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Abstract

In large panels of financial time series with dynamic factor structure on the levels or returns,
the volatilities of the common and idiosyncratic components often exhibit strong correlations,
indicating that both are exposed to the same market volatility shocks. This suggests, alongside
the dynamic factor decomposition of returns, a dynamic factor decomposition of volatilities or
volatility proxies. Based on this observation, Barigozzi and Hallin (2016) proposed an entirely
non-parametric and model-free two-step general dynamic factor approach which accounts for a
joint factor structure of returns and volatilities, and allows for extracting the market volatility
shocks. Here, we go one step further, and show how the same two-step approach naturally pro-
duces volatility forecasts for the various stocks under study. In an applied exercise, we consider
the panel of asset returns of the constituents of the S&P100 index over the period 2000-2009.
Numerical results show that the predictors based on our two-step method outperform existing
univariate and multivariate GARCH methods, as well as static factor GARCH models, in the pre-
diction of daily high–low range—while avoiding the usual problems associated with the curse of
dimensionality.

JEL Classification: C32, C38, C58.

Keywords: Volatility, Dynamic Factor Models, GARCH models.

1 Introduction

Decomposing asset returns and risks or volatilities into acommon, market-driven, component and an
individual, idiosyncraticone, is one of the main issues in financial econometrics, riskmanagement,
and portfolio optimization. Well-known theoretical results such as the Asset Pricing Theorem, indeed,
show that market-driven risks cannot be diversified away, while individual ones can be eliminated
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through portfolio diversification. Some of the first econometric illustrations of this are Connor and
Korajczyk (1986) for returns and Engle and Marcucci (2006) for volatilities.

The very definition of amarket volatilityconcept, however, calls for the analysis of a large num-
ber of individual stocks—typically, a large panel of stock volatility proxies, or a large panel of stock
returns (from which volatility proxies are to be extracted)—large enough that it provides a good pic-
ture of the entire market. Such an analysis unavoidably runsinto the usual challenges associated
with high-dimensional observations—here, moreover, withthe additional complexities of a time se-
ries context, where both auto- and cross-correlations, of all lags, play crucial roles. Since the advent
of the “big data” revolution, the analysis of high-dimensional time series has attracted much interest,
in conjunction with the surge of activity in the estimation of high-dimensional covariance matrices,
and has become one of the most active areas of time series econometrics. A number of procedures
have been proposed, of which the so-calleddynamic factor model methods, under their various forms
(exact, approximate, static, finite/infinite factor spaces, ...) so far have been the most successful.

Essentially, two distinct approaches to the analysis of large panels of volatilities can be found in
the literature:(i) the analysis of directly observed series of volatility proxies, and(ii) the estimation
of conditional heteroskedastic models for returns.

(i) When the panel under study itself is a large panel of volatility proxies (as realized volatilities
or adjusted log-ranges), a factor analysis on such panels isthe common way to cope with high-
dimensionality issues—see Engle and Marcucci (2006), Barigozzi et al. (2014), Luciani and
Veredas (2015), or Ghysels (2014), for recent contributions in that context. But the question
then naturally arises of how those volatility proxies have been obtained (presumably, from some
unreported primitive large panel of returns). Moreover, a direct analysis of volatility proxies
only can tell one part of the story. Indeed, optimizing financial portfolios by minimizing total
risk (variance) and maximizing total return, while also taking into account the existence of
non-diversifiable market-driven components requires ajoint analysis of returnsandvolatilities.

(ii) Multivariate conditionally heteroskedastic models do provide a unified framework for such joint
analysis by defining volatilities as conditional variancesof observed returns. Among those
models are the multivariate stochastic volatility models by Harvey et al. (1994), the GARCH-
DCC model by Engle (2002), and the composite likelihood GARCH models by Engle et al.
(2008),1 to quote only a few. However, being parametric, those modelsall suffer of the “curse of
dimensionality”: estimation, even panels of moderate size, rapidly becomes unfeasible. In order
to overcome this problem, and in agreement with the Capital Asset Pricing Model (CAPM) idea
of a market shock affecting all components of a financial index, factor structures on the returns
have been developed jointly with GARCH modelling for the latent factors: see, for instance, Ng
et al. (1992), Harvey et al. (1992), Diebold and Nerlove (1989), Van der Weide (2002), Connor
et al. (2006), Sentana et al. (2008), or Rangel and Engle (2012). All those factor models,
however, arestatic, and mainly of theexacttype (strictly no idiosyncratic cross-correlations);
thus, they do not fully exploit the time series nature of the data. They cannot account for
idiosyncratic cross-sectional dependencies, which typically do exist in large datasets;2 a fortiori,
they cannot take into account the idiosyncratic contribution to the total volatility.

In both cases, the relation between returns and market volatility remains (fully or partially) un-
explored, hence unexploited. In factor models for volatilities (approach(i)), common factors are

1We refer to the surveys by Bauwens et al. (2006), Asai et al. (2006), and Silvennoinen and Teräsvirta (2009) for
comprehensive reviews of the subject.

2Recently, Fan et al. (2013, 2015) improved on this specific aspect by allowing for sparsity in the idiosyncratic covariance
matrix of returns; but then, they just discard the idiosyncratic contribution to total volatility.
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interpreted as driving “market volatility” but nothing canbe said about their relation to returns, as
returns are not included in the analysis. On the other hand, in conditionally heteroskedastic factor
models for returns (approach(ii) ), volatility factors are typically identified as the conditional standard
errors of the return-common factors—a gross oversimplification, as factor models for returns do not
carry any information on a possible factor structure for volatilities (see Barigozzi and Hallin, 2016,
for details and empirical confirmation).

A global point of view, with a joint analysis of returns and volatilities in a high-dimensional
setting, is therefore highly desirable. Barigozzi and Hallin (2016) propose such an analysis, with a
two-step dynamic factor approach of the problem based on thegeneralor generalized dynamic factor
modelintroduced in Forni et al. (2000): a first dynamic factor model procedure, applied to the panel
of returns, is extracting a (double) panel of volatility proxies which, in a second step, is analyzed via
a second dynamic factor model procedure. Barigozzi and Hallin (2016), however, are focused on the
objective of recovering volatility market shocks. Here, wego one step further, and show how the same
two-step approach, possibly combined with an application of GARCH techniques, naturally produces
forecasts of conditional volatilities.

Now, (conditional) volatilities are commonly defined as the(conditional) standard errors of returns
(conditional on past values). This creates a tension with general dynamic factor models, which are en-
tirely based on L2 projection techniques, hence deviations from best linear predictors rather than from
conditional expectations. These two points of view are usually reconciled (e.g., in ARMA-GARCH
models, cfr. Francq and Zakoian, 2004) by imposing strong white noise assumptions on conditionally
standardized innovations. Such assumptions are highly ad hoc and unrealistic in the high-dimensional
context considered here; moreover, they are quite contraryto the spirit of general dynamic factor mod-
els. Rather than imposing such assumptions, we prefer modifying slightly the concept of (conditional)
volatility, which we throughout define as square roots of (conditional) expectations of squared linear
innovations (that is, squared residuals from L2 projections). In the present context, that definition,
moreover, naturally takes place after the decomposition ofreturns into common and an idiosyncratic
components, yieldingtwo volatilities—one for the common (market-driven) component of returns,
and a second one for the idiosyncratic component. See Sections 2 and 3 for details.

In an applied exercise, we consider the panel of asset returns of the constituents of the S&P100
index from 26th January 2000 through 9th December 2009—a period comprising the recent Great Fi-
nancial Crisis—and compare the forecasts produced by our two-step methods with the few feasible
alternatives available in the literature: univariate and multivariate GARCH and static factor GARCH
models. As a benchmark, we adopt adjusted intra-daily log range, as originally advocated by Parkin-
son (1980), and then also by Alizadeh et al. (2002) and Brownlees and Gallo (2010), among others.
Numerical results on different time windows between 2007 and 2009 indicate that the forecasts based
on our two-step methods outperform, often quite significantly, all their competitors.

The paper is organized as follows. Section 2 presents the two-step general dynamic factor proce-
dure we are proposing. Section 3 deals with the forecasting problem, and Section 4 provides empirical
results for the S&P100 panel. Finally, in Section 5, we conclude and discuss possible extensions.

2 The method

2.1 A two-step general dynamic factor model

The observation we are dealing with is ann × T panel of stock returns or levels, that is, the finite
realization of a double-indexed stochastic process, of theform Y := {Yit| i ∈ N, t ∈ Z}, wheret
stands for time andi for the cross-sectional index identifying the stocks. Thisn × T panel either
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can be considered a collection ofn observed highly interrelated time series (lengthT ), or a unique
observed time series in dimensionn. As bothn andT are “large”,(n, T )-asymptotics, where bothn
andT tend to infinity, are considered throughout.

Let Yn := {Yn,t = (Y1t, Y2t, . . . , Ynt)
′| t ∈ Z} denote then-dimensional subprocess ofY, and

consider the following assumptions.

ASSUMPTION (A1). For all n ∈ N, the vector processYn is strictly stationary, with mean zero and
finite variances.

ASSUMPTION (A2). For all n ∈ N, the spectral measure ofYn is absolutely continuous with re-
spect to the Lebesgue measure on[−π, π], that is, Yn admits a spectral density matrixΣY;n(θ),
θ ∈ [−π, π].

We say thatY admits adynamic factor representationwith q factors ifYit for all i andt decom-
poses into a“common” component{Xit}, and an“idiosyncratic” component{Zit} such that

Yit = Xit + Zit =:

q∑

k=1

bik(L)ukt + Zit, i ∈ N, t ∈ Z, (2.1)

(L, as usual, stands for the lag operator), and

(i) the q-dimensional vector processu := {ut = (u1tu2t . . . uqt)
′| t ∈ Z} is orthonormal zero-

mean white noise;

(ii ) the idiosyncraticn-dimensional processesZn := {Zn,t = (Z1tZ2t . . . Znt)
′| t ∈ Z} are zero-

mean second-order stationary for anyn, with θ-a.e. bounded (asn→ ∞) dynamic eigenvalues;

(iii ) Zkt1 anduht2 are mutually orthogonal for anyk, h, t1 andt2;

(iv) the filtersbik(L) are one-sided and square-summable:
∑∞

m=1 b
2
ikm < ∞ for all i ∈ N and

k = 1, . . . , q;

(v) q is minimal with respect to (i)-(iv).

This actually defines thegeneralor generalizeddynamic factor model (GDFM), of which all other
factor models (in the econometric time series literature) are particular cases; in vector notation, (2.1)
also takes the form

Yn,t = Xn,t + Zn,t = Bn(L)ut + Zn,t, n ∈ N, t ∈ Z. (2.2)

For anyθ ∈ [−π, π], denote byλY;n,1(θ), . . . , λY;n,n(θ) the eigenvalues (in decreasing order of
magnitude) ofΣY;n(θ); the mappingsθ 7→ λY;n,i(θ) areYn’s dynamic eigenvalues. The GDFM
decomposition (2.1) can be identified by means of the following assumption.

ASSUMPTION (A3). For someq ∈ N, the qth dynamic eigenvalue ofΣY;n(θ), λY;n,q(θ), diverges
asn→ ∞, θ-a.e. in[−π, π], while the(q + 1)th one,λY;n,q+1(θ), is θ-a.e. bounded.

More precisely, we know from Forni et al. (2000) and Forni andLippi (2001) that, given As-
sumptions (A1) and (A2), Assumption (A3) is necessary and sufficient for the processY to admit the
dynamic factor representation (2.1).3 Hallin and Lippi (2014) moreover provide very weak primitive
conditions under which (2.1), hence Assumption (A3), holdsfor someq <∞.

3Those references in Assumption (A1) only assume second-order stationarity, though. We are assuming strict stationarity
in order to apply factor model methods to non-linear transformations of theYit’s.
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The decomposition (2.2) ofYn induces (with obvious notation) decompositions

ΓY;n,k = ΓX;n,k + ΓZ;n,k and ΣY;n(θ) = ΣX;n(θ) + ΣZ;n(θ)

of Yn’s cross-covariance and spectral density matricesΓY;n,k := E[Yn,tY
′
n,t−k] andΣY;n(θ), re-

spectively.
SinceYn decomposes into two componentsXn andZn (to avoid confusion in the sequel, we

call them “level-common” and “level-idiosyncratic”), whereXn is driven by theq-tuple {ut} of
commonor market shocks, andZn is orthogonal to the same, two distinct sources of volatility are
to be expected: the volatility originating in the shocks driving the level-common componentsXn

(volatility of level-common components), and the volatility originating in the shocks driving the level-
idiosyncratic componentsZn (volatility of level-idiosyncratic components).

The analysis of volatilities, traditionally, is based on the autocovariance structure of some non-
linear transform of innovation processes–something the factor model decomposition (2.1) at first
sight does not provide. For the common componentXn, however, such residuals can be obtained
from recent results by Forni and Lippi (2011) and Forni et al.(2015b,a). As for the idiosyncratic
componentsZn, since they are only mildly cross-correlated, componentwise residuals, without much
loss of information, can be obtained via univariate AR fitting: (see Forni et al., 2005; Luciani, 2014;
Luciani and Veredas, 2015).4

Assume, without loss of generality and for the simplicity ofnotation, thatn is an integer multiple
of (q+1), that is,n = m(q+1) for somem ∈ N. Forni and Lippi (2011) and Forni et al. (2015b) show
that, under Assumptions (A1)-(A3) and the mild additional condition of a rational spectrum, there
exist anm(q+1)×m(q+1) block-diagonal matrix of one-sided filtersAn(L) withm blocksA(i)(L)
of dimension(q + 1) × (q + 1) such that the VAR operators(In − An(L)) arefundamentalfor Xn,
and a full-rankn× q matrix of constantsHn such thatYn admits a VAR representation of the form

(In −An(L))Yn,t = Hnut + (In − An(L))Zn,t =: Hnut + Z̃n,t, n ∈ N, t ∈ Z, (2.3)

whereZ̃n := (In − An(L))Zn,t is idiosyncratic, i.e. only hasθ-a.e. bounded (asn → ∞) dynamic
eigenvalues.

The form of the extreme-right-hand side of (2.3) is of particular importance. It shows, indeed, that
the filtered panel(In − An(L))Yn,t, where the AR filters inAn(L) can be estimated via(q + 1)-
dimensional AR fitting, admits astatic factor model representation: the common shocksut in (2.3)
indeed are loaded statically via the matrix loadingsHn. Those shocks, their loadings, and theZ̃n,t,’s
therefore can be recovered from the observations by means oftraditional static factor methods—as
described, for instance, by Stock and Watson (2002) or Bai and Ng (2002)—applied to the filtered
panel(In − An(L))Yn,t.

Denote bye := {eit := (Hnut)i| i ∈ N, t ∈ Z} the double-indexed process of those level-
common residuals. Then-dimensional (but singular, being then-dimensional linear transform of
a q-dimensional white noise) subprocessen := Hnu of e is the innovation process ofYn’s common
componentXn, hence is zero-mean second-order white noise. Here and throughout,linear innovation
or innovationis to be understood in a linear, L2 context:en is thus the difference betweenXn and its
projection onto its own past—which coincides with its projection onto the past ofYn sinceZn (hence
alsoZ̃n) is orthogonal (all leads and lags) toXn:

eit := Xit − ProjXt−1[Xit], i ∈ N, t ∈ Z,

4Sparse VAR fitting is a feasible alternative, which we did notconsider here.
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where the notation ProjX

t−1 denotes projection onto the Hilbert space spanned up to time(t − 1) by
theXnt’s (equivalently, the Hilbert space spanned up to time(t− 1) by u or byen). The conditional
expectation ofe2it is what we define here as the squared volatility of level-common componentXit:

V 2
X;it|t−1 := E[e2it|Xn,t−1 . . . ] (2.4)

= E[e2it|ut−1 . . . ] = E[e2it|en,t−1 . . . ] 1 ≤ i ≤ n, n ∈ N, t ∈ Z.

Note that (in the absence of further assumptions)V 2
X;it|t−1 here is not a conditional variance, as the

conditional mean ofeit, unlike the unconditional one, needs not be zero. Nor is it anexpectation
conditional on the past ofYn—unlessXn andZn are assumed to be independent (which is the type
of assumption the AR-(G)ARCH literature typically makes).Nevertheless, being the square root of
the conditional expectation of the squared deviation ofXit from its best L2 predictor,VX;it|t−1, in
the L2 context of dynamic factor models, fully qualifies as a volatility concept.

As for theZ̃it’s, being idiosyncratic, they are only mildly cross-correlated, and a componentwise
residual analysis only overlooks negligible information.We therefore assume, for each{Z̃it| t ∈ Z},
a univariate AR representation, of the form

(
1 − ci(L)

)
Z̃it = vit, i ∈ N, t ∈ Z, (2.5)

where the AR filtersci(L) are one-sided, square-summable, and such that the roots ofc(z) = 0 all
lie outside the unit disc.5 Denote byv := {vit| i ∈ N, t ∈ Z} the corresponding double-indexed
process of residuals: thevit’s are zero-mean second-order white noise, and constitute the univariate
innovations of the level-idiosyncratic componentsZ̃it. The correspondingn-dimensional subprocess
is denoted asvn := {vnt = (v1t, v2t, . . . , vnt)

′| t ∈ Z}. By univariate innovationhere, we mean
that{vit} is the (linear) innovation of̃Zit considered as a univariate process, the past of which, typi-
cally, is a strict subspace of that ofZ̃n,t

vit := Z̃it − Proj
eZi

t−1[Z̃it] i ∈ N, t ∈ Z,

where the notation Proj
eZi

t−1 denotes projection onto the Hilbert space spanned up to time(t − 1) by

the Z̃it’s. The conditional (on the past until(t − 1) of Z̃it) expectation ofv2
it is what we define here

as the squared volatility ofYit’s idiosyncratic component

V 2
Z;it|t−1 := E[v2

it|Z̃i,t−1 . . . ] = E[v2
it|vi,t−1 . . . ], i ∈ N, t ∈ Z. (2.6)

Actually, that squared volatility is an approximation to the expectation ofv2
it conditional on the

past until(t− 1) of then-dimensional vector process̃Zn.
At this point, one could think of recombining the two mutually orthogonal shocks affecting each

individual return, and proceed with a volatility analysis of then × T panel of(eit + vit)’s. Merging
those two sources of volatility is not good statistical practice, though, as the couples(eit, vit) clearly
carry more information than the sums(eit + vit). As in Barigozzi and Hallin (2016), we therefore
proceed with a joint volatility analysis of thetwon× T panels at hand.

Classical volatility analyses are based on the autocovariance structure of volatility proxies—some
non-linear transform of the residuals resulting from some second-order fit. Define, for any fixedi ∈ N,
the level-common and level-idiosyncratic log-volatilityproxies

sit := log(e2it) and wit := log(v2
it), i ∈ N, t ∈ Z. (2.7)

5Sparse or low-dimensional VAR representations are also a possibility.
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The advantage of logarithmic proxies over squared residuals lies in the fact that they can be analyzed
via additive factor models without imposing any tricky positivity constraints (see also Engle and
Marcucci, 2006, for a similar definition).

Just as the original observations, thesit’s andwit’s constitute double-indexed processess andw,
hence, for finiten andT , twon× T panels

sn := {sn,t = (s1t, s2t, . . . , snt)
′| t ∈ Z} and wn := {wn,t = (w1t, w2t, . . . , wnt)

′| t ∈ Z}.

As n is large, a dynamic factor model approach again naturally enters the picture.
If the two panels (2.7) and (2.7) are to be analyzed via general dynamic factor model techniques,

we need the existence of spectral densities, withqs andqw exploding eigenvalues, respectively.

ASSUMPTION (B1). The second-order momentsE[s2it] and E[w2
it] are finite for all i ∈ N and, for

all n ∈ N, the spectral densities ofsn andwn are absolutely continuous with respect to the Lebesgue
measure over[−π, π], that is, sn and wn admit spectral density matrices,Σs;n(θ) and Σw;n(θ),
respectively, forθ ∈ [−π, π].

ASSUMPTION (B2).

1. There existsqs ∈ N such that theqsth eigenvalueλs;n,qs(θ) of Σs;n(θ) diverges asn → ∞,
θ-a.e. in[−π, π], while the(qs + 1)th one,λs;n,qs+1(θ), is θ-a.e. bounded.

2. There existsqw ∈ N such that theqwth eigenvalueλw;n,qw(θ) of Σw;n(θ) diverges asn → ∞,
θ-a.e. in[−π, π], while the(qw + 1)th one,λw;n,qw+1(θ), is θ-a.e. bounded.

As argued in Hallin and Lippi (2014), such an assumption is extremely natural and mild: why
would a data-generating process with “unbounded complexity”—a weird system with increasingly
many exploding dynamic eigenvalues—provide a good approximation to the finite-(n, T ) situation
under study? Assumptions (B1) and (B2) jointly imply that each of the two panels of log-volatility
proxies admit a dynamic factor representation withqs andqw common shocks, respectively. Barigozzi
and Hallin (2016) show that this is empirically justified forthe financial data considered in this paper,
with, moreover,qs = qw = 1.

The fact thatqs = qw = 1 implies a degenerate block structure which considerably simplifies the
analysis described (for generalqs andqw) in Hallin and Liška (2011) and Barigozzi and Hallin (2016):
writing s̊it for sit − E[sit] andẘit for wit − E[wit], we have the decompositions

s̊it = χs;it + ξs;it = ds;i(L)εt + ξs;it, i ∈ N, t ∈ Z, (2.8)

ẘit = χw;it + ξw;it = dw;i(L)εt + ξw;it, i ∈ N, t ∈ Z, (2.9)

or, with obvious vector notation,

s̊n,t = χs;n,t + ξs;n,t = Ds;n(L)εt + ξs;n,t, n ∈ N, t ∈ Z, (2.10)

ẘn,t = χw;n,t + ξw;n,t = Dw;n(L)εt + ξw;n,t, n ∈ N, t ∈ Z, (2.11)

such that the same properties (i)-(v) of decomposition (2.1) hold. Theεt’s here are the linear innova-
tions of theχs;n,t’s and theχw;n,t’s.6

Moreover, those univariate shocksεt naturally qualify as themarket volatility shocks, and their im-
pact on volatilities (estimation of impulse-response functions, etc.) is studied in detail in Barigozzi and
Hallin (2016). Here instead we focus on the estimation of thefour components arising from (2.10)-
(2.11), which we then use for computing multi-period ahead volatility forecasts for the common and
the idiosyncratic components of each individual stock return in the original panel.

6That is, the difference betweenχs;n,t andχs;n,t and their projections onto their respective pasts—which also coincides
with their projections onto the past of(sn,t,wn,t).
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2.2 Estimation

A superscriptT is used for estimated quantities, as opposed to population ones. While in Barigozzi
and Hallin (2016) we considered estimation for arbitrary numbers of factors in returns and volatilities,
here we limit ourselves to the simpler case of one factor in all panels as suggested from the empirical
application in Section 4.

2.2.1 Step 1: estimating the level-common and level-idiosyncratic shocks

Estimation of the level-common and level-idiosyncratic innovations is in six steps.

(i) Start with the lag-window estimator of the spectral density matrix of the returns

ΣT
Y;n(θ) :=

1

2π

T−1∑

k=−T+1

K

(
k

BT

)
eikθΓT

Y;n,k,

whereΓT
Y;n,k := T−1

∑T
t=|k|+1 Yn,tY

′
n,t−|k| is thekth lag estimated autocovariance of returns

andK(·) a suitable (see Forni et al. (2015a) for details) kernel function with bandwidthBT .
Compute the eigenvectorpT

Y;n,1(θ) corresponding toΣT
Y;n(θ)’s largest eigenvalueλT

Y;n,1(θ).

(ii ) The estimates of the spectral density matrices of the level-common component processXn and
the level-idiosyncratic oneZn are (p∗ stands for the transposed complex conjugate ofp)

ΣT
X;n(θ) := λT

Y;n,1(θ)p
T
Y;n,1(θ)p

T∗
Y;n,1(θ) and ΣT

Z;n(θ) := ΣT
Y;n(θ) − ΣT

X;n(θ),

respectively.

(iii ) By classical inverse Fourier transform ofΣT
X;n(θ), estimate the autocovariancesΓT

X;n,k, k ∈ Z

of the level-common components.

(iv) Assuming, for simplicity, thatn = 2m for somem ∈ N, consider them diagonal2×2 blocks of
theΓT

X;n,k’s. From each block, estimate (via standard AIC or BIC, then Yule-Walker methods)
the order, and the coefficients, of a2-dimensional VAR model. This yields, for theith diagonal
block, an estimatorA(i)T (L) of the autoregressive filterA(i)(L) appearing in (2.3), hence an es-
timatorAT

n (L) of An(L): put ỸT
n :=

(
In − AT

n (L)
)
Yn andΓT

Ỹ;n,0
:= T−1

∑T
t=1 ỸT

n,tỸ
T ′

n,t.

(v) Projecting thẽY T
i ’s onto their first largest static principal component (namely, the first principal

component ofΓT
Ỹ;n,0

) provides an estimateeT
n of the level-common innovation processen.

Note that separate identification ofHT
n anduT such thateT

n = HT
nu

T is not required (although
possible; see Barigozzi and Hallin, 2016, for details).

(vi) The estimator of the idiosyncratic componentZ̃n is then Z̃T
n :=

(
In − AT

n (L)
)
YT

n − eT
n .

Fitting a univariate AR model (the order of which identified via standard AIC or BIC methods)
to each of then components of̃ZT

n , denote byvT
n the resultingn× 1 vector of residuals.

The results of Forni et al. (2015a) establish the consistency, asn, T → ∞, of all those estimators.
Note that the cross-sectional ordering of the panel has an impact on the selection of the2-dimensional
blocks in step (iv). Each cross-sectional permutation of the panel would leadto distinct estimatorseT

n

andvT
n sharing the same asymptotic properties. These estimators can then be aggregated into a unique

one by simple averaging (after an obvious reordering of their components). Although considering
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all n! permutations is clearly unfeasible, in practice, as stressed by Forni et al. (2015a), a few of them
are enough to deliver stable averages (which therefore are matching the infeasible average over alln!
permutations). In Section 4, we repeat steps (iv)-(v) 100 times over randomly generated permutations.

2.2.2 Step 2: recovering the market volatility shocks

The estimated innovationseT
n andvT

n obtained in Step 1(v)-(vi) are the starting point of the block-
factor analysis of Step 2, itself consisting of two parts.

(viii ) From the components ofeT
n andvT

n , compute the estimated and centered log-volatility prox-
ies s̊T

n andẘT
n as in (2.7).

(ix) Repeat steps(i)-(vi) of Section 2.2.1, on the2n-dimensional joint panelηT
2n of centered log-

volatility proxies̊sT
n andẘT

n resulting from(viii) .7 That involves a lag-window estimator

ΣT
η;2n(θ) :=

1

2π

T−1∑

k=−T+1

K

(
k

MT

)
eikθΓT

η;2n,k,

of the 2n × 2n spectral density, whereΓT
η;2n,k := T−1

∑T
t=|k|+1 ηT

2n,tη
T ′
2n,t−|k| is thekth lag

empirical autocovariance of the2n × 1 vector of log-volatility proxies andK(·) a suitable
kernel function with bandwidthMT which will depend also on the bandwidthBT of step(i) of
Section 2.2.1. Step(iv) (performed onηT

2n,t) produces a2n-dimensional block-diagonal VAR
operator (withn two-dimensional diagonal blocks) of the form(I2n − GT

2n;η(L)). Step(vi)
eventually yields estimated common components of the log-volatility proxies8

χT
η;2n =

(
χT

s;n

χT
w;n

)
:= (I2n − GT

2n;η(L))−1

(
HT

s;n

HT
w;n

)
εT , (2.12)

whereHT
s;n andHT

w;n aren×1, andεT is scalar. Here again, full identification of the shockεT

is not required. The estimated idiosyncratic components ofthe log-volatility proxies then are

ξT
η;2n := ηT

2n − χT
η;2n.

As already mentioned, the consistency, asn andT tend to infinity, of all estimators derived in
this section is carefully established in Forni et al. (2015a), where they are computed from observed
data. Here, those estimators are based on the estimated log-volatility proxiessT

n andwT
n obtained in

Section 2.2.1. A formal consistency proof thus is needed which, with consistency rates, is the subject
of ongoing research.

3 Forecasting

The factor decomposition (2.8)-(2.9) for thesit’s andwit’s yields, for the squared innovations of the
level-common and level-idiosyncratic components, the multiplicative factor models

e2it = exp (χs;it + ξs;it + E[sit]) , i ∈ N, t ∈ Z, (3.1)

v2
it = exp (χw;it + ξw;it + E[wit]) , i ∈ N, t ∈ Z. (3.2)

7Namely,ηT
it, i = 1, . . . , 2n is either̊sT

jt or ẘjt for somej = 1, . . . , n.
8Due to block-diagonality, inverting the VAR filters only requires the inversion of two-dimensional VARs.
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Those squared innovations thus each consist of a product of two components (namely,expχs;it

andexp ξs;it for e2it, expχw;it andexp ξw;it for v2
it) and a scale factor. Hence, we have four compo-

nents containing information on volatilities, to be taken into account in the construction of volatility
predictions.

To this end, we propose two approaches. The first one (Section3.1) is entirely based on the factor
models discussed in the previous sections: from these, we build linear predictors of log-volatility
proxies, to which we apply the exponential transformations(3.1)-(3.2) to compute predictions of
the level-common and level-idiosyncratic squared innovations e2it andv2

it, respectively, that can be
interpreted as squared volatility forecasts.

In the second approach (Section 3.2), we combine our two-stage general dynamic factor model
with a heuristic application of GARCH techniques:9after computing the transformations as in (3.1)
and (3.2), we fit a GARCH model on each of the four componentsexpχs;it, exp ξs;it, expχw;it,
andexp ξw;it. Details are provided in Sections 3.1 and 3.2; both approaches, along with some com-
petitors, are implemented in the empirical exercise of Section 4.

3.1 Prediction of squared volatilities (approach 1)

From representations (2.8) and (2.9), and using similar notation as in Section 2.1, we obtain the linear
predictors

χs;i,t+1|t := Projεt [χs;i,t+1] =
k∗∑

k=0

ds;i,k+1εt−k, i ∈ N, t ∈ Z, (3.3)

χw;i,t+1|t := Projεt [χw;i,t+1] =
h∗∑

h=0

dw;i,h+1εt−h, i ∈ N, t ∈ Z, (3.4)

where the sums are truncated at some pre-selected lagsk∗ andh∗, and the coefficientsds;ik anddw;ik

are the coefficients of the impulse-response functionsds;i(L) anddw;i(L), respectively. Up to the
truncation,χs;i,t+1|t andχw;i,t+1|t constitute optimal one-period ahead linear predictors, inthe Hilbert
spaces spanned up to timet by log(e2it) and log(v2

it), of χs;i,t+1 andχw;i,t+1. Moreover, when re-
stricted toχs;t+1 or χw;t+1, the projections in (3.3)-(3.4) also coincide with the projections onto the
past up to timet of (sn,t,wn,t).

Next, with little loss, the idiosyncratic componentsξs;it andξw;it of the log-volatility proxies can
be modeled separately as univariate AR processes (as we did in Step 1 of estimation for the level-
idiosyncratic ones). This yields “univariate” linear predictors (in the sense of Section 2.1)

ξs;i,t+1|t =

ℓ∗i∑

ℓ=0

ψs;i,ℓ+1ξs;i,t−ℓ, i ∈ N, t ∈ Z, (3.5)

ξw;i,t+1|t =

m∗
i∑

m=0

ψw;i,m+1ξw;i,t−m, i ∈ N, t ∈ Z, (3.6)

where the ordersℓ∗i andm∗
i are determined, for example, via BIC.

9By heuristicwe mean that we do not impose the assumptions guaranteeing the consistency or the optimality of the
method hold.
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From (3.3)-(3.5) and (3.4)-(3.6), and using transformations (3.1)-(3.2), we construct predictions
of the level-common and level-idiosyncratic squared innovationse2i,t+1 andv2

i,t+1 as

e2i,t+1|t := exp
(
χs;i,t+1|t + ξs;i,t+1|t + E[sit]

)
, i ∈ N, t ∈ Z, (3.7)

v2
i,t+1|t := exp

(
χw;i,t+1|t + ξw;i,t+1|t + E[wit]

)
, i ∈ N, t ∈ Z. (3.8)

In the finite-sample case, when observing a sample of lengthT for n time series, after replacing
the expectationsE[sit] andE[wit] with the corresponding sample means, and the exact coefficients
ds;ij , dw;ij , ψs;ij andψw;ij with estimated ones, the above expressions yield one-period ahead fore-
castse2 T

i,T+1|T andv2 T
i,T+1|T of squared innovations. Those forecasts can then be recombined into a

single forecast for each individual stock. Indeed, sinceei,t+1 andvi,t+1 are mutually orthogonal, it is
natural to add up the predictions:

ET
Y;i,T+1|T := e2 T

i,T+1|T + v2 T
i,T+1|T , i = 1, . . . , n. (3.9)

This approach can of course be straightforwardly generalized to any multi-period ahead forecast.
From Step 2 of estimation, the estimators of the market shocks εt and the coefficientsd in (3.3)

and (3.4) are readily available, thus the linear predictors(3.3)-(3.4) can be immediately computed. On
the other hand, estimation of theψ coefficients in (3.5)-(3.6) requires an additional step involving n
univariate estimations. Moreover, since log-volatilities are known to display long-memory, a possible
alternative model to consider is the univariate heterogeneous AR (HAR) model by Corsi (2009) from
which linear predictors can be computed in a very similar way.

Some caveats are in order, though. First, let us recall thate2it and v2
it are just squared linear

innovations—not squared deviations from conditional expectations. Hence, their expectations are not
conditional variances, unless Gaussian assumptions or strong white noise assumptions on the noise
driving the AR representations ofξs;it andξw;it are made. Moreover, unless a further assumption is
made that idiosyncratic returns are mutually strictly orthogonal,v2

it only takes into account the uni-
variate past ofZit; a similar remark holds forξs;i,t+1|t andξw;i,t+1|t. Such assumptions, which are of
the same nature as those underlying classical VARMA-GARCH models, are quite unlikely to hold in
this context, and contradict the spirit of factor model methods. Therefore, we will refrain imposing
them. Second, the optimality properties ofe2i,T+1|T andv2

i,T+1|T as predictors ofe2i,T+1 andv2
i,T+1,

of the linear L2 type, hold in the space of their log-transforms, and do not resist exponentiation. For
all those reasons, the forecasts proposed here should be considered somewhat heuristic. Heuristic as
they may be, however, their performance quite often appearsto be better than their competitors’ when
dealing with real data: see Section 4.

3.2 Prediction of squared volatilities (approach 2)

The volatility forecasts developed in Section 3.1 are basedon L2 features in the space of the log-
transformslog e2i,t+1 andlog v2

i,t+1. As an alternative, one may prefer combining the factor approach
with GARCH techniques—much in the spirit of the factor GARCHmodels considered in the litera-
ture10, but exploiting the more elaborate two-step dynamic factormethod developed here.

For each of the four quantities appearing in (3.1)-(3.2), wecan think of a conditional heteroskedas-
tic GARCH dynamic scheme of the form

exp (χs;it) = ωs;itν
2
s;it, exp (ξs;it) = hs;itǫ

2
s;it, i ∈ N, t ∈ Z (3.10)

exp (χw;it) = ωw;itν
2
w;it, exp (ξw;it) = hw;itǫ

2
w;it, i ∈ N, t ∈ Z (3.11)

10See, for instance, Diebold and Nerlove (1989); Harvey et al.(1992); Sentana et al. (2008); Hafner and Preminger
(2009).
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with

ωs;it = γs;i +

pi∑

k=1

αs;i,k exp (χs;i,t−k) +

qi∑

ℓ=1

βs;i,ℓωs;i,t−ℓ, i ∈ N, t ∈ Z, (3.12)

hs;it = cs;i +

p∗i∑

k=1

as;i,k exp (ξs;i,t−k) +

q∗i∑

ℓ=1

bs;i,ℓhs;i,t−ℓ, i ∈ N, t ∈ Z, (3.13)

ωw;it = γw;i +

p̃i∑

k=1

αw;i,k exp (χw;i,t−k) +

q̃i∑

ℓ=1

βw;i,ℓωw;i,t−ℓ, i ∈ N, t ∈ Z, (3.14)

hw;it = cw;i +

p̃∗i∑

k=1

aw;i,k exp (ξw;i,t−k) +

q̃∗i∑

ℓ=1

bw;i,ℓhw;i,t−ℓ, i ∈ N, t ∈ Z, (3.15)

where the orders(pi, qi), (p∗i , q
∗
i ), (p̃i, q̃i), and(p̃∗i , q̃

∗
i ) can be determined, for example, via BIC. The

standard GARCH assumptions with the addition of independence of the common and idiosyncratic
components of the volatility panel here would take the form

ASSUMPTION (C). The processesνs;i, ǫs;i, νw;i, ǫw;i are i.i.d. with mean zero and unit variance.
Moreover,νs;i and ǫs;j, νw;i and ǫw;j, νs;i andνs;j, νw;i andνw;j, ǫs;i and ǫs;j , andǫw;i and ǫw;j,
respectively, are mutually independent at all leads and lags for anyi, j ∈ N.

Those assumptions, clearly, are ad hoc: independence, as a rule, is unnatural in the L2 framework
of factor models, which are entirely based on second-order moments. A heuristic application of the
estimation techniques derived from those assumptions nevertheless yields forecasts that work quite
well, and, in the empirical exercise of Section 4, outperform all existing methods.

Denote byEX
t−1 the conditional expectation given the past until(t − 1) of Xn: the conditioning

space thus contains the past values of allνs;i’s and allǫs;i’s. Then, under Assumption (C), (3.1), (3.10),
and the GARCH specifications (3.12)-(3.13), the squared volatility of the level-common component
is (see (2.4))11, using Assumption (C) in the derivation of the last equality12,

V 2
X;it|t−1 := E

X

t−1

[
e2it
]

= E
X

t−1 [exp (χs;it + ξs;it + E[sit])]

= E
X

t−1

[
ωs;itν

2
s;iths;itǫ

2
s;it

]
exp(E[sit])

= ωs;iths;it E
X

t−1

[
ν2
s;itǫ

2
s;it

]
exp(E[sit])

= ωs;iths;it exp(E[sit]) i ∈ N, t ∈ Z, . (3.16)

Following the same reasoning, and under the same conditions, (3.2), (3.11), (3.14) and (3.15)
yield, for the squared volatility of the level-idiosyncratic component (see (2.6)),

V 2
Z;it|t−1 := E

eZi

t−1

[
v2
it

]
= ωw;ithw;it exp(E[wit]), i ∈ N, t ∈ Z, (3.17)

whereE
eZi

t−1 stands for the conditional expectation given the past until(t−1) of Z̃i. This, as explained
in Section 2.1, provides an approximation of the conditional expectation given the past until(t − 1)
of Z̃n—unless of course an unrealistic exact factor structure forthe returns is imposed.

11Note that, by construction,ωs;it only depends onνs;i,t−k, k > 0; analogously,hs;it only depends onǫs;i,t−k, k > 0.
12Without Assumption (C), the termEX

t−1[ν
2
s;itǫ

2
s;it] does not disappear.
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When observing a sample of lengthT for n time series, and after replacing expectations with
sample means and parameters with their estimators, the right-hand sides of (3.16) and (3.17) con-
stitute heuristic one-period ahead predictors of squared volatilities which we denote asV 2 T

X;i,T+1|T

andV 2 T
Z;i,T+1|T . As before, these two predictions can be recombined into a unique forecast

V 2 T
Y;i,T+1|T := V 2 T

X;i,T+1|T + V 2 T
Z;i,T+1|T , i = 1, . . . , n. (3.18)

This approach of course straightforwardly generalizes to any multi-period ahead forecast.
The parameters in (3.12)-(3.15) are classically estimatedby Gaussian Quasi Maximum Likeli-

hood (Bollerslev, 1986) computed from the estimated commonand idiosyncratic components of log-
volatility proxies obtained in Section 2.2.2. Due to the symmetry of the standard GARCH model, we
do not need information about the sign of innovations. On theother hand, if we were to consider lever-
age effects and therefore asymmetric GARCH specifications,as, for instance, the TARCH model by
Zakoian (1994), the sign of the return process would be needed; in this case, we could use the sign of
the estimated level-common and level-idiosyncratic residuals, respectively, which are available from
Section 2.2.1.

Let us stress once more that we do not require Assumption (C) to hold, so that our approach
essentially is a heuristic one. An asymptotic study, on the model of, e.g., Francq and Zakoian (2004)
or Hafner and Preminger (2009), could be performed by imposing, on top of (3.10)-(3.11) and (C),
mutually independentvit’s (hence an exact factor structure). Again, such assumptions are extremely
strong and unrealistic, and are not in line with the spirit ofthe general dynamic factor approach; we
will not make them, and prefer an empirical evaluation of ourforecasts. Such evaluation is provided
in Section 4, and looks quite favorable.

4 Forecasting the volatility of S&P100

As an application, we consider the panel of stocks, based on daily adjusted closing prices, used in the
construction of the Standard & Poor’s 100 (S&P100) index. Since we are interested in forecasting
volatilities during the Great Financial Crisis, we limit our study to daily log-returns from 26th Jan-
uary 2000 to 9th December 2009. We have thus an observation period of2500 days. Since not all
constituents of the index were traded during the observation period, we end up with a panel ofn = 90
time series.13

We estimate the factor models for returns and volatilities as described in Section 2.2. In accor-
dance with the results from the Hallin and Liška (2007) criterion, we setq = qs = qw = 1. The
VAR orders of the2-dimensional blocks in both estimation steps, and the AR orders for the level-
idiosyncratic components are selected by means of BIC.14

From this, as explained in Section 3, we can build forecasts in two ways. First, as in Section 3.1,
we compute forecasts of the common and idiosyncratic components of log-volatility proxies. The
truncation lags for the common components forecasts (3.3)-(3.4) were set tok∗ = h∗ = 20, while
for the idiosyncratic components the AR ordersℓ∗i andm∗

i in (3.5)-(3.6) were chosen via BIC. Al-
ternatively, we also adopt HAR specifications for all components, thus taking into account possible
long-memory, as suggested by Corsi (2009). We then obtain forecasts of squared volatilities according

13The dataset is downloadable from Yahoo Finance and a list of the series used is provided in the Appendix.
14Volatilities are know to display long-memory (see for example Andersen et al., 2003); however, as shown in Barigozzi

and Hallin (2016) on the same dataset, the fractional differencing parameterd seems to be well below 0.5, thus posing no
problem for stationarity.
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TABLE 1: Values of estimated GARCH parameters.

level-common common volatilityωT
s;it level-common idiosyncratic volatilityhT

s;it

αT
s;i βT

s;i (αT
s;i + βT

s;i) aT
s;i bT

s;i (aT
s;i + bT

s;i)

0.055 0.939 0.994 0.595 0.317 0.912
(0.015) (0.014) (0.001) (0.274) (0.299) (0.038)

level-idiosyncratic common volatilityωT
w;it level-idiosyncratic idiosyncratic volatilityhT

w;it

αT
w;i βT

w;i (αT
w;i +βT

w;i) aT
w;i bT

w;i (aT
w;i + bT

w;i)

0.011 0.597 0.608 0.046 0.923 0.969
(0.013) (0.409) (0.410) (0.046) (0.145) (0.118)

In each row we report the cross-sectional mean and standard deviation (in parentheses) of the
estimated parameters of the GARCH models for the conditional variances. We also report
the mean and standard deviation of persistences defined as the sum of the two parameters.

to the two approaches described in the previous section. In particular, we have the combined fore-
castsET

Y;i,T+h|T as defined in (3.9). Multi-period ahead forecast are also defined straightforwardly.
In a second exercise, we estimate, as in Section 3.2, GARCH models for (3.10)-(3.11). Given a

sample of lengthT , we then obtain four sets of estimators,ωT
s;it, h

T
s;it, ω

T
w;it, andhT

w;it. GARCH or-
ders are selected by BIC, which mostly yields GARCH(1,1) models. Therefore, in Table 1, we report
some descriptive statistics of the estimated parameters when considering a GARCH(1,1) model for
all series. In particular, it is interesting to look at the values of the cross-sectional average persistence
(defined as the sum of the GARCH parameters) in each panel of estimated volatilities. We see that
parameter estimates for the level-common volatilities,ωT

s;it andhT
s;it, and level-idiosyncratic idiosyn-

cratic volatilities,hT
w;it, display the typical behavior of GARCH models with average persistence very

close to one. If we look at cross-sectional standard deviations of persistence, the panelhT
w;it, which

is idiosyncratic both for levels and volatilities, seems tobe quite heterogeneous. On the contrary, the
panelωT

s;it, which is common to levels and volatilities, is highly homogeneous. Finally, the level-
idiosyncratic common volatility presents an exception, with lower persistence, 0.61 on average, thus
indicating a faster mean reversion in conditional variancewith respect to the three other panels.

From (3.12)-(3.15), we build four sets of one-period ahead forecasts:ωs;i,T+1|T , hs;i,T+1|T ,
ωw;i,T+1|T , andhw;i,T+1|T . These forecasts are then recombined using (3.16), (3.17),and (3.18),
yielding the squared volatility forecastV 2 T

Y;i,T |T+1. Multi-period ahead forecast are also defined
straightforwardly.

Following standard practice, for each seriesi = 1, . . . , n, we compare conditional variance fore-
casts with the adjusted intra-daily log range, defined by Parkinson (1980) as

ρit :=
(log phigh;it − log plow;it)

2

4 log 2
, i = 1, . . . , n, t = 1, . . . , T, (4.1)

wherephigh;it andplow;it denote the maximum and the minimum prices of stocki on dayt, respectively.
It has been shown by Alizadeh et al. (2002) and Brownlees and Gallo (2010) that theoretically, numer-
ically, and empirically the adjusted intra-daily log rangeis a highly efficient volatility proxy robust to
microstructure noise and hence at least equally as good as more sophisticated alternatives such as, for

14



example, realized volatilities (Andersen et al., 2003).
We repeat estimation and forecast of the model 500 times corresponding to the 500 days in the

period from 14th December 2007 to 9th December 2009, thus including the Great Financial Crisis.
Each forecast is computed from the estimation on a rolling sample ofT = 2000 observations. We
considerh-period ahead forecasts withh = 1, 2, 5, 10. We compute three different forecasts based on
our model:

(i) the squared innovations forecastEY;i,T+h|T , as defined in (3.9) and based on HAR dynamics,15

(ii ) the total squared volatility forecastV 2
Y;i,T+h|T , as defined in (3.18), and

(iii ) the market squared volatility forecast,(ωs;i,T+h|T + ωw;i,T+h|T ), which can be computed di-
rectly from (3.12)-(3.14).

In addition, we also consider the following three competitor models, taken from the classical
literature:

(iv) componentwise univariate GARCH,

(v) multivariate composite likelihood vech-GARCH, and

(vi) static factor GARCH models.

The univariate GARCH in (iv) is performed on the residuals of univariate AR models estimated
on each individual series. The vech-GARCH in (v) is estimated by means of composite maximum
likelihood as in Engle et al. (2008) and is the only multivariate GARCH model able to cope with the
high-dimensionality of the dataset at hand, since classical models, as for example BEKK (Engle and
Kroner, 1995) or DCC (Engle, 2002), cannot be estimated in a reasonable amount of time (conver-
gence of the maximization algorithm of these models moreover seems problematic even when based
on a composite likelihood). Finally, the static factor GARCH model in (vi) is in the spirit of Diebold
and Nerlove (1989), Van der Weide (2002), Alessi et al. (2009), and Aramonte et al. (2013): in a first
step,r factors are extracted by means of static principal components (as in Stock and Watson, 2002,
for instance); in a second step, an AR-GARCH model is adjusted to each estimated principal compo-
nent.16 The numberr of static factors is selected by means of the criteria of Bai and Ng (2002) or
Alessi et al. (2010); both criteria identify three static common factors. However, estimating more than
one factor might imply a larger estimation error in the second step, and we therefore also consider
the case of a single common factor. Finally, we also estimateunivariate AR-GARCH models for the
idiosyncratic component of the static model.17

We know from Patton (2011) that the use of a conditionally unbiased, but imperfect, conditional
variance proxy (as the adjusted intra-daily log range used here) can lead to undesirable outcomes
in standard methods for comparing conditional variance forecasts. To assess the relative forecasting
performances of various methods, a loss function must be chosen such that the ranking of compet-
ing forecasts is robust to the presence of noise in the volatility proxy. The root-mean-squared-error
(RMSE) satisfies this property and, for the total squared volatility forecast (3.18), is defined as

RMSEi(h) =

[
1

τ

τ−1∑

t=0

(
V 2
Y;i,T+h+t|T+t−1 − ρi,T+h+t

)2
]1/2

, i = 1, . . . , n, h = 1, 2, 5,

15Results based on AR specifications are very similar.
16The results are unaffected if we estimate the model using thevarious versions of Kalman filter proposed by Diebold

and Nerlove (1989), Harvey et al. (1992), and Sentana et al. (2008).
17Results are very similar when we assume homoskedastic idiosyncratic components.
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whereρit is given in (4.1) andτ is the out-of-sample size considered.
For all forecasts built from the models listed under(i)-(vi), we report, in Tables 2, 3, 4, and 5,

RMSEs for the periods 14/12/2007-9/12/2009, 14/12/2007-11/12/2008 which contains the surge and
the peak of the Great Financial Crisis, and 11/12/2008-9/12/2009 which contains the aftermath of the
Crisis. RMSEs are averaged across all 90 series, and averaged across each of the following sectors—
Finance, Energy, Information and Technology, Consumer Discretionary, Consumer Staples, Health
Care, and Industry. All values are reported relative to the RMSE of univariate GARCH forecasts.

TABLE 2: One-period ahead relative RMSEs.

14/12/2007-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+1|T

0.745 0.845 0.719 0.705 0.776 0.808 0.759 0.572

V 2 T
Y;i,T+1|T

0.670 0.703 0.599 0.950 0.664 0.911 0.735 0.390

(ωT
s;i,T+1|T

+ ωT
w;i,T+1|T

) 0.651 0.733 0.532 0.824 0.654 0.825 0.739 0.392

static factor GARCH (r = 1) 0.964 0.893 0.800 1.346 0.975 1.145 1.101 0.919
static factor GARCH (r = 3) 0.963 0.852 0.762 1.431 0.999 1.254 1.150 0.934
vech-GARCH 0.778 0.764 0.675 0.911 0.996 1.003 0.726 0.696

14/12/2007-11/12/2008 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+1|T

0.921 0.999 0.965 0.828 0.971 0.993 0.868 0.829

V 2 T
Y;i,T+1|T

0.828 0.814 0.804 1.130 0.830 1.115 0.824 0.544

(ωT
s;i,T+1|T

+ ωT
w;i,T+1|T

) 0.782 0.830 0.704 0.961 0.807 0.941 0.791 0.535

static factor GARCH (r = 1) 0.985 0.925 0.816 1.317 0.981 1.082 0.993 1.016
static factor GARCH (r = 3) 0.992 0.887 0.787 1.405 0.998 1.206 1.047 1.044
vech-GARCH 0.909 0.886 0.898 0.931 1.090 1.052 0.812 0.912

11/12/2008-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+1|T

0.494 0.744 0.359 0.217 0.407 0.365 0.329 0.478

V 2 T
Y;i,T+1|T

0.675 0.793 0.441 0.928 0.548 0.863 0.689 0.529

(ωT
s;i,T+1|T

+ ωT
w;i,T+1|T

) 0.682 0.764 0.458 0.815 0.613 0.872 0.776 0.625

static factor GARCH (r = 1) 1.008 0.970 0.849 1.370 1.070 1.058 0.971 1.009
static factor GARCH (r = 3) 1.015 0.952 0.821 1.438 1.097 1.152 1.030 1.031
vech-GARCH 0.573 0.695 0.360 0.519 0.729 0.654 0.361 0.608

In each row we report, for one-period ahead forecasts, the average relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energy; INFT: Information and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health Care;INDU: Industrials.

To fully appreciate the performance of the different forecasting methods in Figure 1, we show the
distribution of relative RMSEs across all series and computed on rolling windows ofτ = 20 days.

To conclude, in Figures 2 (financial sector) and 3 (other sectors), we compare, for selected stocks,
our one-period ahead total conditional variance forecastsV 2

Y;i,T+1|T with the forecasts resulting from
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TABLE 3: Two-period ahead relative RMSEs.

14/12/2007-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+2|T

0.616 0.826 0.559 0.379 0.555 0.591 0.561 0.509

V 2 T
Y;i,T+2|T

0.582 0.692 0.471 0.791 0.448 0.795 0.615 0.363

(ωT
s;i,T+2|T

+ ωT
w;i,T+2|T

) 0.583 0.728 0.448 0.654 0.456 0.752 0.661 0.407

static factor GARCH (r = 1) 0.974 0.904 0.800 1.412 1.004 1.116 1.081 0.917
static factor GARCH (r = 3) 0.972 0.861 0.759 1.493 1.034 1.216 1.136 0.933
vech-GARCH 0.671 0.756 0.518 0.655 0.835 0.858 0.562 0.643

14/12/2007-11/12/2008 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+2|T

0.597 0.675 0.609 0.412 0.664 0.609 0.605 0.588

V 2 T
Y;i,T+2|T

0.597 0.511 0.546 0.951 0.557 0.890 0.689 0.419

(ωT
s;i,T+2|T

+ ωT
w;i,T+2|T

) 0.570 0.518 0.490 0.765 0.549 0.808 0.710 0.490

static factor GARCH (r = 1) 0.987 0.876 0.832 1.399 1.048 1.054 0.972 1.008
static factor GARCH (r = 3) 0.985 0.807 0.796 1.478 1.073 1.165 1.035 1.032
vech-GARCH 0.624 0.595 0.547 0.577 0.862 0.787 0.597 0.720

11/12/2008-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+2|T

0.410 0.638 0.304 0.218 0.353 0.240 0.314 0.379

V 2 T
Y;i,T+2|T

0.615 0.700 0.396 0.941 0.507 0.837 0.665 0.462

(ωT
s;i,T+2|T

+ ωT
w;i,T+2|T

) 0.620 0.661 0.418 0.801 0.565 0.849 0.748 0.578

static factor GARCH (r = 1) 0.999 0.943 0.843 1.363 1.068 1.047 0.970 1.009
static factor GARCH (r = 3) 1.003 0.912 0.815 1.432 1.091 1.147 1.031 1.031
vech-GARCH 0.503 0.586 0.309 0.512 0.681 0.575 0.354 0.559

In each row we report, for two-period ahead forecasts, the average relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energy; INFT: Information and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health Care;INDU: Industrials.

a static factor GARCH model—which, according to the resultspresented, seems to be the best com-
petitor. Forecasts are plotted together with the adjusted intra-daily log range.

Inspection of results reveals that, overall, we tend to outperform all competing models considered
in regard to the total squared volatility forecastV 2

Y;i,T+h|T and sometimes also when considering the
squared innovations forecastsEY;i,T+h|T . In detail, when focussing on different time windows, we
notice that our method strongly outperforms the others during periods of relative quiet in the market
while during crisis it tends to be slightly worse than the static factor GARCH model. A possible
explanation could be that, due to the high collinearity and lesser persistence (caused by continuous
and abrupt fluctuations in the market) of the series under consideration during the Financial Crisis, co-
movements can easily explained with just one principal component as in the static factor GARCH with
one factor. On the other hand, during quieter periods, the role of idiosyncratic returns and volatilities
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TABLE 4: Five-period ahead relative RMSEs.

14/12/2007-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+5|T

0.908 1.044 0.905 0.573 0.917 0.991 0.968 0.785

V 2 T
Y;i,T+5|T

0.828 0.924 0.793 0.838 0.826 0.985 0.893 0.586

(ωT
s;i,T+5|T

+ ωT
w;i,T+5|T

) 0.782 0.950 0.728 0.639 0.787 0.803 0.800 0.529

static factor GARCH (r = 1) 0.979 0.920 0.828 1.448 0.977 1.129 1.139 0.894
static factor GARCH (r = 3) 0.978 0.885 0.785 1.544 0.990 1.231 1.186 0.905
vech-GARCH 0.914 0.952 0.851 0.770 1.028 1.147 0.932 0.857

14/12/2007-11/12/2008 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+5|T

1.084 1.155 1.145 0.675 1.071 1.196 1.123 1.152

V 2 T
Y;i,T+5|T

1.010 1.033 1.021 1.057 0.977 1.210 1.059 0.860

(ωT
s;i,T+5|T

+ ωT
w;i,T+5|T

) 0.916 1.032 0.905 0.781 0.924 0.903 0.906 0.736

static factor GARCH (r = 1) 1.005 0.956 0.864 1.446 0.982 1.064 1.052 0.974
static factor GARCH (r = 3) 1.007 0.920 0.823 1.548 0.990 1.176 1.100 0.990
vech-GARCH 1.041 1.054 1.059 0.729 1.094 1.210 1.061 1.166

11/12/2008-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+5|T

0.516 0.758 0.381 0.264 0.375 0.343 0.319 0.478

V 2 T
Y;i,T+5|T

0.647 0.776 0.440 0.866 0.468 0.755 0.609 0.492

(ωT
s;i,T+5|T

+ ωT
w;i,T+5|T

) 0.672 0.766 0.464 0.758 0.552 0.844 0.729 0.605

static factor GARCH (r = 1) 1.001 0.961 0.845 1.352 1.059 1.045 0.971 1.001
static factor GARCH (r = 3) 1.006 0.941 0.816 1.422 1.082 1.144 1.033 1.016
vech-GARCH 0.580 0.689 0.382 0.520 0.699 0.630 0.352 0.608

In each row we report, for five-period ahead forecasts, the average relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energy; INFT: Information and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health Care;INDU: Industrials.

becomes important, and our model seems to better disentangle those dynamics specific to the single
series from those related to the market. Summing up, our losses with respect to other models are
limited during periods of high volatility while our gains are quite substantial in the other periods and
therefore, over all days considered, our approach deliversa better performance both on average across
stocks and for many individual stocks—in particular, the Financial ones.

5 Conclusion

In this paper, we propose a two-step general dynamic factor method for the analysis of financial
volatilities in large panels of stock returns. Our focus throughout is to produce measures of squared
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TABLE 5: Ten-period ahead relative RMSEs.

14/12/2007-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+10|T

0.801 0.849 0.797 0.703 0.810 0.790 0.838 0.772

V 2 T
Y;i,T+10|T

0.762 0.803 0.699 0.899 0.749 0.839 0.803 0.649

(ωT
s;i,T+10|T

+ ωT
w;i,T+10|T

) 0.739 0.804 0.673 0.744 0.720 0.845 0.792 0.620

static factor GARCH (r = 1) 0.954 0.918 0.801 1.374 0.955 1.100 1.061 0.895
static factor GARCH (r = 3) 0.947 0.884 0.757 1.455 0.974 1.178 1.095 0.894
vech-GARCH 0.819 0.799 0.745 0.885 0.979 0.997 0.811 0.826

14/12/2007-11/12/2008 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+10|T

0.912 0.900 0.945 0.822 0.984 0.901 0.848 1.041

V 2 T
Y;i,T+10|T

0.888 0.867 0.847 1.089 0.924 0.976 0.843 0.890

(ωT
s;i,T+10|T

+ ωT
w;i,T+10|T

) 0.847 0.859 0.792 0.890 0.887 0.930 0.812 0.844

static factor GARCH (r = 1) 0.972 0.945 0.839 1.349 0.965 1.037 0.975 0.966
static factor GARCH (r = 3) 0.965 0.916 0.791 1.426 0.978 1.116 1.010 0.961
vech-GARCH 0.897 0.859 0.871 0.884 1.046 0.986 0.825 1.043

11/12/2008-9/12/2009 All series FINA ENER INFT COND CONS HEAL INDU

ET
Y;i,T+10|T

0.406 0.646 0.271 0.192 0.284 0.313 0.336 0.358

V 2 T
Y;i,T+10|T

0.532 0.671 0.335 0.741 0.367 0.631 0.571 0.369

(ωT
s;i,T+10|T

+ ωT
w;i,T+10|T

) 0.579 0.668 0.385 0.676 0.471 0.780 0.700 0.522

static factor GARCH (r = 1) 0.988 0.949 0.824 1.333 1.042 1.052 0.967 0.986
static factor GARCH (r = 3) 0.990 0.920 0.790 1.404 1.065 1.141 1.025 0.998
vech-GARCH 0.515 0.602 0.281 0.531 0.682 0.643 0.404 0.561

In each row we report, for five-period ahead forecasts, the average relative RMSE across all 90 series or across the
series of a given sector. FINA: Financials; ENER: Energy; INFT: Information and Technology; COND: Consumer
Discretionary; CONS: Consumer Staples; HEAL: Health Care;INDU: Industrials.

innovations and of their conditional mean as proxies of squared volatilities and to produce multi-
period ahead forecasts of the same.

In a previous paper, we showed that the decomposition into “common” and “idiosyncratic” com-
ponent of the returns does not necessarily coincide with thecorresponding decomposition for volatil-
ities, in the sense that level-idiosyncratic components, just as much as the the level-common ones,
are affected by market volatility shocks (Barigozzi and Hallin, 2016). Here, based on this finding,
we propose a “divide and rule” analysis of volatilities by decomposing them into four different com-
ponents: common and idiosyncratic of level-common innovations and common and idiosyncratic of
level-idiosyncratic innovations. In Section 4 we show that, for the assets composing the S&P100 in-
dex, GARCH forecasts based on those four components are generally better than univariate and other
factor based forecasts when compared with the adjusted intra-daily log range.
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FIGURE 1: Relative RMSEs over the period December 2007– December 2009.
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Median for our model (red) and static factor GARCH with one factor (black) with related 25th and 75th percentiles.

The present framework can be extended in many directions of potential interest in financial econo-
metrics and risk management. In particular, two extensionsare under study: (i) the construction
of conditional prediction intervals for returns, providing estimated conditional Value at Risk values,
and (ii ) the estimation of optimal portfolios in the Markowitz sense.
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TABLE 6: Relative RMSEs for the selected stocks displayed in Figures2 and 3.

static static
factor GARCH factor GARCH

Ticker ET
Y;i,T+h

V 2 T
Y;i,T+h

(r = 1) Ticker ET
Y;i,T+h

V 2 T
Y;i,T+h

(r = 1)

h = 1

AXP 0.572 0.394 0.871 FDX 0.444 0.319 0.964
BAC 0.710 0.508 0.889 UNP 0.763 0.473 1.170
BK 0.868 0.696 0.847 DELL 0.471 0.285 0.749
C 0.920 0.729 0.853 IBM 0.996 0.853 1.605
GS 0.908 0.745 0.963 MSFT 0.583 0.558 0.764
JPM 0.465 0.313 0.945 DIS 1.072 0.926 1.019
MS 0.693 0.517 0.934 HD 0.830 0.478 1.661
SPG 0.694 0.571 0.668 SBUX 0.568 0.546 1.106
USB 0.689 0.473 0.837 WMT 0.482 0.292 0.719
WFC 0.963 0.687 0.844 COF 0.569 0.345 0.779

h = 2

AXP 0.491 0.359 0.920 FDX 0.491 0.381 0.960
BAC 0.740 0.655 0.946 UNP 0.546 0.292 1.220
BK 0.729 0.570 0.941 DELL 0.382 0.238 0.746
C 0.997 0.871 0.866 IBM 0.650 0.743 1.714
GS 0.654 0.445 0.967 MSFT 0.524 0.490 0.741
JPM 0.477 0.368 0.937 DIS 0.398 0.764 1.350
MS 0.772 0.563 0.968 HD 0.364 0.341 1.516
SPG 0.697 0.542 0.580 SBUX 0.311 0.413 1.153
USB 0.428 0.328 0.815 WMT 0.402 0.243 0.724
WFC 0.756 0.550 0.841 COF 0.581 0.382 0.789

h = 5

AXP 0.804 0.693 0.880 FDX 0.639 0.490 0.940
BAC 1.024 0.834 0.933 UNP 0.734 0.446 1.166
BK 0.986 0.851 0.935 DELL 0.518 0.361 0.726
C 1.091 0.995 0.909 IBM 1.074 0.910 1.469
GS 0.865 0.700 0.850 MSFT 0.778 0.710 0.772
JPM 0.902 0.779 0.906 DIS 0.440 0.692 1.366
MS 1.199 1.056 0.996 HD 0.985 0.708 1.535
SPG 0.951 0.808 0.745 SBUX 0.456 0.399 1.131
USB 1.056 0.990 0.962 WMT 0.651 0.476 0.706
WFC 1.085 0.903 0.907 COF 0.948 0.785 0.799

h = 10

AXP 1.065 0.988 0.883 FDX 0.523 0.451 0.932
BAC 0.722 0.607 0.891 UNP 0.860 0.754 1.068
BK 1.007 0.995 0.997 DELL 0.802 0.693 0.791
C 0.688 0.624 0.846 IBM 0.936 0.873 1.360
GS 0.970 0.938 0.979 MSFT 0.787 0.709 0.740
JPM 0.556 0.473 0.931 DIS 0.832 0.809 1.316
MS 0.998 0.992 0.995 HD 0.908 0.725 1.314
SPG 0.859 0.781 0.753 SBUX 0.760 0.647 1.095
USB 0.719 0.571 0.750 WMT 0.484 0.373 0.712
WFC 0.912 0.794 0.846 COF 0.839 0.709 0.783

For each stock we report, forh-period ahead forecast withh = 1, 2, 5, 10, the RMSE (relative to univariate GARCH
forecasts) for our two approaches and for the static factor GARCH model. See the Appendix for tickers’ definitions.
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FIGURE 2: Squared volatility forecasts – Financial sector.
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One-period ahead forecasts of squared volatility obtainedfrom our model (red) and from a static factor GARCH with one
factor (black) for selected stocks from the financial sector, along with the observed adjusted intra-daily log range (light
grey). See Appendix for tickers’ definitions.
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FIGURE 3: Squared volatility forecasts – Other sectors.
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One-period ahead forecasts of squared volatility obtainedfrom our model (red) and from a static factor GARCH with one
factor (black) for selected stocks from the financial sector, along with the observed adjusted intra-daily log range (light
grey). See Appendix for tickers’ definitions.
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A Data

TABLE 7: S&P100 consituents.

Ticker Name

AAPL Apple Inc. HPQ Hewlett Packard Co.
ABT Abbott Laboratories IBM International Business Machines
AEP American Electric Power Co. INTC Intel Corporation
AIG American International Group Inc. JNJ Johnson & JohnsonInc.
ALL Allstate Corp. JPM JP Morgan Chase & Co.
AMGN Amgen Inc. KO The Coca-Cola Company
AMZN Amazon.com LLY Eli Lilly and Company
APA Apache Corp. LMT Lockheed-Martin
APC Anadarko Petroleum Corp. LOW Lowe’s
AXP American Express Inc. MCD McDonald’s Corp.
BA Boeing Co. MDT Medtronic Inc.
BAC Bank of America Corp. MMM 3M Company
BAX Baxter International Inc. MO Altria Group
BK Bank of New York MRK Merck & Co.
BMY Bristol-Myers Squibb MS Morgan Stanley
BRK.B Berkshire Hathaway MSFT Microsoft
C Citigroup Inc. NKE Nike
CAT Caterpillar Inc. NOV National Oilwell Varco
CL Colgate-Palmolive Co. NSC Norfolk Southern Corp.
CMCSA Comcast Corp. ORCL Oracle Corporation
COF Capital One Financial Corp. OXY Occidental Petroleum Corp.
COP ConocoPhillips PEP Pepsico Inc.
COST Costco PFE Pfizer Inc.
CSCO Cisco Systems PG Procter & Gamble Co.
CVS CVS Caremark QCOM Qualcomm Inc.
CVX Chevron RTN Raytheon Co.
DD DuPont SBUX Starbucks Corporation
DELL Dell SLB Schlumberger
DIS The Walt Disney Company SO Southern Company
DOW Dow Chemical SPG Simon Property Group, Inc.
DVN Devon Energy T AT&T Inc.
EBAY eBay Inc. TGT Target Corp.
EMC EMC Corporation TWX Time Warner Inc.
EMR Emerson Electric Co. TXN Texas Instruments
EXC Exelon UNH UnitedHealth Group Inc.
F Ford Motor UNP Union Pacific Corp.
FCX Freeport-McMoran UPS United Parcel Service Inc.
FDX FedEx USB US Bancorp
GD General Dynamics UTX United Technologies Corp.
GE General Electric Co. VZ Verizon Communications Inc.
GILD Gilead Sciences WAG Walgreens
GS Goldman Sachs WFC Wells Fargo
HAL Halliburton WMB Williams Companies
HD Home Depot WMT Wal-Mart
HON Honeywell XOM Exxon Mobil Corp.
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