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Abstract. In this paper we explore the sensitivity of time-varying confounding adjusted es-

timates to different dropout mechanisms. We extend the Heckman correction to two time

points and explore selection models to investigate situations where the dropout process is

driven by unobserved variables and the outcome respectively. The analysis is embedded

in the Bayesian framework which provides a number of advantages. These include fitting

a hierarchical structure to processes that repeat over time and avoiding exclusion restric-

tions in the case of the Heckman correction. We adopt the Decision Theoretic approach to

causal inference which makes explicit the No regime dropout dependence (NRD) assump-

tion. We apply our methods to data from the Counterweight Programme pilot, a UK protocol

to address obesity in primary care. A simulation study is also implemented.

Keywords: Causal inference, Heckman correction, non-ignorable dropout, selection

models, time-varying confounding.

1. Introduction

We are often interested in evaluating the causal effect of a treatment strategy implemented

over successive time periods on a final response. This is the case in the Counterweight

Programme pilot (Laws et al., 2004) (henceforth CWP), a UK based study aimed at

evaluating the effect of different lifestyle interventions administered over time on weight

loss. Lifestyle changes such as dieting and exercise have been linked to weight loss (Curioni
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and Lourenco, 2005) and to a lesser extent so has dietary counselling (Dansinger et al.,

2007). The CWP combined both dietary counselling and exercises and found that 43%

of patients that participated in the study for 12 months (termed compliers in the paper)

lost on average 5% of their body weight (Laws et al., 2004). However, no adjustment was

made for the participants who dropped out. CWP suffered from high levels of dropout

in excess of 50% at every measurement occasion. Further, as the dropout was likely to

be non-ignorable, standard methods (Daniel et al., 2013) could potentially lead to biased

effect estimates. The focus in this paper is on describing a method to assess how sensitive

the effect estimates are to modelling assumptions that encode different dropout generating

mechanisms.

When, as in our case, data involve time-varying confounders a form of recursive stan-

dardisation termed the g-computation formula or algorithm (Robins, 1986; Daniel et al.,

2013) is often implemented. Examples include the effect of anti-retroviral medication on

CD4 counts in HIV positive patients (Arjas and Saarela, 2010) and the effect of antigly-

caemic drugs on blood glucose level for patients affected by type II diabetes (Daniel et al.,

2013). While most of the literature in this area (with notable exceptions (Scharfstein

et al., 1999; Rotnitzky et al., 1998)) assumes that when there is dropout over time, this

is unrelated with either the outcome or any other unobserved variables conditional on the

observed covariates (termed missing at random (MAR)), our paper looks at a study where

MAR assumptions are not tenable in a similar spirit as Washbrook et al. (2014).

Specifically we use directed acyclic graphs (DAGs) to describe three mechanisms that

could be responsible for dropout in the CWP. We then link the DAGs to models for han-

dling non-ignorable dropout as characterised by Little and Rubin (2002). The dropout

mechanisms we consider are as follows: a) MAR holds, b) dropout depends on unobserved

factors and c) dropout is outcome dependent. These structures are easily described by

DAGs and naturally lead to a wavewise complete case (WCC) analysis, a Heckman cor-

rection (Heckman, 1979) (HC) and a selection model (SM) approach respectively (Hogan

et al., 2004). We plug our dropout adjusted equations into the g-formula in order to deal

with both non-ignorable dropout and time-varying confounding. By comparing results

from different models and simulation studies we can assess the sensitivity of estimates to

the structural assumptions embodied in the DAGs.

Our sensitivity analyses revealed that provided the assumptions we made were correct

and the models were not misspecified, the WCC and HC models gave similar results with

patients losing at least 4% of their BMI regardless of the treatment strategy followed while
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the SM analysis led to a lower 1.5% BMI loss. As the SM is the natural analysis if the

dropout is outcome dependent, this fits with the story that only individuals who were

losing weight remained in the study and explained the inflated results of the wavewise

complete case analysis.

Our analysis is embedded in the Bayesian paradigm which is becoming more common

in sensitivity analyses (Greenland, 2009; Geneletti et al., 2013) and has been implemented

in the context of causal analyses of longitudinal data (Arjas and Parner, 2004; Arjas and

Saarela, 2010). Furthermore, in the current context the Bayesian approach means exclusion

restrictions (strong untestable assumptions needed to ensure model identification) can be

avoided in the implementation of the Heckman correction (Puhani, 2000). This is an

advantage for us as there are no clear exclusion restrictions in our application.

Further we adopt the Decision Theoretic approach to causal inference (Dawid and

Didelez, 2010; Dawid and Constantinou, 2013). This allows us to state that there is

No regime dropout dependence (NRD), which makes explicit the idea that dropout is

independent of whether the study is observational or experimental conditional on subjects’

personal information. As a consequence we can in principle make causal inference from

these data even in the presence of dropout.

The paper is arranged as follows: Section 2 introduces the Counterweight Programme

pilot, our substantive application. In Section 3 we set the notation and basic concepts

about DAGs. Moreover, in this section we introduce the Decision Theoretic framework

describing the standard approach to estimating causal effects of treatment regimes in

the absence of missing data. Section 4 describes the dropout mechanisms we propose

and the assumptions required to make inference about treatment strategies when dropout

is present. We apply our sensitivity analysis method to the real data in Section 5. A

simulation is described in Section 6. We discuss advantages and drawbacks of our approach

and make concluding remarks in Section 7.

2. The Counterweight Programme pilot

We now introduce the application in this paper and embed in it further methodological

issues. The Counterweight Programme pilot was a UK based non-randomized study de-

signed to assess a range of primary care interventions to tackle obesity in general practice.

The data we have cover the years 2001-2005. The aim was to evaluate whether a sequence

of four treatments resulted in a reduction of the body mass index (BMI) of clinically over-

weight (BMI>25) and obese (BMI>30) patients by at least 5%. The body mass index of
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Occasion

Variable Baseline (t = 0) Second (t = 1) Third (t = 2)

BMI 37.03 36.94 37.11

∆BMI (%) – -3.43 -4.85

Age 49.05 52.27 53.39

Gender (1=male) 0.23 0.27 0.27

Soft treatment 1080 450 –

Hard treatment 766 333 –

Total (dropout%) 1846(–) 783 (58%) 457 (42%)

Table 1: Table of mean values of the explanatory and outcome variables for patients who

remained in the study as well as the numbers remaining and percentage dropout at baseline

and the following two measurement occasions.

an individual is defined as their weight divided by the square of their height and therefore

is measured in kg/m2. Due to mismatches in the protocol implementation as well as very

high dropout rates (over 70%) in the final two occasions, we only considered the first three

measurements (the baseline period and the next two). Sample sizes at each measurement

occasion and dropout rates are shown in the last line of Table 1 where it is evident that

dropout is a very serious concern with rates of 58 and 42% between the baseline and second

and the second and third measurement respectively.

When a patient entered the study, several indicators of their clinical status and lifestyle

were recorded. These included sex, age, depression scores, history of heart conditions and

diabetes as well as smoking, alcohol consumption and physical activity. Height and weight

were also collected and from these the BMI was calculated. These variables form the

baseline set. In our analysis we only included the most relevant (age, gender and BMI) as

an analysis using the extended set of variables listed above did not lead to substantially

different results. Mean values taken by these variables at each measurement occasion can

be seen in Table 1. The average BMI at baseline was high at 37.03 which was in accordance

with the study protocol which aimed at recruiting patients who were severely overweight.

Notice that at the third occasion (t = 2) the mean value of BMI is slightly higher than the

baseline value (37.11 kg/m2) although the average percentage change in BMI with respect

to the baseline is -4.85%. The men formed approximately 25% of the sample througout.
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This is less than seen in Hospital Episode Statistics where men made up approximately

40% of admissions with a primary or secondary diagnosis of obesity (Eastwood, 2012)

between 2001 and 2004. The average age at baseline was approximately 49. The age of

patients who remained in the study increased slightly over the course of the study to 53.

After an initial meeting with the practice staff a treatment was assigned and further

meetings were scheduled at three month intervals for the second and third, longer for sub-

sequent meetings. At every subsequent meeting the observed percentage change in BMI

was determined and a new treatment based on the set of baseline variables and the change

in BMI assigned. The variable of causal interest is the final percentage change in BMI.

For some individuals additional measurements (for example blood pressure) were taken

after the baseline measurement. It is in principle possible that these measurements were

considered when GP staff assigned new treatments. However only a small percentage of

patients had these data and even for these patients measurements were not taken consis-

tently. As a consequence we did not take them into account in our analysis. The models

we propose in Section 4 extend when such measurements are available.

Emphasis in CWP was on lifestyle interventions rather than drug therapies. There

were seven possible treatments and we chose (somewhat arbitrarily) to compare the effect

of ‘hard’ (h) lifestyle changes – gym and diet – versus ‘soft’ (s) actions like goal setting

and group meetings. We were therefore able to frame the problem in terms of a sequence

of binary treatments. The number of patients administered each of these treatments at

each time point is shown in Table 1. More soft treatments than hard treatments were

administered at both time points.

The targets of inference in this context are the effects of the four possible static strate-

gies (treatment plans) {(s, s), (s, h), (h, s), (h, h)} and one dynamic strategy: “apply the

hard treatment until a 5% loss in BMI is achieved” which we denote by (d). Under (d)

the hard treatment is assigned to everyone at the baseline occasion and only to those who

did not manage to lose at least 5% of their BMI at the second. From these effects we can

determine if there was an overall effect for any strategy and whether some strategies were

better than others. Notice that without the aggregation of the seven original treatments

there would be a substantial number of strategies and their comparison would become

cumbersome. Furthermore, as some of these treatments are rarely assigned, the estimates

of their effects would likely be unstable.

In many applications, and specifically in our case, at every occasion (termed wave

in Washbrook et al. (2014)) the sub-sample of complete cases is likely to be systematically
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different from the one including those who dropped out of the study. This means that the

MAR assumption is violated and an analysis conducted on the complete cases of every

occasion (wavewise complete cases) without further adjustments is likely to produce biased

results. We consider in our paper two dropout mechanisms that potentially lead to biased

results in a wavewise complete case analysis. The first comes about when patients decide

whether to attend a session based on personal characteristics that are unobserved by the

general practice (GP) staff who administer the treatments. For example a patient might

have a history of unsuccessful dieting which makes them demotivated and more likely to

dropout. This variable is not recorded and is not known by the practice staff. A second

plausible mechanism is where some patients drop out if they do not manage to lose a

sufficient amount of weight. In both cases the dropout is termed non-ignorable (Little and

Rubin, 2002) because it is associated with the outcome.

3. Background

We embed our subsequent discussions and analyses in the Decision Theoretic (DT) frame-

work for causal inference. We offer a somewhat simplified description here, for a complete

account of the formal details see Dawid and Didelez (2010); Dawid and Constantinou

(2013). An analogous set-up based on potential responses can be found in Robins (1986);

Daniel et al. (2013) and citations therein.

Fundamental to the DT framework is the concept of conditional independence. We

say that two variables A and B are independent conditional on another variable C when

p(A,B|C) = p(A|C)p(B|C) and we write A ⊥⊥ B|C (Dawid, 1979). Directed acyclic

graphs (DAGs) are used to formally encode conditional independences via the moralisation

criterion (Lauritzen, 1996). See Section 1 of the supporting materials for a brief overview

of moralisation. While moralisation is necessary to derive conditional independences from

DAGs it is not essential to understand the power of DAGs to visualise relationships between

variables. For the purposes of this paper it is sufficient to view the DAGs as influence

diagrams (Dawid, 2002) with directed edges representing influence.

3.1. Dynamic Treatment regimes

We are interested in evaluating the effect of a sequence of interventions over successive

periods of time indexed by t = 0, 1, . . . , T + 1. At each time point t we can record

two types of information: the sequence of observed covariates (typically multi-valued)

(L0,L1, . . . ,Lt) = L̄t and the sequence of actions (A0, A1, . . . , At) = Āt taken. We drop
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the individual index for simplicity. As is common in observational data, there are potential

confounders (U0, U1, . . . , Ut) = Ūt which we do not observe. Following convention, the

collection (L̄t, Āt, Ūt) is termed the partial history and (l̄t, āt, ūt) is a realisation of this

partial history. Note that we often refer to the observed partial history (L̄t, Āt) = X̄t.

In many settings, and in our motivating example in particular, baseline variables (the

clinical and lifestyle indicators as well as initial BMI) are collected at the beginning of

the study (t = 0) and are denoted by L0. During successive periods a single variable Vt

(percentage change in BMI) is recorded. As baseline information is likely to play a role

at advanced stages of the study, without loss of generality we can set Lt = (L0, Vt). At

each occasion t therefore, some information Lt is collected and used to assign a binary

treatment At (soft or hard lifestyle interventions). A single outcome Y (total percentage

change in BMI) is measured only at the final period: in many applications, including our

own, this will coincide with the Vt measured at the final point, i.e. Y = VT+1.

In the DT framework causality is explicitly dealt with by introducing decision (non-

random) variables termed regime indicators or simply regimes (Dawid, 2002). Specifically

we define σ to be the regime indicator taking on values σ = {o,S?} where o is the ob-

servational regime and S? is a set of interventional strategies (Dawid and Didelez, 2010).

Therefore σ = o means that the data are observational while σ = e with e ∈ S? means the

data arise under a particular experimental setting. In practice a strategy e is a decision

algorithm that determines, based on a partial history, the value of the next action. A

strategy can be static or dynamic. The former is when each patient is administered the

same sequence of treatments irrespective of the value of their partial history. The latter

is when the next treatment is some (potentially probabilistic) known function of the value

of the individual observed partial history. Thus for example a patient might be adminis-

tered the hard treatment if they have lost no weight and the soft treatment if they have

lost weight. We note that in the potential responses literature the term regimes is often

used interchangeably with strategies. A necessary assumption in DT which formalises the

distinction between regimes states that e ∈ S? are control strategies (Dawid and Didelez,

2010). This means that when actions āT are set by intervention within an experiment

(σ = e) their value depends only on the strategy e. This is in contrast to observational

data (σ = o), where actions potentially depend probabilistically on both observed and

unobserved covariates in an unknown fashion. The strategies described in Section 2 for

our motivational example are control strategies.

Given that our target is the causal effect of a number of treatment strategies we would
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ideally like to perform experiments representing static and dynamic strategies of interest.

Such experiments would enable us to obtain unconfounded estimates of the effects of

the aforementioned strategies of the form E(Y |āT ; e) (termed E(Y |do(āT )) by Pearl and

Robins (1995)). In our context this would be the expected percentage change in BMI for

the experimental strategy e. It is usually not possible to perform the necessary experiments

and thus the data at our disposal are typically (and specifically in our case where the

treatment assignment was not randomised) observational. Without further assumptions we

can at best estimate E(Y |āT ; o) (termed E(Y |āT ) by Pearl and Robins (1995)) provided we

have indeed observed the particular sequence of actions āT . As there is no guarantee that

E(Y |āT ; e) and E(Y |āT ; o) are going to be the same due to the presence of confounding

and no way, other than performing all the experiments, to test this, we need to make some

assumptions that allow us to relate the two quantities. These assumptions are most easily

expressed using conditional independence statements.

3.1.1. Assumptions

The first assumption we make is that of Extended stability (ES):

(Ut,Lt) ⊥⊥ σ|(L̄t−1, Āt−1, Ūt−1) t = 0, . . . , T + 1. (1)

In words this assumption states that conditional on all the past, both observed and unob-

served, the current values of Ut and Lt do not depend on how the data were generated,

whether from an experiment or from an observational study. In our context this translates

to assuming that, conditional on the past, the values of the current level of motivation or

weight loss do not depend on whether the study is experimental (with randomised treat-

ments) or observational. While ES is a plausible (if untestable) assumption, it does not

directly help us to estimate the target quantity E(Y |āT ; e) as it involves the unobserved

potential confounders Ūt. In order to make some headway, we must make an additional

assumption. In many contexts, and indeed for our motivating example, it makes sense to

assume

At ⊥⊥ Ūt|(L̄t, Āt−1;σ) t = 0, . . . , T. (2)

This assumption is akin to the conditional exchangeability or no unobserved confounders

assumption in the potential responses literature (Daniel et al., 2013). In words, assump-

tion (2) states that if we know the values of past observables and past actions taken,

then the present action is independent of present and past unobserved factors. The rea-

son this assumption makes sense for our application is that the GPs and nurses assigning



Tackling non-ignorable dropout with TVC 9

U1U0 U2

L1L0 Y

A0 A1

σ

(a)

U1U0
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R1

A0
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(b)

Figure 1: DAG (a) represents sequential randomisation. DAG (b) represents the NRD as

well as SR.

the weight loss interventions have at their disposal a large number of health and lifestyle

variables and thus unobserved variables are unlikely to enter into the treatment decision,

even if they influence the outcome. The combination of ES and assumption (2) has been

termed Sequential randomization (SR) by Dawid and Didelez (2010). Using the moralisa-

tion criterion it is easy to see that both DAGs in Figure 1 embody SR. DAG (a) shows

the situation for three measurement occasions whereas DAG (b) refers to only the first

two. We include DAG (b) for comparison with later DAGs in Figure 2 which describe the

dropout mechanisms we consider.

In addition to SR we must make a further assumption: positivity. In broad terms this

requires that all the strategies we want to estimate in the experimental setting are also

observed in the observational regime. For details on all the assumptions and a formal

treatment of dynamic treatment regimes in the DT framework see Dawid and Didelez

(2010); Dawid and Constantinou (2013).

3.2. Time-varying confounding

Another problem we face in the context of evaluating the effect of treatment strategies

is that E(Y |āT ; e) cannot be written as a single regression equation due to the problem

of time-varying confounding, specifically Lt or a component of it such as Vt is a time-

varying confounder. This is best explained by looking at DAG (a) in Figure 1: the node
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L1 (more precisely its component V1) plays a double role, being a confounder for the pair

(A1, Y ) and an intermediate variable on the pathway from A0 to Y (termed a mediator for

the pair (A0, Y )). On the one hand, fitting a regression of Y upon (L0, A0, A1) only (i.e.

excluding V1) yields a confounded effect for A1 (in causal DAG terminology: the back-door

path A1 ← L1 → Y is not blocked). On the other hand including V1 in the regression

model blocks the causal (front-door) path A0 → L1 → Y and induces a spurious marginal

association between the pairs (A0, U0) and (A0, U1) which also contributes to the non-

identification of the target causal effect. This is known as selection or collider stratification

bias and comes about by conditioning on a common child (Geneletti et al., 2009; Daniel

et al., 2013). In our example, A0, U0 and U1 are parents of L1 thus conditioning on it

generates the spurious association between the two pairs (A0, U0) and (A0, U1).

3.3. The g-computation algorithm

One solution to this problem developed by Robins (1986) is to use a recursive approach.

If SR holds the target quantity for a continuous outcome can be written as follows:

E(Y |āT ; e) =

∫
l̄t∈L̄T

[
E(Y |ĀT = āT , L̄T = l̄T ; e)

×
T∏
t=0

fLt|Āt−1,L̄t−1
(lt|āt−1, l̄t−1; e) d l̄T ] (3)

=

∫
l̄t∈L̄T

[
E(Y |ĀT = āT , L̄T = l̄T ; o)

×
T∏
t=0

fLt|Āt−1,L̄t−1
(lt|āt−1, l̄t−1; o) d l̄T ]

with L̄T being the set of possible values along the covariate history and fLt|Āt−1,L̄t−1

the conditional densities assumed for the measurements (Daniel et al., 2013; Dawid and

Didelez, 2010). We can go from the first form, conditional on e, to the second form, condi-

tional on o, because SR holds. Equation (3) is known as the g-computation formula or the

g-formula. The g-formula is relatively straight-forward to implement in a Bayesian frame-

work for estimating causal effects of sequential treatment plans (Arjas and Saarela, 2010;

Saarela et al., 2015). This approach does however have a number of drawbacks (Robins,

1986; Daniel et al., 2013) which we discuss in Section 7. Alternative methods have been

suggested to tackle the problem of time-varying confounding. However these have a num-

ber of limitations of their own (Robins et al., 2000; Daniel et al., 2013) and embedding them

in a Bayesian framework is not trivial, though some work has been recently undertaken in
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this area (Saarela et al., 2015).

Even in the simplest contexts the g-formula (3) is such that the integral cannot be

computed analytically. Thus numerical methods must be brought to bear. As it is not

necessary in practice to define a model for the baseline row vector L0, in our application we

only need to estimate fV1|L0,A0
(v1|l0, a0; o) and E(Y |Ā1 = ā1, L̄1 = l̄1; o) and plug them

in the numerical algorithm computing (3). For a detailed discussion of such algorithm see

for example Daniel et al. (2011).

4. Dropout in the presence of time-varying confounding

In this section we consider the issues involved in making inference about treatment strate-

gies in the presence of dropout and describe in terms of conditional independences and

DAGs the possible mechanisms that lead to participants dropping out. To this end we

define the binary random variable Rt taking value 1 for subjects observed at time t and 0

for subjects who have dropped out at time t. As we consider only monotone dropout pat-

terns, we always assume that R0 = 1 (namely that we observe everyone at the beginning)

and that if a subject drops out at time t then Rs = 0 for all s = t, . . . , T + 1.

Before describing the dropout mechanisms we need to make sure that the introduction

of selection nodes Rt does not lead to SR failing. More specifically, as at every occasion

t data availability implies conditioning on Rt = 1, we need to verify that SR still holds

when the row vector Lt is extended to include Rt (i.e. L0 is like in Section 3.1 while

Lt = (L0, Vt, Rt) for t = 1, . . . , T + 1). To this purpose we consider the most general

case where Rt is simultaneously influenced by (X̄t−1, Vt, Ut). This situation is pictured

in Figure 1 (b) for two measurement occasions. As typically the only child of Rt is the

following selection node Rt+1, by means of the moralisation criterion it is easy to see that

both ES and conditional independence (2) hold when Lt is extended as above. This is

true also for each of the three dropout mechanisms we consider. As it will become clear in

the following subsections, these mechanisms are indeed obtained by deleting some arrows

from DAG 1 (b): basic rules of DAGs state that every conditional independence holding

in a DAG also holds when one or more arrows are removed from it.

As a consequence of these facts we notice that the No regime dropout dependence (NRD)

assumption

Rt ⊥⊥ σ|(L̄t−1, Āt−1, Ūt−1, R̄t−1) t = 1, . . . , T + 1 (4)

holds. Though directly implied by the “augmented” ES, the NRD assumption has a non-

trivial interpretation and it is worth discussing its role. It means that whether individuals
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drop out of a study does not depend on whether the study is observational or experimental

conditional on the partial history for all t. Although it is an observational study as the

treatment assignments were not randomized, the CWP has a formal protocol so patients

were recruited and followed up in much the same way as they would have been in a

trial (especially during the first few measurements). Thus the NRD assumption seems

plausible in our context. However this might not always be the case. In both cross-

sectional and longitudinal settings it is reasonable to argue that subjects are more willing

to participate if they have been formally enrolled in a clinical trial. Therefore when using

“purely” observational data (i.e. not coming from a well-established programme) the

NRD assumption (and thus the extended SR) might be problematic. From a technical

perspective, we remark that NRD fails only when arrows from σ to Rt are included in the

DAG. This is a notable point as in the DT framework σ is usually intended to influence

only the actions At. As we are willing to assume NRD, we drop the regime indicator σ for

the remainder of the subsequent discussion for simplicity.

We are now ready to introduce the three dropout mechanisms. First we postulate how

dropout might occur (at random, driven by unobserved factors, driven by the outcome).

Second we use DAGs to encode and visualise the mechanisms. As the DAGs represent

different data generating structures we term our approach structural. The DAGs naturally

lead to three factorisation of the joint distribution of the variables involved in the problem

and encode different conditional independences. The induced factorisations correspond

to three statistical models that have been used in the literature (models based on MAR,

Heckman correction and selection models) to address bias due to dropout or selection.

Our approach is complementary to that adopted in the dropout literature (Hogan et al.,

2004; Little, 1995).

Robins et al. (2000) develop a selection bias g-formula. This formula highlights the as-

pects of the data generating mechanism that are non-parametrically non-identified because

of dropout. In the same spirit we consider conditional independences that help identify the

target quantities. In this section we give the basic ideas referring to supporting materials

Section 2 for the formal statement of all the conditional independences involved. While we

are not entirely successful (see Section 4.2), the simulation study in Section 6 shows that

each model always produces results that are closest to the true values when the associated

dropout generating process holds.
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Figure 2: DAGs for dropout mechanisms over two measurement occasions. (a) represents

the S-MAR scenario, (b) the U-drop scenario and (c) the Y-drop scenario.

4.1. Sequential missing at random

In the first mechanism we introduce data are missing at random. There are at least two

possible MAR assumptions for longitudinal data (Hogan et al., 2004). Given that our

interest is in estimating causal effects in the presence of time-varying confounding we

make a Sequential Missing At Random (S-MAR) (Pearl and Mohan, 2013; Hogan et al.,

2004; Daniel et al., 2013) assumption:

Rt ⊥⊥ (Ūt,Lt)|(L̄t−1, Āt−1, R̄t−1) t = 1, . . . , T + 1. (5)

If S-MAR holds then we can say that dropout is ignorable. In our application S-MAR

implies that the probability of one person attending one session is not influenced by his/her

change in weight nor by any other unobserved covariates if we know the baseline variables

and the history of weight loss. DAG (a) in Figure 2 shows the situation where S-MAR

holds. Again, for simplicity we consider only the first two measurement occasions. When S-

MAR holds the complete cases of each wave can be used to estimate the relevant quantities

(wavewise complete case analysis). In order to identify the causal quantities of interest, in

our application we can simply estimate fV1|L0,A0,R1
(v1|l0, a0, 1) and E(Y |Ā1 = ā1, L̄1 =

l̄1, R̄2 = 1̄2) (where 1̄t is a sequence of t ones) and plug them in the g-formula (3) in place

of fV1|L0,A0
(v1|l0, a0) and E(Y |Ā1 = ā1, L̄1 = l̄1).
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4.2. Dropout driven by unobserved factors

In the second scenario S-MAR (5) no longer holds as dropout at time t is driven also by

an unobserved factor Ut. We therefore term this scenario U-drop. This is shown for the

first two measurement occasions in DAG (b) in Figure 2. One approach to dealing with

this type of dropout is based on the Heckman correction popular in the Econometric liter-

ature (Heckman, 1979). We describe this adjustment first for two measurement occasions

and develop a novel extension to the third measurement occasion in Section 4.2.1.

While S-MAR no longer holds, we assume that

Rt ⊥⊥ (Lt, Ūt−1)|(L̄t−1, Āt−1, Ut, R̄t−1) t = 1, . . . , T + 1, (6)

which prevents lagged unobserved factors from affecting dropout in the present. This

is necessary as at time t the Heckman correction is designed to address the association

between Rt and Lt induced by Ut and not by Ut−1. If for example U0 and R1 were directly

associated (corresponding to an arrow U0 → R1 in DAG 2 (b)) additional bias would be

induced.

The basic idea of the Heckman correction is to partition the possibly biased expectation

E(V1|X0, R1 = 1), where X0 = (L0, A0), into the unbiased expectation E(V1|X0) plus

a correction term that can be estimated from the data. Recall that V1 is percentage

change in BMI at the second measurement occasion and L1 = (L0, V1). The Heckman

model assumes that the following underlying structure generates the data for the second

occasion:

R
?
1 = X0α0 + U1

V1 = X0β0 + f(ε1, U1)
R1 =

1 if R?1 > 0

0 otherwise.
(7)

In the context of our application we can think of R?1 as a linear combination of the

observed baseline covariates (age, gender, BMI) as well as an unobserved measure of

motivation U1. We can see that the structure assumed for the Heckman correction fits

with DAG (b) in Figure 2 as an unobserved factor U1 is influencing both the dropout

indicator R1 and the outcome of interest V1. This type of adjustment for dropout is a type

of shared parameter model in Hogan et al. (2004).

The vector α0 is typically estimated by means of a generalised linear model for the

binary indicator R1 upon X0. In this regression, which is termed the selection equation,

the link function depends on the distribution assumed for the error term U1. The equation

containing the vector of interest β0 is termed the outcome equation. As the outcome

equation is typically fitted only on a self-selected sub-sample of subjects (namely those for
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whom R1 = 1) a simple linear least squares estimate of β0 is biased. Heckman’s solution

assumes that U1 is standard normal and that

f(ε1, U1) = η1 = τ∗11U1 + ε1

where τ∗11 = Cov(η1, U1) and ε1 is a random variable independent of U1, without any

further distributional assumptions (Hutton and Stanghellini, 2010). It follows that the

selection equation is characterized by the probit link

Φ−1(p(R1 = 1)) = X0α0

while we have

E(V1|X0, R1 = 1) = X0β0 + τ∗11λ(k1) (8)

with k1 = X0α0 and λ(·) = φ(·)
Φ(·) , where φ(·) and Φ(·) are respectively the probability

density function and the cumulative density function of a standard normal random vari-

able. The term λ(·) is known as an inverse Mills ratio (IMR). Equation (8) implies that in

order to obtain an unbiased estimate of β0 using data from the non-random sub-sample

it is necessary to add the covariate λ(k1) to the outcome equation. Heckman proposes

a two-stage procedure that consists in estimating k1 from the fitted values of the probit

regression and using it to estimate the IMR, which is then included as a correction term

in (8) based on the values for those units with R1 = 1.

In finite samples the IMR is often almost perfectly correlated with the linear predictor

X0β0: this results in multicollinearity when fitting the adjusted outcome equation (8). The

standard solution to the problem is the omission (termed exclusion restrictions) of one or

more variables (termed instruments) from the model specification. Exclusion restrictions

represent a pitfall as quite often the choice of instruments is arbitrary or one is forced to

rule out some relevant information (Puhani, 2000; Washbrook et al., 2014). This problem

exists in the multiple occasion framework as well. Heckman (1979) proposes a maximum

likelihood approach to deal with this issue. However in practice at least one instrument is

needed to obtain stable estimates or to reach convergence in the optimization algorithms

(Genbäck et al., 2014; Washbrook et al., 2014). The Bayesian approach we adopt overcomes

the exclusion restrictions in the same way as the maximum likelihood approach but does

not present similar convergence problems.
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4.2.1. Proposed extension to the Heckman model

To extend Heckman’s framework to three measurement occasions we add another pair of

equations so that model (7) becomesR
?
1 = X0α0 + U1

V1 = X0β0 + η1

R
?
2 = X̄1α1 + U2

Y = X̄1β1 + η2

Rt =

1 if R?t > 0 for t = 1, 2

0 otherwise.
(9)

As we are dealing with a monotone dropout mechanism we can insert as covariates

those variables measured during the second visit (namely A1 and V1 that are contained in

X̄1). We assume a standard bivariate normal distribution for (U1, U2)U1

U2

 ∼ N2

(0

0

 ;

1 ρ̃

ρ̃ 1

)

while no distributional assumptions are placed on the joint distribution of the error terms

within the same temporal point. As before we let

η1 = τ∗11U1 + ε1

η2 = τ∗22U2 + ε2

where again τ∗22 = Cov(η2, U2), ε2 is independent of U2 and k2 = X̄1α1. Results for

the bivariate truncated normal distribution (see Rosenbaum (1961) and Manjunath and

Wilhelm (2010)) combined with some calculation permit us to write

E(Y |X̄1, R1 = 1, R2 = 1) = X̄1β1 + τ∗22C2(k1, ρ̃, k2) (10)

with

C2(k1, ρ̃, k2) =
ρ̃φ(k1)

(
1− Φ

(
ρ̃k1−k2√

1−ρ̃2

))
+ φ(k2)

(
1− Φ

(
ρ̃k2−k1√

1−ρ̃2

))
p(U1 > −k1, U2 > −k2)

. (11)

As for the two-occasion situation, Equation (11) provides the covariate term which it is

necessary to adjust for in order to obtain an unbiased estimate of β1 in Equation (10)

from the complete case sub-sample. See supporting materials Section 3 for further details.

For more than three measurement occasions, the mathematics of deriving the equiva-

lent of C2 based on a multivariate truncated normal distribution involves partial correla-

tions (Tallis, 1961) and becomes intractable. Instead, we suggest using Ct(kt−1, ρ̃t−1,t, kt)

where ρ̃t−1,t = Cor(Ut−1, Ut) assuming Ut ⊥⊥ Ūt−2|Ut−1 for t = 3, . . . , T+1. Note also that

this method is a correction for expectations and not for distributions while the g-formula

requires that we sum over a probability distribution for the intermediate occasion (t = 1).

This means that we are not able to fully identify the causal quantities of interest. However

the simulation study in Section 6 shows that this method performs better than a WCC or
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a SM analysis when dropout is of the U-drop kind. Therefore it is worth considering its

application in those cases where unobserved factors rather than the outcome are likely to

drive dropout.

4.2.2. The correlation parameter ρ̃

The parameter ρ̃ can be interpreted as the correlation between the unobserved variables

that drive the dropout at the two time points. Thus in the special case where ρ̃ = 0 we

have U1 ⊥⊥ U2 and Equation (11) reduces to λ(k2): this is equivalent to performing two

separate Heckman corrections as in Washbrook et al. (2014). If on the other hand ρ̃ = 1

then the unobserved part of the dropout mechanisms is the same at both time points as

U2 is a perfect linear combination of U1. In the general context of longitudinal data with

non-ignorable dropout we can think of ρ̃ as taking on a high positive value as we expect

similar forces to be responsible for the dropout at each time point.

It is important to note that the data carry no information about ρ̃ and thus it is an

unidentified parameter. It is however essential as without it C2(k1, ρ̃, k2) is also unidentified

and only independent corrections can be implemented over two time points. As they deal

with only two occasions, Hutton and Stanghellini (2010) and Genbäck et al. (2014) propose

a sensitivity analysis in which they investigate the effects of a range of possible values of

τ∗11. In the same vein, but from a Bayesian perspective, we handle the parameter ρ̃ placing

a strongly informative prior on it. We discuss the choice of prior for our application and

sensitivity of results to this prior in Section 5.2.

4.3. Outcome-driven dropout

Another plausible situation is when dropout is outcome dependent (Little, 1995). In our

application this means that participation Rt is directly affected by the percentage change

in BMI Vt. This situation which we term Y-drop is encoded in Figure 2 (c). Again S-MAR

does not hold and therefore the participants will be systematically different from the non-

participants at each occasion. Recalling that X0 = (L0, A0) and L1 = (L0, V1), it is easy

to see that DAG 2 (c) naturally leads to the partition

p(V1, R1|X0) = p(V1|X0)p(R1|V1,X0)

as V1 depends only on X0 whilst R1 depends on both V1 and X0 (Hogan et al., 2004).

In line with Mason (2009), we define two equations for the two measurements. The

first is the outcome equation, which relates the outcome to the relevant covariates. The
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second models the dropout as a function of possibly the same covariates and the outcome.

Thus we have:

V1 = X0β0 + η1

logit(p(R1 = 1)) = X0γ0 + γO0 V1

Y = X̄1β1 + η2

logit((p(R2 = 1)) = X̄1γ1 + γO1 Y.
(12)

Note that in order to identify the causal quantities E(Y |ā1; e) for our treatment strate-

gies, the outcome equations need to be fitted on the complete cases at baseline (t = 0) and

at the intermediate occasion (t = 1) respectively (see Section 2.3 of supporting materials

for details). As a consequence many units are missing information on the outcomes V1

and Y . An advantage of the Bayesian approach in this context is that those units can

still be included in the regressions as, given the observed covariates, the missing values are

sampled within the Monte Carlo Markov Chain (MCMC) procedure (Glynn et al., 1993).

Of particular interest to us are the coefficients γO0 and γO1 of the outcomes V1 and Y in

the dropout equations in model (12). These parameters tell us how strongly the outcome

is associated with the dropout. If the Y-drop mechanism is operating in a data-set we

would expect these parameters to be significant.

4.4. Comparison of Heckman and selection models

It is well known that the Heckman and selection models are closely related. In particular,

when the outcome equation is linear the Heckman model can be rewritten as a selection

model. This is true for the two measurement scenario as well as for any extension with

a general number of occasions. Washbrook et al. (2014) note that while the models are

mathematically equivalent they are conceptually different. In the selection model there is

a direct association (or in our case a causal relationship) between dropout and the outcome

while in the Heckman model the effect of the outcome on dropout is simply contained in

the selection error term like that of every other variable not included in the regression

equation.

5. Sensitivity analysis

We now give details of the specific models we use to analyse the dropout in the data from

CWP introduced in Section 2. Our aim is to provide some answers to the following two

related questions: 1) Do the causal effect estimates change between the WCC analysis

and the analysis which take into account dropout of the U-drop or Y-drop type? 2) Is
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there any evidence of dropout of either type? We stress that these methods are intended

to be used as part of a sensitivity analysis rather than a one-stop adjustment for dropout

especially when dropout is high. Adjusted estimates should be compared to one another

in the light of context specific information.

Prior to performing the sensitivity analysis we fit linear models to estimate the input

quantities of the g-algorithm. We performed analyses of residuals as well as other diag-

nostic checks and investigated the presence of quadratic effects or interactions but these

did not improve model fit. We therefore based our analyses on linear models throughout.

The sensitivity analysis we propose has two steps potentially. The first is to explore

the dropout mechanism by investigating which of S-MAR, U-drop and Y-drop is driving

participation. The second is an analysis of the sensitivity of results to choice of Bayesian

priors especially on the poorly or unidentified parameters. We focus on the former with

some discussion of the latter. Other sensitivity analyses based on the choice of priors can

be found in other contexts in the literature (Scharfstein et al., 1999).

We implemented our Bayesian models using MCMC methods running on JAGS (Plum-

mer et al., 2003). For each analysis the JAGS MCMC sampler was run for 2 chains for

20000 iterations of which 10000 were retained. Convergence was good overall. The means

and 95% credible intervals were reported for each analysis. Below we report priors on the

more important parameters and refer the reader to the supporting materials Section 2 for

information on the priors on the remaining parameters. Notice that normal distributions

are henceforth parametrized in terms of precisions rather than variances. Moreover, we

code the soft treatment s as 0 and the hard treatment h as 1. The results of the frequentist

analysis are shown in the supporting materials Section 4.

5.1. WCC analysis

In the wavewise complete case analysis we are assuming S-MAR as in DAG (a) in Figure 2.

The models are given by

V1 ∼ N(µ1, ς1)

µ1 = L0β
B
0 + β0hA0 (13)

Y ∼ N(µ2, ς2)

µ2 = L0β
B
1 + β1hA1 + β12A0 + β13V1. (14)

L0 contains four values: the intercept, age, gender and initial BMI so that βBt are vectors

of four parameters for t = 0, 1. We place a hierarchical structure on the parameters that
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WCC HC SM

e E(Y |ā1; e) 95% CI E(Y |ā1; e) 95% CI E(Y |ā1; e) 95% CI

(ss) -4.25 (-4.78,-3.74) -4.17 (-5.35,-3.00) -1.51 (-2.36,-0.63)

(sh) -4.41 (-5.08,-3.58) -4.26 (-5.53,-2.92) -2.28 (-3.16,-1.40)

(hs) -4.88 (-5.79,-4.09) -4.93 (-6.25,-3.58) -1.49 (-2.51,-0.41)

(hh) -5.04 (-5.69,-4.38) -5.02 (-6.17,-3.82) -2.26 (-3.21,-1.35)

(d) -4.98 (-5.63,-4.35) -4.99 (-6.11,-3.79) -1.99 (-2.91,-1.04)

parameters

β0h -0.53 (-1.01,-0.07) -0.51 (-1.00,-0.05) -0.76 (-1.18,-0.34)

β1h -0.15 (-0.74,0.60) -0.09 (-0.72,0.68) -0.77 (-1.38,-0.15)

ρ̃ - - 0.70 (0.10,0.99) - -

γO0 - - - - -0.03 (-0.08,0.02)

γO1 - - - - -0.77 (-0.98,-0.52)

Table 2: Results of the sensitivity analysis of the different structural assumptions.

correspond to the same processes over time. Thus

βBtj ∼ N(µBj , ς
B
j ) for t = 0, 1 and j = 1, . . . , 4

where µB1 , µB2 and µB3 and µB4 correspond to the intercept term, gender, age and the initial

BMI. We also impose hierarchical priors on the two “direct” treatment effects:

βth ∼ N(µh, ςh) for t = 0, 1

with µh ∼ N(−1, 1/2) to reflect our belief that the hard treatment results in modest addi-

tional loss in percentage of initial BMI with respect to the soft treatment. The precisions

have distinct diffuse G(0.001, 0.001) distributions. Finally β13 has a N(1, 1/2) prior as we

deem the association between the two changes in BMI, V1 and Y , quite strong.

We explored a number of alternative prior structures including non-hierarchical priors

for the regression coefficients as well as other specifications for the precisions. Results

were not substantially different. See supporting materials Section 2.1 for details. The

prior structure described here is maintained for the common parameters of other models.

The WCC columns in Table 2 show the results for the four static strategies, the dynamic

strategy and the parameters of the treatments in the regressions (13) and (14) for the

wavewise complete case analysis. Overall, there seems to be little added value between
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strategies (s, s) and (h, h). Simply participating in the study leads to a loss in weight.

More specifically, as V1 and Y are percentage changes in BMI (see Section 3.1), the mean

for the static strategy (s, s) is an average loss of 4.25% of initial BMI. This is not entirely

unexpected as the soft interventions are still active treatments. The effect of the static

strategies increases as the hard intervention is included so that the (h, h) strategy results

in a loss of initial BMI of 5.04% on average. The dynamic strategy, indicated by (d),

represents the situation where hard treatments are administered until 5% reduction in

BMI is achieved and results in a loss of 4.98%. The parameters β0h and β1h are both

negative, indicating that the direct effects of the treatment are negative, even though only

β0h is significant in this instance.

5.2. HC analysis

We now present the Bayesian version of the extended Heckman correction. Recalling

model (9), we define

R1 ∼ Bern(p1)

Φ−1(p1) = L0α
B
0 + α0hA0

V1 ∼ N(µ1, ς1)

µ1 = L0β
B
0 + β0hA0 + τ∗11λ(k1) (15)

R2 ∼ Bern(p2)

Φ−1(p2) = L0α
B
1 + α12A0 + α13V1 + α1hA1

Y ∼ N(µ2, ς2)

µ2 = L0β
B
1 + β12A0 + β13V1 + β1hA1 + τ∗22C2(k1, ρ̃, k2) (16)

where ((αB0 )>, α0h)> = α0, ((αB1 )>, α12, α13, α1h)> = α1 and the quantities k1, k2 and

C2(k1, ρ̃, k2) are defined as in Section 4.2.1. The priors for the outcome equation param-

eters are identical to those for the WCC analysis. Those for the selection equations are

defined according to the same scheme with αBtj ∼ N(νBj , ψ
B
j ) for t = 0, 1, j = 1, . . . , 4.

Similarly for the treatment effects on participation we have αth ∼ N(νh, ψh), t = 0, 1 with

νh ∼ N(0, 1/4). Again, precisions are given G(0.001, 0.001) priors. Priors for νBj and for

α12 and α13 are reported in the supporting materials Section 2.2.

Additional parameters τ∗11, τ
∗
22 have independent uniform priors on the interval [−1, 1].

These are strong priors as these parameters are poorly identified in the data and we needed

to ensure good convergence. We chose this range as these parameters do not have a direct

interpretation in terms of observable quantities and we did not want to impose negative or
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positive values. Note that τ∗11 = 0 = τ∗22 is equivalent to a S-MAR mechanism and thus a

prior that included 0 as a possible value was important. We chose a uniform distribution

on the interval [0, 1] for ρ̃ to encode our belief that the correlation between the dropout

processes over time will be positive. Section 2.2 of the supporting materials gives further

details of the Bayesian priors including different choices of models for τ∗11, τ
∗
22 and ρ̃, the

model implementation as well as the JAGS code and the approximation used to calculate

C2(k1, ρ̃, k2) based on Cox and Wermuth (1991).

The results for the Heckman correction are generally similar to those for the complete

cases and are reported in the HC columns of Table 2. The (s, s) regime now as a slightly

smaller expected loss in initial BMI, of 4.17%. Again, only the first treatment effect is

significant.

5.3. SM analysis

We now describe the Bayesian selection model which handles dropout mechanisms of the

type Y-drop. The models for the outcomes are the same as Equations (13) and (14) for

the WCC analysis. However we also add

R1 ∼ Bern(p1)

logit(p1) = L0γ
B
0 + γ0hA0 + γO0 V1 (17)

R2 ∼ Bern(p2)

logit(p2) = L0γ
B
1 + γ12A0 + γ13V1 + γ1hA1 + γO1 Y (18)

where we can write ((γB0 )>, γ0h)> = γ0 and ((γB1 )>, γ12, γ13, γ1h)> = γ1 to be consistent

with model (12). The prior structure is the same as for Heckman model for common

parameters. As stated in Section 4.3 the parameters γO0 and γO1 are a measure of the

association between participation and change in BMI in Equations (17) and (18). As the

BMI variations V1 and Y are partially missing in these equations, these parameters are

poorly identified in the data. As a consequence, we place strong independent uniform priors

on the interval [−1, 1] on them. As with other parameters in the selection and outcome

equations which are associated with relationships that repeat over time, we attempted to

impose a single hyper prior on γO0 and γO1 as this would reflect our belief that they are

correlated. However this resulted in poor convergence for these parameters although it

did not change the values of the effects of the treatment strategies. As before, refer to

supporting materials Section 2.3 for a detailed discussion of priors.

The SM columns of Table 2 contain the results for this model. These are different from
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the results of the WCC and the HC analyses which are similar to one another. All the

static strategies result in much smaller but still significant loss of BMI. This fits in with the

soft treatment being an active treatment. Strategy (s, s) results in BMI loss of 1.51% and

strategy (h, h) in 2.26% BMI loss. Another interesting feature is that the hard treatment is

most effective if administered after the second measurement. The values of γO0 and γO1 are

both negative indicating that lower (weight) BMI loss is associated with a higher chance

of dropout (we recall that these coefficients are attached to covariates representing the

percentage change in BMI). This is particularly true of the dropout between the second

and third measurement.

Given our model specification is correct and the necessary assumptions hold, the sensi-

tivity analysis we performed fits with context specific arguments suggesting that outcome

driven dropout is the most plausible mechanism for these data. Conditional on baseline

covariates, the change in (weight) BMI seems indeed an information patients are unlikely

to ignore when deciding whether to attend the next scheduled meeting.

6. Simulation study

As pointed out in Section 5, we would like our models to adjust for non-ignorable dropout

when estimating causal effects but more importantly to be reliable predictors of the under-

lying dropout mechanisms. To evaluate these properties for our estimators, we performed

a simulation study. We consider a simplified context without baseline covariates and main-

tain the same notation of previous sections, thus the overall interpretation is unchanged.

The study has two parts. First we generate data for 500 units assuming simple linear

models for the conditional expectations. As a consequence, obtaining the true causal

effects for the four static strategies {(s, s), (s, h), (h, s), (h, h)} is straight-forward, as shown

in Havercroft and Didelez (2012). We are not going to consider the dynamic strategy

here. At the second stage, monotone dropout patterns are simulated by constructing

participation indicators R1 and R2. This step is based on model (9) for the U-drop

case and on model (12) for the Y-drop case. The S-MAR mechanism is analogous to Y-

drop, but the outcome-dependent terms in (12) are dropped. We reproduce two scenarios

representing respectively low (25%) and high (50%) total participation with dropout rates

roughly constant at each occasion. See Section 5 of supporting materials for a more

detailed description of both data and dropout generating processes.

The WCC, HC and SM analysis are implemented for each mechanism so 9 models are

fitted at every run. The whole procedure is then repeated for 500 runs. Relying on the
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same arguments of Section 5.2, the U(0, 1) prior for ρ̃ is maintained. For the other dropout

specific parameters (τ∗11, τ
∗
22, γ

O
0 , γ

O
1 ) we explored two different structures. We found that

uniform priors lead to more robust estimates than normal priors and recommend their use.

Again, details can be found in the supporting materials Section 5.

Figure 3 summarizes results for the low-participation scenario, whose dropout rates

are close to the observed ones. The four horizontal lines represent the true expectations

under each static strategy, i.e. the true causal effects. Note that for these strategies

the notation Ee is used to denote E(Y |ā1; e) without ambiguity (see the discussion about

control strategies in Section 3.1). For every line, 9 boxplots (one for each model-mechanism

combination) are drawn so different models within a dropout mechanism can be compared

in terms of proximity of their boxplot to the horizontal line. For each boxplot the points

beyond the whiskers are not depicted for clarity. Moreover, the empirical coverage rates

are reported in the middle of the boxes in place of the usual line representing the median.

As we are in the Bayesian framework, these numbers are the proportions of 95% credible

intervals that contain the respective true values.

The plot shows that Heckman and selection models each outperform the other two in

terms of proximity and coverage when the associated dropout mechanisms hold. Results

for the SM analysis when Y-drop holds are better than those for the HC model in the U-

drop case. This is not unexpected given the identification issues discussed in Section 4.2.1

which probably lead to these estimates being very variable especially for E(ss) and E(sh).

It is encouraging that all models are able to detect a S-MAR situation, though we notice

that the selection model tends to slightly underestimate the true values.

7. Conclusions and Caveats

This paper develops a sensitivity analysis to assess whether there is evidence of non-

ignorable dropout in the context of evaluating the effect of some treatment strategies

in a weight loss study. The dataset we analyse was gathered from the Counterweight

Programme pilot, a study designed to determine the impact of lifestyle interventions on

weight loss in overweight and obese patients in primary care in the UK. The methods we

propose consider three different dropout mechanisms: sequential missing at random (S-

MAR), dropout driven by unobserved factors (U-drop) and outcome-dependent dropout

(Y-drop). We obtain causal effect estimates for static and dynamic strategies using three

models that are associated to the three dropout mechanisms. The results of these anal-

yses combined with subject matter knowledge and further evidence from the simulation
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Figure 3: Simulation study results for the wavewise complete cases (WCC), Heckman

correction (HC) and selection model (SM).
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study lead to the conclusion that non-ignorable outcome dependent dropout is likely to

characterize the data. Specifically it appears that individuals who did not lose weight

tended to dropout. While the application and the simulation results are promising, we

recall that this sensitivity analysis is based on a number of untestable assumptions. Thus

the adjusted estimates we report must be viewed as part of a larger pool of context specific

information.

The results were generally not sensitive to prior specification in the application. How-

ever there was some sensitivity to prior specification in the simulations, possibly due to

the smaller sample sizes. This is an important point to bear in mind as the methods we

propose might not be appropriate in situations where the sample size is small and the

dropout rates high.

It is also worth bearing in mind that as we deal with a number of poorly or unidentified

parameters, more complex models might impact negatively on the convergence of Bayesian

MCMC procedures. However in the context of non-linear models some identification issues

would disappear (Washbrook et al., 2014). Moreover, we arbitrarily chose to partition the

seven possible treatments into soft and hard interventions. A different partition might

have given different results.

The g-computation algorithm suffers from the Null paradox. Thus if we use regression

models the effect parameters estimated using the g-formula will appear significant when

their value is really zero. In our application there is no indication that the treatment

effects are in fact zero in any of the scenarios, though this might be a problem with

the simulations. Semi-parametric methods using inverse probability weighting such as

marginal structural models (MSM) (Robins et al., 2000) have been put forward in the

literature to deal with non-ignorable dropout. These have the advantage that they are

not sensitive to model misspecification and they do not suffer from the Null paradox.

An extension of this work could consider these alternative methods within the Bayesian

framework as in Saarela et al. (2015). However, the Bayesian implementation of the g-

formula we present here also has advantages. It allows us to place informative priors on

poorly or unidentified parameters (Scharfstein et al., 1999) which is often simpler than

assessing the sensitivity of results using a range of values (Genbäck et al., 2014; Rotnitzky

et al., 1998). Furthermore it facilitates the identification of the causal effects in the Y-drop

case and permits to overcome exclusion restrictions in the U-drop case.

In our application we deal with only three measurement occasions. However it is

possible to deal with more time points. If the size of the history becomes too large it
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is possible to make assumptions that reduce dependences between variables at any given

time point to the previous one or two measurements only. These can be encoded in

conditional independences. For the case of the Heckman correction this is necessary due to

the difficulty in obtaining a correction term for three time measurements. We only consider

monotone dropout patterns in our analysis as this is the standard in the field. Dealing

with non-monotone patterns in this context would involve a number of novel challenges,

especially in the U-drop case where adjustment terms like those in equations (8) and (10)

can be defined in principle. The CWP data suffered from non-monotone dropout; however

there were few patients (198) who attended the baseline and third measurement thus we

feel that our monotone dropout assumption is justified overall.

Using the DT framework highlights that in order to make causal inference in the pres-

ence of dropout we must make the No regime dropout dependence assumption. Namely

we have to assume that whether patients leave the study is independent of whether the

study is experimental or observational conditional on the partial history of subjects. To

the knowledge of the authors this assumption has not been made explicit elsewhere in the

literature. Finally the approach we propose encourages careful exploration of the problem

at hand. This ranges from attempting to understand how dropout is coming about to

trying to formulate plausible priors on poorly identified parameters.

The authors would like to thank Prof. Gary Frost for giving us access to the Counter-

weight Programme Pilot dataset as well as the reviewers and Vanessa Didelez for useful

discussion.
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