, in the empirical exercise of Section 4, outperfaill existing methods.

Denote byEX ; the conditional expectation given the past uftil- 1) of X,,: the conditioning
space thus contains the past values of@lls and alleg.;'s. Then, under Assumption (C), (3.1), (3.10),
and the GARCH specifications (3.12)-(3.13), the squaredtiity of the level-common component
is (see (2.4, using Assumption (C) in the derivation of the last equéfity

V)z(;it|t—1 = EX [efr] = X [exp (xssit + Esiit + Elsit])]
= Efil [ws;it’/s;iths;itfz;it] exp(E[sit])
= Wssiths;it EX, [Vsz;iteg;z't] exp(E[sit))
= wgiiths;it exp(E[sy]) 1€N, telZ,. (3.16)

Following the same reasoning, and under the same condit{8®), (3.11), (3.14) and (3.15)
yield, for the squared volatility of the level-idiosynd@atomponent (see (2.6)),

VZQ;z‘t|t—1 = Ethl [vizt] = Wwithwit exp(Elwy]), ie€N, teZ, (3.17)

WhereEtZ_"1 stands for the conditional expectation given the past ntil1) of Z;. This, as explained
in Section 2.1, provides an approximation of the conditi@gectation given the past unfit — 1)
of Z,,—unless of course an unrealistic exact factor structuréi@returns is imposed.

“Note that, by constructionys,;; only depends oms.; ;_«, k > 0; analogouslyhs.i; only depends 0#s.; :_, k > 0.
2without Assumption (C), the teri;~ , [v2,;.¢2.;;] does not disappear.
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When observing a sample of lengihfor n time series, and after replacing expectations with
sample means and parameters with their estimators, thehégtu sides of (3.16) and (3.17) con-
stitute heuristic one-period ahead predictors of squacdatilities which we denote aB’)%;TZ.’T .y
andV;! +17+ As before, these two predictions can be recombined intaguerforecast

2T 12T 2T -
VY;Z-7T+1|T = VX;Z-7T+1|T + Vz;i’T+1‘T, i=1,...,n. (3.18)

This approach of course straightforwardly generalizeswtoraulti-period ahead forecast.

The parameters in (3.12)-(3.15) are classically estimbte@Gaussian Quasi Maximum Likeli-
hood (Bollerslev, 1986) computed from the estimated comerahidiosyncratic components of log-
volatility proxies obtained in Section 2.2.2. Due to the syetry of the standard GARCH model, we
do not need information about the sign of innovations. Orother hand, if we were to consider lever-
age effects and therefore asymmetric GARCH specificatiamsfor instance, the TARCH model by
Zakoian (1994), the sign of the return process would be rikedé¢his case, we could use the sign of
the estimated level-common and level-idiosyncratic neslisl respectively, which are available from
Section 2.2.1.

Let us stress once more that we do not require Assumptiond®@pld, so that our approach
essentially is a heuristic one. An asymptotic study, on teeehof, e.g., Francq and Zakoian (2004)
or Hafner and Preminger (2009), could be performed by immmpn top of (3.10)-(3.11) and (C),
mutually independent;;'s (hence an exact factor structure). Again, such assumgptioe extremely
strong and unrealistic, and are not in line with the spirithef general dynamic factor approach; we
will not make them, and prefer an empirical evaluation of fanecasts. Such evaluation is provided
in Section 4, and looks quite favorable.

4 Forecasting the volatility of S& P100

As an application, we consider the panel of stocks, baseaibnatljusted closing prices, used in the
construction of the Standard & Poor’s 100 (S&P100) indexac8iwe are interested in forecasting
volatilities during the Great Financial Crisis, we limitrostudy to daily log-returns from 26Jan-
uary 2000 to 9 December 2009. We have thus an observation peridzb@d days. Since not all
constituents of the index were traded during the obsenvat@iod, we end up with a panel of= 90
time serieg3

We estimate the factor models for returns and volatilitieslascribed in Section 2.2. In accor-
dance with the results from the Hallin and LiSka (2007) cidte, we sety = ¢; = ¢, = 1. The
VAR orders of the2-dimensional blocks in both estimation steps, and the ARmsrdor the level-
idiosyncratic components are selected by means ofBIC.

From this, as explained in Section 3, we can build forecast&o ways. First, as in Section 3.1,
we compute forecasts of the common and idiosyncratic coemsnof log-volatility proxies. The
truncation lags for the common components forecasts (3.8)-were set t&* = h* = 20, while
for the idiosyncratic components the AR ordéfsandm; in (3.5)-(3.6) were chosen via BIC. Al-
ternatively, we also adopt HAR specifications for all comgruts, thus taking into account possible
long-memory, as suggested by Corsi (2009). We then obtedeésts of squared volatilities according

13The dataset is downloadable from Yahoo Finance and a lisiso§éries used is provided in the Appendix.

Uolatilities are know to display long-memory (see for exadenpindersen et al., 2003); however, as shown in Barigozzi
and Hallin (2016) on the same dataset, the fractional @iffeing parametef seems to be well below 0.5, thus posing no
problem for stationarity.
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TABLE 1: Values of estimated GARCH parameters.

level-common common voIatiIity;ST;it level-common idiosyncratic volatilimgit

i Bai (g +B50) | agi L (ag; +5g,)
0.055 0.939 0.994 0.595 0.317 0.912
(0.015) (0.014) (0.001) (0.274) (0.299) (0.038)

level-idiosyncratic common volatility;vijit level-idiosyncratic idiosyncratic volatilitynait
az;;i 'B\TA;Z (a\’1;7,+'83;1) a‘;z;lz,i b{v,z (afv;i + b{v,z)
0.011 0.597 0.608 0.046 0.923 0.969
(0.013) (0.409) (0.410) (0.046) (0.145) (0.118)

In each row we report the cross-sectional mean and standsaiatidn (in parentheses) of the
estimated parameters of the GARCH models for the conditicaxdances. We also report
the mean and standard deviation of persistences defined aarthof the two parameters.

to the two approaches described in the previous sectionarticplar, we have the combined fore-
castsEST(%T +hj @S defined in (3.9). Multi-period ahead forecast are alsméeéfstraightforwardly.

In a second exercise, we estimate, as in Section 3.2, GARG#¢Imor (3.10)-(3.11). Given a
sample of lengtiT’, we then obtain four sets of estimatog,,, hL,,, wl .., andhl .. GARCH or-
ders are selected by BIC, which mostly yields GARCH(l,i) médThefefore, in Table 1, we report
some descriptive statistics of the estimated parameteeswbnsidering a GARCH(1,1) model for
all series. In particular, it is interesting to look at théues of the cross-sectional average persistence
(defined as the sum of the GARCH parameters) in each panetiofated volatilities. We see that
parameter estimates for the level-common volatilitie§, andh;,, and level-idiosyncratic idiosyn-
cratic voIatiIities,hVTm-t, display the typical behavior of GARCH models with averagesfstence very
close to one. If we look at cross-sectional standard deviatof persistence, the parla?l,;it, which
is idiosyncratic both for levels and volatilities, seembéoquite heterogeneous. On the contrary, the
panelw;f;it, which is common to levels and volatilities, is highly homeogous. Finally, the level-
idiosyncratic common volatility presents an exceptiorthddwer persistence, 0.61 on average, thus
indicating a faster mean reversion in conditional varianih respect to the three other panels.

From (3.12)-(3.15), we build four sets of one-period aheatdasts: wg.; 117, hs;i/ 1)1

Wi, T+1|7» andhy.; 7417 These forecasts are then recombined using (3.16), (3ahd)(3.18),

yiel(_jing the squared volatility foreca@fﬁf’ﬂﬂl. Multi-period ahead forecast are also defined
straightforwardly.
Following standard practice, for each series 1,...,n, we compare conditional variance fore-

casts with the adjusted intra-daily log range, defined bkiRson (1980) as

108 Prgnit — 108 Powsit)®
pit = (10 Prgyit — 108 Pt ;o i=1...n, t=1,....T, (4.1)
4log 2

whereppg it andpiq.:;: denote the maximum and the minimum prices of stook dayt, respectively.

It has been shown by Alizadeh et al. (2002) and Brownlees atld 2010) that theoretically, numer-
ically, and empirically the adjusted intra-daily log rarige highly efficient volatility proxy robust to
microstructure noise and hence at least equally as good essophisticated alternatives such as, for
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example, realized volatilities (Andersen et al., 2003).

We repeat estimation and forecast of the model 500 timeggponding to the 500 days in the
period from 14 December 2007 to"9December 2009, thus including the Great Financial Crisis.
Each forecast is computed from the estimation on a rollinlgpda of T" = 2000 observations. We
considerh-period ahead forecasts with= 1,2, 5, 10. We compute three different forecasts based on
our model:

(i) the squared innovations forecast,; 57, as defined in (3.9) and based on HAR dynamtcs,
(i) the total squared volatility forecaiz’@,i T\ @S defined in (3.18), and

(iii) the market squared volatility forecastys.; 7417 + Ww:i, 7+1/7), Which can be computed di-
rectly from (3.12)-(3.14).

In addition, we also consider the following three competitotodels, taken from the classical
literature:

(iv) componentwise univariate GARCH,
(v) multivariate composite likelihood vech-GARCH, and

(vi) staticfactor GARCH models.

The univariate GARCH iniy) is performed on the residuals of univariate AR models esttixh
on each individual series. The vech-GARCH 1) is estimated by means of composite maximum
likelihood as in Engle et al. (2008) and is the only multiaéei GARCH model able to cope with the
high-dimensionality of the dataset at hand, since claksicaels, as for example BEKK (Engle and
Kroner, 1995) or DCC (Engle, 2002), cannot be estimated maaanable amount of time (conver-
gence of the maximization algorithm of these models moneseems problematic even when based
on a composite likelihood). Finally, the static factor GAR@odel in i) is in the spirit of Diebold
and Nerlove (1989), Van der Weide (2002), Alessi et al. (3088d Aramonte et al. (2013): in a first
step,r factors are extracted by means of static principal compisn@s in Stock and Watson, 2002,
for instance); in a second step, an AR-GARCH model is adjusteach estimated principal compo-
nent!® The number- of static factors is selected by means of the criteria of Bai Bg (2002) or
Alessi et al. (2010); both criteria identify three statievamon factors. However, estimating more than
one factor might imply a larger estimation error in the secetep, and we therefore also consider
the case of a single common factor. Finally, we also estimaieariate AR-GARCH models for the
idiosyncratic component of the static modeél.

We know from Patton (2011) that the use of a conditionallyiaséd, but imperfect, conditional
variance proxy (as the adjusted intra-daily log range usd)ncan lead to undesirable outcomes
in standard methods for comparing conditional variancedasts. To assess the relative forecasting
performances of various methods, a loss function must beechsuch that the ranking of compet-
ing forecasts is robust to the presence of noise in the litgbroxy. The root-mean-squared-error
(RMSE) satisfies this property and, for the total squaredtility forecast (3.18), is defined as

1/2
. i=1,...,n, h=1,2,5,

7—1
1 2
RMSE;(h) = [; > <V32{;i,T+h+t\T+t71 - pi,T+h+t)

t=0

Results based on AR specifications are very similar.

15The results are unaffected if we estimate the model usingdreus versions of Kalman filter proposed by Diebold
and Nerlove (1989), Harvey et al. (1992), and Sentana e2@08).

"Results are very similar when we assume homoskedastig/iticstic components.
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wherep;; is given in (4.1) and- is the out-of-sample size considered.

For all forecasts built from the models listed und@#(vi), we report, in Tables 2, 3, 4, and 5,
RMSEs for the periods 14/12/2007-9/12/2009, 14/12/20002-2/2008 which contains the surge and
the peak of the Great Financial Crisis, and 11/12/2008/20138 which contains the aftermath of the
Crisis. RMSEs are averaged across all 90 series, and adesagass each of the following sectors—
Finance, Energy, Information and Technology, ConsumecrBimonary, Consumer Staples, Health
Care, and Industry. All values are reported relative to tMSE of univariate GARCH forecasts.

TABLE 2: One-period ahead relative RMSEs.

14/12/2007-9/12/2009 Allseries FINA ENER INFT COND CONS AE INDU

X — 0745 0845 0719 0705 0776 0.808 0.759  0.572
2'T

VY%i,T+1\T 0.670 0.703 0.599 0.950 0.664 0.911 0.735 0.390

@I, e +wh i) 0651 0733 0532 0824 0654 0825 0739 0392

static factor GARCH« = 1) 0.964 0.893 0.800 1.346 0.975 1.145 1.101 0.919
static factor GARCH« = 3) 0.963 0.852 0.762 1.431 0.999 1.254 1.150 0.934

vech-GARCH 0778 0764 0.675 0911 0996 1003 0726  0.696
14/12/2007-11/12/2008 Allseries FINA ENER INFT COND CONS EAL INDU

X — 0921 0999 0965 0.828 0971 0993 0.868 0.829
V2T 0828 0814 0804 1130 0830 1115 0.824 0.544

@I ppyr + @8 pyyr) 0782 0830 0704 0961 0807 0941 0791 0535

static factor GARCH« = 1) 0.985 0925 0.816 1317 0.981 1.082 0.993 1.016
static factor GARCH« = 3) 0.992 0.887 0.787 1.405 0.998 1.206 1.047 1.044
vech-GARCH 0.909 0.886 0.898 0.931 1.090 1.052 0.812 0.912

11/12/2008-9/12/2009 Allseries FINA  ENER INFT COND CONS AE INDU

0.494 0.744 0.359 0.217  0.407 0.365 0.329 0.478
0.675 0.793 0.441 0.928 0.548 0.863 0.689  0.529
0.682 0.764 0.458 0.815 0.613 0.872 0.776  0.625

T
v i
2T
Y., T+1|T
T T
(ws;i,T-H\T + ww;i,T+1\T)

static factor GARCH« = 1) 1.008 0.970 0.849 1.370 1.070 1.058 0.971 1.009
static factor GARCH« = 3) 1.015 0.952 0.821 1.438 1.097 1.152 1.030 1.031
vech-GARCH 0.573 0.695 0.360 0.519 0.729 0.654 0.361 0.608

In each row we report, for one-period ahead forecasts, thmge relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: EnergyETNInformation and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health CEN®U: Industrials.

To fully appreciate the performance of the different fostitey methods in Figure 1, we show the
distribution of relative RMSEs across all series and comgbain rolling windows of- = 20 days.

To conclude, in Figures 2 (financial sector) and 3 (otherss}twe compare, for selected stocks,
our one-period ahead total conditional variance foredai%';[gT T with the forecasts resulting from
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TABLE 3: Two-period ahead relative RMSEs.

14/12/2007-9/12/2009 Allseries FINA ENER INFT COND CONS AE INDU
£y ThaT 0616  0.826 0559 0.379 0555 0591 0.561  0.509
Ve riar 0582  0.692 0471 0791 0448 0795 0.615 0.363
Wl pyoyr T Wi rior) 0583 0728 0448 0.654 0456 0752  0.661  0.407
static factor GARCH = 1) 0974 0904 0800 1412 1004 1116 1.081 0.917
static factor GARCH = 3) 0972 0861 0759 1493 1.034 1216 1.136 0.933
vech-GARCH 0671 0756 0518 0655 0.835 0.858 0.562 0.643
14/12/2007-11/12/2008 Allseries FINA  ENER INFT COND CONS EAL INDU

E%.i ool 0597 0675 0.609 0412 0.664 0.609 0.605 0.588
VSl ryar 0597 0511 0546 0951 0557 0.890 0.689  0.419
(Wl pyoyr T Vi rior) 0570 0518 0490 0765 0549 0808  0.710  0.490
static factor GARCH = 1) 0987 0876 0.832 1399 1.048 1054 0972 1.008
static factor GARCH = 3) 0.985  0.807 0796 1478 1073 1165 1.035 1.032
vech-GARCH 0.624 0595 0547 0577 0.862 0.787 0597 0.720
11/12/2008-9/12/2009 Allseries FINA ENER INFT COND CONS AE INDU

Eq.iThaT 0.410  0.638 0304 0218 0353 0.240 0.314 0.379
Ve riar 0615 0700 0396 0.941 0507 0.837 0.665 0.462
(W pyoyr T Wi ryor) 0620 0661 0418 0.801 0565 0849 0748  0.578
static factor GARCH = 1) 0.999 0943 0843 1363 1.068 1.047 0.970 1.009
static factor GARCH = 3) 1.003 0912 0815 1432 1091 1147 1031 1.031
vech-GARCH 0503 0586 0309 0512 0681 0575 0354 0559

In each row we report, for two-period ahead forecasts, tieea@e relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energyt-TNInformation and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health CEN®U: Industrials.

a static factor GARCH model—which, according to the respitsented, seems to be the best com-
petitor. Forecasts are plotted together with the adjustied-daily log range.

Inspection of results reveals that, overall, we tend to editpm all competing models considered
in regard to the total squared volatility forecé@;i,ﬂth and sometimes also when considering the
squared innovations forecasts.; v, 7. In detail, when focussing on different time windows, we
notice that our method strongly outperforms the othersngupieriods of relative quiet in the market
while during crisis it tends to be slightly worse than thetistéactor GARCH model. A possible
explanation could be that, due to the high collinearity aasbér persistence (caused by continuous
and abrupt fluctuations in the market) of the series undesideration during the Financial Crisis, co-
movements can easily explained with just one principal camept as in the static factor GARCH with
one factor. On the other hand, during quieter periods, tleeafidiosyncratic returns and volatilities
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TABLE 4: Five-period ahead relative RMSEs.

14/12/2007-9/12/2009 Allseries FINA  ENER INFT COND CONS AE INDU
T
5}(;%T+5\T 0.908 1.044 0905 0573 0.917 0.991 0.968 0.785

0.828 0.924 0.793 0.838 0.826 0.985 0.893 0.586

VY;i,T+5\T
T 0.782 0.950 0.728 0.639 0.787 0.803 0.800 0.529

T
(ws;i,T+5\T + ww;i,T+5\T)

static factor GARCH« = 1) 0.979 0.920 0.828 1448 0.977 1.129 1.139 0.894
static factor GARCH« = 3) 0.978 0.885 0.785 1.544  0.990 1.231 1.186 0.905
vech-GARCH 0.914 0.952 0.851 0.770 1.028 1.147 0.932 0.857

14/12/2007-11/12/2008 Allseries FINA  ENER INFT COND CONS EAL INDU

1.084 1155 1.145 0.675 1.071 1.196 1.123 1.152
1.010 1.033 1.021 1.057 0.977 1.210 1.059 0.860
0.916 1.032 0905 0.781 0.924 0.903 0.906 0.736

ST

Y i, T+5|T
V2T

3,5 |T .
(ws;i,T+5\T + ww;i,T+5\T)

static factor GARCH« = 1) 1.005 0.956 0.864 1446  0.982 1.064 1.052 0.974
static factor GARCH« = 3) 1.007 0.920 0.823 1.548 0.990 1.176 1.100 0.990

vech-GARCH 1.041 1.054 1.059 0.729 1.094 1.210 1.061 1.166

11/12/2008-9/12/2009 Allseries FINA  ENER INFT COND CONS AME INDU

X 0516 0758 0381 0264 0375 0343 0319 0478

V\2(<TT - 0.647 0.776 0.440 0.866 0.468 0.755 0.609 0.492
T’L, +5|T

WL, s+ @l rysy) 0672 0766 0464 0758 0552 0844 0729  0.605

static factor GARCH« = 1) 1.001 0.961 0.845 1.352 1.059 1.045 0.971 1.001
static factor GARCH« = 3) 1.006 0.941 0.816 1.422 1.082 1.144 1.033 1.016
vech-GARCH 0.580 0.689 0.382 0.520 0.699 0.630 0.352 0.608

In each row we report, for five-period ahead forecasts, tieea@e relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energyt-TNInformation and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health CEN®U: Industrials.

becomes important, and our model seems to better diseatémge dynamics specific to the single
series from those related to the market. Summing up, ouesogsth respect to other models are
limited during periods of high volatility while our gainseaquite substantial in the other periods and
therefore, over all days considered, our approach delavbetter performance both on average across
stocks and for many individual stocks—in patrticular, thedficial ones.

5 Conclusion

In this paper, we propose a two-step general dynamic factthad for the analysis of financial
volatilities in large panels of stock returns. Our focusotighout is to produce measures of squared
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TABLE 5: Ten-period ahead relative RMSEs.

14/12/2007-9/12/2009 Allseries FINA  ENER INFT COND CONS AE INDU
£%. T10/T 0.801 0849 0797 0703 0810 0790 0838 0772
Ve o 0.762 ~ 0.803 0.699 0.899 0.749 0.839 0803  0.649
Wm0/ T Weiiryror) 0739 0804  0.673 0744 0720 0845 0792  0.620
static factor GARCH# = 1) 0.954 0918 0801 1374 0955 1100 1061 0.895
static factor GARCH{ = 3) 0.947  0.884 0757 1455 0974 1178 1095 0.894
vech-GARCH 0.819 0799 0745 0.885 0979 0997 0811 0.826
14/12/2007-11/12/2008 Allseries FINA ENER INFT COND CONS EAL INDU
E%. T 10/T 0.912 0900 0945 0.822 0984 0901 0848 1.041
Ve rior 0.888  0.867 0.847 1.089 0924 0976 0843  0.890
W rir0jr T Weiiryror) 0847 0859 0792 0.890 0887 0930 0812 0.844
static factor GARCH# = 1) 0.972 0945 0.839 1349 0965 1037 0975 0.966
static factor GARCH{ = 3) 0965 0916 0791 1426 0978 1116 1010 0.961
vech-GARCH 0.897 0859 0.871 0.884 1.046 0986 0825 1.043
11/12/2008-9/12/2009 Allseries FINA  ENER INFT COND CONS AE INDU

T
£%.; T10/T 0.406 0646 0271 0192 0284 0313 0336 0.358

& o, T 10|T 0532 0671 0335 0741 0367 0631 0571 0.369
(Wi ryiom t Yesirii0r) 0579 0.668  0.385  0.676 0471 0780 0.700 0522
static factor GARCHA = 1) 0.988 0949 0.824 1333 1.042 1052 0967 0.986
static factor GARCH# = 3) 0.990 0920 0790 1404 1.065 1141 1025 0.998
vech-GARCH 0515 ~ 0.602 0.281 0531 0.682 0.643 0404 0.561

In each row we report, for five-period ahead forecasts, tieea@e relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energyt-TNInformation and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health CEN®U: Industrials.

innovations and of their conditional mean as proxies of seplaolatilities and to produce multi-
period ahead forecasts of the same.

In a previous paper, we showed that the decomposition irdmtaon” and “idiosyncratic” com-
ponent of the returns does not necessarily coincide witltdneesponding decomposition for volatil-
ities, in the sense that level-idiosyncratic componentst s much as the the level-common ones,
are affected by market volatility shocks (Barigozzi andlida016). Here, based on this finding,
we propose a “divide and rule” analysis of volatilities bycdmposing them into four different com-
ponents: common and idiosyncratic of level-common innowatand common and idiosyncratic of
level-idiosyncratic innovations. In Section 4 we show {liat the assets composing the S&P100 in-
dex, GARCH forecasts based on those four components areadjgriztter than univariate and other
factor based forecasts when compared with the adjustetdiaity log range.
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FIGURE 1: Relative RMSEs over the period December 2007— December 2009

L L L L
08 09 10 08 09 10

time time

Median for our model (red) and static factor GARCH with onetda (black) with related 28and 74" percentiles.

The present framework can be extended in many directionstehgial interest in financial econo-
metrics and risk management. In particular, two extensemesunder study: i) the construction
of conditional prediction intervals for returns, providiestimated conditional Value at Risk values,
and (i) the estimation of optimal portfolios in the Markowitz sens

20



TABLE 6: Relative RMSEs for the selected stocks displayed in Figliegsl 3.

static static
factor GARCH factor GARCH
Ticker £ pin Vi rin (r=1) Ticker  EG.rin VesTan (r=1)
h=1
AXP 0.572 0.394 0.871 FDX 0.444 0.319 0.964
BAC 0.710 0.508 0.889 UNP 0.763 0.473 1.170
BK 0.868 0.696 0.847 DELL 0.471 0.285 0.749
C 0.920 0.729 0.853 IBM 0.996 0.853 1.605
GS 0.908 0.745 0.963 MSFT 0.583 0.558 0.764
JPM 0.465 0.313 0.945 DIS 1.072 0.926 1.019
MS 0.693 0.517 0.934 HD 0.830 0.478 1.661
SPG 0.694 0.571 0.668 SBUX 0.568 0.546 1.106
usB 0.689 0.473 0.837 WMT 0.482 0.292 0.719
WFC 0.963 0.687 0.844 COF 0.569 0.345 0.779
h=2
AXP 0.491 0.359 0.920 FDX 0.491 0.381 0.960
BAC 0.740 0.655 0.946 UNP 0.546 0.292 1.220
BK 0.729 0.570 0.941 DELL 0.382 0.238 0.746
C 0.997 0.871 0.866 IBM 0.650 0.743 1.714
GS 0.654 0.445 0.967 MSFT 0.524 0.490 0.741
JPM 0.477 0.368 0.937 DIS 0.398 0.764 1.350
MS 0.772 0.563 0.968 HD 0.364 0.341 1.516
SPG 0.697 0.542 0.580 SBUX 0.311 0.413 1.153
usB 0.428 0.328 0.815 WMT 0.402 0.243 0.724
WFC 0.756 0.550 0.841 COF 0.581 0.382 0.789
h=5
AXP 0.804 0.693 0.880 FDX 0.639 0.490 0.940
BAC 1.024 0.834 0.933 UNP 0.734 0.446 1.166
BK 0.986 0.851 0.935 DELL 0.518 0.361 0.726
C 1.091 0.995 0.909 IBM 1.074 0.910 1.469
GS 0.865 0.700 0.850 MSFT 0.778 0.710 0.772
JPM 0.902 0.779 0.906 DIS 0.440 0.692 1.366
MS 1.199 1.056 0.996 HD 0.985 0.708 1.535
SPG 0.951 0.808 0.745 SBUX 0.456 0.399 1.131
usB 1.056 0.990 0.962 WMT 0.651 0.476 0.706
WFC 1.085 0.903 0.907 COF 0.948 0.785 0.799
h =10
AXP 1.065 0.988 0.883 FDX 0.523 0.451 0.932
BAC 0.722 0.607 0.891 UNP 0.860 0.754 1.068
BK 1.007 0.995 0.997 DELL 0.802 0.693 0.791
C 0.688 0.624 0.846 IBM 0.936 0.873 1.360
GS 0.970 0.938 0.979 MSFT 0.787 0.709 0.740
JPM 0.556 0.473 0.931 DIS 0.832 0.809 1.316
MS 0.998 0.992 0.995 HD 0.908 0.725 1.314
SPG 0.859 0.781 0.753 SBUX 0.760 0.647 1.095
usB 0.719 0.571 0.750 WMT 0.484 0.373 0.712
WFC 0.912 0.794 0.846 COF 0.839 0.709 0.783

For each stock we report, fdr-period ahead forecast with = 1, 2,5, 10, the RMSE (relative to univariate GARCH
forecasts) for our two approaches and for the static fac&RGH model. See the Appendix for tickers’ definitions.

21



FIGURE 2: Squared volatility forecasts — Financial sector.
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One-period ahead forecasts of squared volatility obtafread our model (red) and from a static factor GARCH with one
factor (black) for selected stocks from the financial sectwng with the observed adjusted intra-daily log rangghli
grey). See Appendix for tickers’ definitions.
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FIGURE 3: Squared volatility forecasts — Other sectors.
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One-period ahead forecasts of squared volatility obtafread our model (red) and from a static factor GARCH with one
factor (black) for selected stocks from the financial sectwng with the observed adjusted intra-daily log rangghli
grey). See Appendix for tickers’ definitions.
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A Data

TABLE 7: S&P100 consituents.

Ticker Name

AAPL Apple Inc. HPQ Hewlett Packard Co.

ABT Abbott Laboratories IBM International Business Maaksn
AEP American Electric Power Co. INTC Intel Corporation

AIG American International Group Inc.  IJNJ Johnson & Johnisan

ALL Allstate Corp. JPM JP Morgan Chase & Co.
AMGN  Amgen Inc. KO The Coca-Cola Company
AMZN Amazon.com LLY Eli Lilly and Company

APA Apache Corp. LMT Lockheed-Martin

APC Anadarko Petroleum Corp. LOW Lowe’s

AXP American Express Inc. MCD McDonald’s Corp.

BA Boeing Co. MDT Medstronic Inc.

BAC Bank of America Corp. MMM 3M Company

BAX Baxter International Inc. MO Altria Group

BK Bank of New York MRK Merck & Co.

BMY Bristol-Myers Squibb MS Morgan Stanley

BRK.B Berkshire Hathaway MSFT  Microsoft

C Citigroup Inc. NKE Nike

CAT Caterpillar Inc. NOV National Oilwell Varco

CL Colgate-Palmolive Co. NSC Norfolk Southern Corp.
CMCSA Comcast Corp. ORCL  Oracle Corporation

COF Capital One Financial Corp. OXY Occidental PetroleumnpCo
COP ConocoPhillips PEP Pepsico Inc.

COST Costco PFE Pfizer Inc.

CSCO Cisco Systems PG Procter & Gamble Co.
CvVs CVS Caremark QCOM  Qualcomm Inc.

CVvX Chevron RTN Raytheon Co.

DD DuPont SBUX  Starbucks Corporation
DELL Dell SLB Schlumberger

DIS The Walt Disney Company SO Southern Company
DOW Dow Chemical SPG Simon Property Group, Inc.
DVN Devon Energy T AT&T Inc.

EBAY eBay Inc. TGT Target Corp.

EMC EMC Corporation TWX Time Warner Inc.

EMR Emerson Electric Co. TXN Texas Instruments

EXC Exelon UNH UnitedHealth Group Inc.

F Ford Motor UNP Union Pacific Corp.

FCX Freeport-McMoran UPS United Parcel Service Inc.
FDX FedEx USB US Bancorp

GD General Dynamics UTXx United Technologies Corp.
GE General Electric Co. \/4 Verizon Communications Inc.
GILD Gilead Sciences WAG Walgreens

GS Goldman Sachs WFC Wells Fargo

HAL Halliburton WMB Williams Companies

HD Home Depot WMT Wal-Mart

HON Honeywell XOM Exxon Mobil Corp.
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