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Markov Processes
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Abstract

This paper addresses the question of predicting when a positive self-similar Markov
process X attains its pathwise global supremum or infimum before hitting zero for the
first time (if it does at all). This problem has been studied in [9] under the assumption
that X is a positive transient diffusion. We extend their result to the class of positive
self-similar Markov processes by establishing a link to [3], where the same question is
studied for a Lévy process drifting to −∞. The connection to [3] relies on the so-called
Lamperti transformation [15] which links the class of positive self-similar Markov
processes with that of Lévy processes. Our approach shows that the results in [9] for
Bessel processes can also be seen as a consequence of self-similarity.
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1 Introduction

In keeping with the development of a family of prediction problems for Brownian
motion and, more generally, Lévy processes, cf. [3, 8, 9, 11] to name but a few, we
address the question of predicting the time when a positive self-similar Markov process
(pssMp) attains its pathwise global supremum or infimum.

The interest and novelty in the current setting is to show that, in addition to the
approach in [9] for self-similar diffusions, the problem can be reduced via time-change
to a more homogenous setting. Unlike in the case of a general (transient) diffusion,
the method of time-change is a natural approach in the setting of positive self-similar
Markov processes. See for example [10] and [23] where a time-change is applied to a
geometric Brownian motion to obtain a Bessel process.

We shall spend some time to set up some notation in order to formulate the problem
rigorously. A positive self-similar Markov process X = {Xt : t ≥ 0} with self-similarity
index α > 0 is a [0,∞)-valued standard Markov process defined on a filtered probability
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Optimal Prediction for Positive Self-similar Markov Processes

space (Ω,G,G := {Gt : t ≥ 0}, {Px : x > 0}), which has 0 as an absorbing state and which
satisfies the scaling property: for every x, c > 0,

the law of {cXc−αt : t ≥ 0} under Px is equal to the law of X under Pcx.

Here, we mean “standard” in the sense that G satisfies the natural conditions (cf. [6],
Section 1.3, page 39) and X is strong Markov with càdlàg and quasi-left-continuous
paths. Lamperti [15] proved in a seminal paper that the family of pssMp splits into
three exhaustive classes which can be distinguished from each other by comparing their
hitting time of 0, that is, ζ := inf{t > 0 : Xt = 0}. The classification reads as follows:

(i) Px[ζ =∞] = 1 for all starting points x > 0,

(ii) Px[ζ <∞, Xζ− = 0] = 1 for all starting points x > 0,

(iii) Px[ζ <∞, Xζ− > 0] = 1 for all starting points x > 0.

In other words, a pssMp X starting at x > 0 either never hits zero, hits zero continuously
or hits zero by jumping onto it. The two subclasses of pssMps that are used here are

C :=
{
X is spectrally negative with non-monotone paths and

either of type (ii) or (iii)
}
,

Ĉ :=
{
X is spectrally positive with non-monotone paths and

either of type (i) and drifting to∞ or of type (iii)
}
.

By spectrally negative and spectrally positive we mean that the trajectories of X only
have downward or upward jumps, respectively, apart from the negative jump at time ζ
when X is of type (iii).

One of the aims here is to answer the following question: Given X ∈ C, is it possible
to stop “as close as possible” to the time at which X “attains” its supremum? In more
mathematical terms, define

Θ := inf{t ≥ 0 : Xt = Xζ} = inf{0 ≤ t < ζ : Xt = Xζ},

where X = {Xt : t ≥ 0} is the running maximum process Xt := sup0≤u≤tXu, t ≥ 0. By
definition of C, it follows that the set {t ≥ 0 : Xt = Xζ or Xt− = Xζ} is a singleton; see
Subsection 2.3 for details. We are interested in the optimal stopping problem

inf
τ
Ex[|Θ− τ | −Θ], (1.1)

where x > 0 and the infimum is taken over a certain set of G-stopping times τ which
is specified later. The term “attains” is used in a loose sense here. Indeed, if X has
negative jumps it might happen that the supremum is never attained. However, the above
definition ensures that we have XΘ = Xζ on the event {XΘ ≥ XΘ−} while XΘ− = Xζ on
the event {XΘ < XΘ−}.

Analogously, one may try to stop “as close as possible” to the time at which a process
X ∈ Ĉ “attains” its infimum before hitting zero (if at all). To this end, let

Θ̂ := inf{0 ≤ t < ζ : Xt = Xζ−},

where X = {Xt : t ≥ 0} the running minimum process Xt := inf0≤u≤tXu, t ≥ 0. Again,
by definition of Ĉ, the set {0 ≤ t < ζ : Xt = Xζ− or Xt− = Xζ−} a singleton; see
Subsection 2.3 for details. If X has positive jumps, the word “attains” is used in a loose
sense analogously to above. Stopping as close as possible to Θ̂ then leads to solving the
optimal stopping problem

inf
τ
Ex[|Θ̂− τ | − Θ̂], (1.2)
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where x > 0 and the infimum is taken over a certain set of G-stopping times τ which is
specified later.

Our interest in (1.1) and (1.2) was raised thanks to [9], where the authors solve (1.2)
under the assumption that X is a diffusion in (0,∞) such that limt→∞Xt = ∞. Their
result states that the optimal stopping time is given by

ρ∗1 = inf{t ≥ 0 : Xt ≥ f∗(Xt)}, (1.3)

where f∗ is the minimal solution to a certain differential equation. In particular, when
X is a d-dimensional Bessel process with d > 2, it is shown that f∗(z) = λ∗1z, z ≥ 0, for
some constant λ∗1 > 1, which is a root of some polynomial. Due to the fact that the class
of Bessel processes for d > 2 belongs to the class of pssMps with α = 2, it is possible to
express the optimal stopping time (1.3) (up to a time-change) in terms of the underlying
Lamperti representation ξ (of X) reflected at its infimum. This suggests that the simple
form of (1.3) in the Bessel case is a consequence of the self-similarity of X and that (1.2)
(or an analogue of it) can also be solved for the class of pssMps.

In this paper we show that the speculations in the previous paragraph are indeed
true. Specifically, we prove that the optimal stopping times in (1.1) and (1.2) are of the
simple form

τ∗ = inf{t ≥ 0 : Xt ≤ K∗Xt} and τ̂∗ = inf{t ≥ 0 : Xt ≥ K̂∗Xt}

for some constants 0 < K∗ < 1 and K̂∗ > 1 respectively. As alluded to above, the key step
is to reduce (1.1) and (1.2) to a one-dimensional problem with the help of the so-called
Lamperti transformation [15] which links pssMps to Lévy processes. By doing so we
extend [3] to the case of pssMps. An additional challenge compared with [3] is that in
our setting, the corresponding optimal stopping problem for the underlying Lévy process
contains a negative discount factor which requires some careful analysis. This optimal
stopping problem is solved in (the self-contained) Section 5.

2 Preliminaries

2.1 Killed Lévy processes

A process ξ with values in R ∪ {−∞} is called a Lévy process killed at rate q ≥ 0 if ξ
starts at 0, has stationary and independent increments and k := inf{t > 0 : ξt = −∞} has
an exponential distribution with parameter q ≥ 0. In the case q = 0 it is understood that
P[k =∞] = 1, that is, no killing. It is well known that a Lévy process X killed at rate q is
characterised by its Lévy triplet (γ, σ,Π) and the killing rate q, where σ ≥ 0, γ ∈ R and Π

is a measure on R satisfying the condition
∫
R

(1 ∧ x2) Π(dx) <∞. The Laplace exponent
of ξ under P is defined by

ψ(θ) := log(E[eθξ11{1<k}])

for any θ ∈ R such that ψ(θ) <∞. It is known that (cf. Theorem 3.6 in [14]), for θ ∈ R,

E[eθξt ] <∞ for all t ≥ 0 ⇐⇒
∫
|x|≥1

eθx Π(dx) <∞, (2.1)

and in this case we have

ψ(θ) = −q − γθ +
1

2
σ2θ2 +

∫
R

(
eθx − 1− θx1{|x|<1}

)
Π(dx). (2.2)

In particular, if ξ is of bounded variation, (2.2) may be written as

ψ(θ) = −q + dθ −
∫
R

(1− eθx) Π(dx)
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for some d ∈ R.
Finally, for any killed Lévy process (starting at zero) and any v ∈ R with ψ(v) < ∞

the process

exp(vξt − ψ(v)t)1{t<k}, t ≥ 0,

is a P-martingale. Hence, we may further define the family of measures {Pv} with
Radon-Nikodym derivatives

dPv

dP

∣∣∣∣
Ft

= exp(vξt − ψ(v)t)1{t<k}, (2.3)

where {Ft : t ≥ 0} is the natural filtration associated to ξ. In particular, under Pv the
process ξ is a Lévy process and its Laplace exponent is given by ψv(θ) = ψ(v + θ)− ψ(v)

and infinite lifetime, that is, Pv[k =∞] = 1; cf. Theorem 3.9 in [14].

2.2 Scale functions

We suppose throughout this subsection that ξ is an unkilled spectrally negative Lévy
process (q = 0). Spectrally negative means that Π is concentrated on (−∞, 0) and thus
ξ only exhibits downward jumps. Observe that in this case, the Laplace exponent ψ(θ)

exists at least for θ ≥ 0 by (2.1). Its right-inverse is defined by

Φ(λ) := sup{θ ≥ 0 : ψ(θ) = λ}, λ ≥ 0.

A special family of functions associated with unkilled spectrally negative Lévy processes
is that of scale functions (cf. [13, 14]) which are defined as follows. For η ≥ 0, the
η-scale function W (η) : R→ [0,∞) is the unique function whose restriction to (0,∞) is
continuous and has Laplace transform∫ ∞

0

e−θxW (η)(x) dx =
1

ψ(θ)− η
, θ > Φ(η),

and is defined to be identically zero for x ≤ 0. Further, we shall use the notation W (η)
v (x)

to mean the η-scale function associated to X under Pv. For fixed x ≥ 0, it is also possible
to analytically extend η 7→ W (η)(x) to η ∈ C. A useful relation that links the different
scale functions is (cf. Lemma 3.7 in [13])

W (η)(x) = evxW (η−ψ(v))
v (x) (2.4)

for v ∈ R such that ψ(v) <∞ and η ∈ C. Moreover, the following regularity properties
of scale functions are known; cf. Sections 2.3 and 3.1 of [13].

Smoothness: For all η ≥ 0, W (η) is Lebesgue-almost everywhere differentiable. More-
over,

W (η)|(0,∞) ∈


C1(0,∞), if X is of bounded variation and Π has no atoms,

C1(0,∞), if X is of unbounded variation and σ = 0,

C2(0,∞), σ > 0.

(2.5)

Continuity at the origin: For all η ≥ 0,

W (η)(0+) =

{
d−1, if X is of bounded variation,

0, if X is of unbounded variation.
(2.6)
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Right-derivative at the origin: For all η ≥ 0,

W
(η)′
+ (0+) =

{
η+Π(−∞,0)

d2 , if σ = 0 and Π(−∞, 0) <∞,
2
σ2 , if σ > 0 or Π(−∞, 0) =∞,

(2.7)

where we understand the second case to be +∞ when σ = 0.
The second scale function is Z(η)

v and defined as follows. For v ∈ R such that ψ(v) <∞
and η ≥ 0 we define Z(η)

v : R −→ [1,∞) by

Z(η)
v (x) = 1 + η

∫ x

0

W (η)
v (z) dz. (2.8)

2.3 The Lamperti transformation

Lamperti’s main result in [15] asserts that any pssMp X may, up to its first hitting
time of zero, be expressed as the exponential of a time-changed Lévy process. We will
now explain this in more detail. Instead of writing (X,Px) to denote the positive self-

similar Markov process starting at x > 0, we shall sometimes write X(x) = {X(x)
t : t ≥ 0}

in order to emphasise the dependency of the path on its initial value. Similarly, we write
ζ(x) = inf{t > 0 : X

(x)
t = 0}.

For fixed x > 0 define

ϕ(t) :=

∫ xαt

0

(X(x)
s )−α ds, t < x−αζ(x).

It will be important to understand the behaviour of ϕ(x−αζ(x)−) := limt↑ζ(x) ϕ(x−αt). In
particular, note that the distribution of ϕ(x−αζ(x)−) does not depend on x > 0. Moreover,
the following result is known; see Lemma 13.3 in [14]. Here we write ζ when the initial
value of X is expressed through Px.

Lemma 2.1. In the case that ζ(x) = ∞ or that {ζ(x) < ∞ and Xζ(x)− = 0}, we have
Px[ϕ(x−αζ−) =∞] = 1, for all x > 0. In the case that ζ(x) <∞ and Xζ(x)− > 0, we have
that, under Px, ϕ(x−αζ−) is exponentially distributed with a parameter that does not
depend on the value of x > 0.

As the distribution of ϕ(x−αζ(x)−) is independent of x, we will rename it e. When
e =∞ almost surely we interpret it as an exponential distribution with parameter zero.
Now define the right-inverse of ϕ,

Iu := inf{0 < t < x−αζ(x) : ϕ(t) > u}, u ≥ 0.

Moreover, define the process ξ := {ξt : t ≥ 0} by setting, for x > 0,

ξt := log(XxαIt/x), 0 ≤ t < e

and ξt = −∞ for t ≥ e (in the case that e < ∞). The main result in [15] states that a
pssMp is nothing else than a space and time-changed killed Lévy process.

Proposition 2.2 (Lamperti transformation). If X(x), x > 0, is a positive self-similar
Markov process with index of self-similarity α > 0, then it can be represented as

X
(x)
t = x exp(ξϕ(x−αt)), t ≥ 0,

and either

(i) ζ(x) = ∞ almost surely for all x > 0, in which case ξ is an unkilled Lévy process
satisfying lim supt↑∞ ξt =∞, or
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(ii) ζ(x) <∞, X(x)

ζ(x)− = 0 almost surely for all x > 0, in which case ξ is an unkilled Lévy
process satisfying limt↑∞ ξt = −∞, or

(iii) ζ(x) < ∞, X(x)

ζ(x)− > 0 almost surely for all x > 0, in which case ξ is a killed Lévy
process.

Also note that we may identify

It =

∫ t

0

eαξs ds, t < e.

The version of the Lamperti transformation we have just given is Theorem 13.1
in [14], where one can also find a proof of it.

We conclude this subsection by explaining why the sets {t ≥ 0 : Xt = Xζ or Xt− =

Xζ} and {0 ≤ t < ζ : Xt = Xζ− or Xt− = Xζ−} mentioned in the introduction are

singletons. By definition of C and Ĉ it is clear that both sets are non-empty, but they
could potentially contain more than one element. In view of the Lamperti transformation
we see that the aforementioned sets contain only a single element provided the same is
true for the sets {t ≥ 0 : ξt = sup0≤u<∞ ξu or ξt− = sup0≤u<∞ ξu} and {0 ≤ t ≤ e : ξt =

inf0≤u<e ξu or ξt− = inf0≤u<e ξu}, where ξ is the underlying Lamperti representation of
X in C and Ĉ respectively. However, it is known that local extrema (and hence global
extrema) of Lévy processes are distinct except for compound Poisson processes, see
Proposition 4 in [4]. But for X in C or Ĉ the Lamperti transformation can never be a
compound Poisson process and thus the assertion follows.

3 Reformulation of problems and main results

3.1 Predicting the time at which the maximum is attained

Suppose throughout this subsection that X ∈ C with parameter of self-similarity α > 0

and let ξ be its Lamperti representation which is a spectrally negative Lévy process
killed at some rate q ≥ 0 satisfying limt↑∞ ξt = −∞ whenever q = 0. For θ ≥ 0, let ψ(θ)

be the Laplace exponent of ξ and φ(θ) = q + ψ(θ) the Laplace exponent of ξ unkilled.
Denote by Φ the right-inverse of φ and note that Φ(q) > 0.

We begin our analysis with a lemma the proof of which is almost identical to that of
Lemmas 1 and 2 of [9]. For this reason, we only prove what is particular about the case
at hand.

Lemma 3.1. For x > 0 and any G-stopping time τ with finite mean we have

Ex[|Θ− τ | −Θ] = Ex
[ ∫ τ∧ζ

0

F (Xt/Xt) dt] + Ex[(τ − ζ)1{τ>ζ}], (3.1)

where F (y) = 1− 2y−Φ(q), y ≥ 1.

Proof. For any G-stopping time τ with finite mean, following verbatim the proof of
Lemma 2 in [9], we have by Fubini’s theorem,

Ex
[ ∫ τ

0

(21{Θ≤t} − 1) dt
]

= Ex
[ ∫ τ

0

(1− 2Px[Θ > t|Gt])1{t<ζ} dt
]

(3.2)

+Ex[(τ − ζ)1{τ>ζ}].

where on {t < ζ},

Px[Θ > t|Gt] = Px′
[
s < sup

0≤u<ζ
Xu

]∣∣∣
s=Xt,x′=Xt

.
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Hence, using the Lamperti transformation we obtain for 0 < x ≤ s,

Px

[
s < sup

0≤u<ζ
Xu

]
= Px

[
log(s/x) < sup

0≤u<e
ξu

]
= e−Φ(q) log(s/x).

Plugging this into (3.2) gives the result.

We are interested in minimising the expectation on the left-hand side of (3.1) over
the set M of all integrable G-stopping times τ . The requirement that τ is integrable
ensures that (3.1) is well defined. Taking into account the specific form of the right-hand
side of (3.1), one sees that for x > 0,

inf
τ∈M

Ex[|Θ− τ | −Θ] = inf
τ∈M

Ex
[ ∫ τ∧ζ

0

F (Xt/Xt) dt].

It turns out that, in providing a solution to (1.1) we need to restrict ourselves to the
case that the underlying Lévy process in the Lamperti transform (and hence the pssMp)
satisfies a condition. We therefore define the modified class

C1 := {X ∈ C such that ψ(α) < 0}.

The criterion ψ(α) < 0 is a technical one, which turns out to be equivalent to Θ being
finite in mean.

Theorem 3.2. When X belongs to C, we have Ex(Θ) < ∞ for all x > 0 if and only if
ψ(α) < 0.

It is interesting to note that if Ex(Θ) <∞, then minimising Ex[|Θ−τ |−Θ] is equivalent to
minimising Ex[|Θ−τ |]. Noting from the Lamperti transformation that x−αζ(x) =

∫ e

0
eαξtdt,

one also sees that ψ(α) < 0 is also necessary and sufficient for Ex(ζ) <∞ for all x > 0.
Later on, in Section 7, we will provide examples where this condition can be checked.

Summing up, for X ∈ C1 we are led to the optimal stopping problem

v(x, s) = inf
τ
Ex
[ ∫ τ∧ζ

0

F ((s ∨Xt)/Xt) dt], 0 < x ≤ s, (3.3)

where the infimum is taken over all G-stopping times τ . We are now in a position to state
our first main result.

Theorem 3.3. Let X ∈ C1 with index of self-similarity α > 0, in which case its Lamperti
representation ξ is a spectrally negative Lévy process killed at rate q ≥ 0. Recall that φ
is the Laplace exponent of ξ unkilled and Φ its right-inverse. Let W (·)(z) be the scale
function associated with φ. Then the solution of (3.3) is given by

v(x, s) = −
∫ x

K∗s

zα−1

(
1− 2

(z
s

)Φ(q)
)
W (q)(log(x/z)) dz

and τ∗ := inf{t ≥ 0 : Xt ≤ K∗(s ∨Xt)}, where K∗ ∈ (0, 2−
1

Φ(q) ) is the unique solution to
the equation (in K)∫ log(1/K)

0

(1− 2e−Φ(q)z)W (q−φ(α))′
α (z) dz = W (q)(0) on (0, 1). (3.4)

In particular, τ∗ has finite mean.

Remark 3.4. The right-hand side of (3.4) is equal to zero unless ξ is of bounded variation;
see (2.6).

Theorem 3.3 is a consequence of the analysis in Section 4 and 5 and its proof is given
in Section 6. An explicit example is provided in Section 7.
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3.2 Predicting the time at which the minimum is attained

Suppose throughout this subsection that X ∈ Ĉ with parameter of self-similarity
α > 0 and let ξ again be its Lamperti representation which is a spectrally positive Lévy
process killed at rate q ≥ 0 satisfying limt↑∞ ξt =∞ whenever q = 0. Introduce the dual
ξ̂ = {ξ̂t : t ≥ 0} of ξ which is defined as

ξ̂t :=

{
−ξt, t < e,

−∞, t ≥ e,

where e = inf{t > 0 : ξt = −∞}. It follows that ξ̂ is a spectrally negative Lévy process
killed at rate q ≥ 0 satisfying limt↑∞ ξ̂t = −∞ whenever q = 0. For θ ≥ 0, let ψ̂ be the
Laplace exponent of ξ̂ and φ̂(θ) = q + ψ̂(θ) the Laplace exponent of ξ̂ unkilled. Finally,
denote by Φ̂ the right-inverse of φ̂ and note that Φ̂(q) > 0.

Analogously to Lemma 3.1, one can prove the following result.

Lemma 3.5. For x > 0 and any G-stopping time τ with finite mean we have

Ex[|Θ̂− τ | − Θ̂] = Ex
[ ∫ τ∧ζ

0

F̂ (Xt/Xt) dt] + Ex[(τ − ζ)1{τ>ζ}], (3.5)

where F̂ (y) := 1− 2y−Φ̂(q), y ≥ 1.

The specific form of the right-hand side of (3.5) shows again that for x > 0,

inf
τ∈M

Ex[|Θ̂− τ | − Θ̂] = inf
τ∈M

Ex
[ ∫ τ∧ζ

0

F̂ (Xt/Xt) dt],

where M is the set of all integrable G-stopping times τ . Similarly to the problem of
predicting the maximum, in order to solve the problem of predicting the minimum, we
need to work in a more restrictive class of pssMp than Ĉ. To this end, let us define

Ĉ1 := {X ∈ Ĉ such that ψ̂ exists at −α and ψ̂(−α) < 0 if q > 0}.

Following the agenda of the previous section, we include here some results indicating
when Θ̂ has a finite mean. It is notable that the conditions appearing in the definition of
Ĉ1 do not correspond to the existence of a first moment of Θ̂.

Theorem 3.6. Suppose that X ∈ Ĉ and q = 0. Then Ex(Θ̂) <∞, for all x > 0, if and only
if ψ̂(α) < 0. If X ∈ Ĉ and q > 0 then Ex(Θ̂) <∞, for all x > 0.

Note also that, if q = 0 and X ∈ Ĉ, then the issue of whether Ex(ζ) < ∞ is irrelevant
since ζ = ∞ almost surely. On the other hand, when q > 0 and X ∈ Ĉ, again noting
that x−αζ(x) =

∫ e

0
eαξtdt, we see that Ex(ζ) <∞ for all x > 0 if and only if ψ̂(−α) < 0, in

which case one also has Ex(Θ̂) <∞ for all x > 0 on account of the fact that Θ̂ ≤ ζ.
For X ∈ Ĉ1, we are led to the optimal stopping problem

v̂(x, i) := inf
τ
Ex[

∫ τ∧ζ

0

F̂ (Xt/(i ∧Xt)) dt], 0 < i ≤ x, (3.6)

where the infimum is taken over all G-stopping times if q > 0 or all integrable G-stopping
times otherwise. We can now state the analogue of Theorem 3.3.

Theorem 3.7. Assume that X ∈ Ĉ1 with index of self-similarity α > 0, in which case the
dual ξ̂ of the Lamperti representation of X is a spectrally negative Lévy process killed at
rate q ≥ 0. Moreover, recall that φ̂ is the Laplace exponent of the dual ξ̂ unkilled and Φ̂
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its right-inverse. Let Ŵ (·)(z) be the scale function associated with φ̂. Then the solution
of (3.6) is given by

v̂(x, i) = −
∫ K̂∗i

x

zα−1

(
1− 2

( i
z

)Φ̂(q)
)
Ŵ (q)(log(z/x)) dz

and τ̂∗ := inf{t ≥ 0 : Xt ≥ K̂∗(i ∧Xt)}, where K̂∗ > 21/Φ̂(q) is the unique solution to the
equation (in K)∫ log(K)

0

(1− 2e−Φ̂(q)z)Ŵ
(q−φ̂(−α))′
−α (z) dz = Ŵ (q)(0) on (1,∞). (3.7)

In particular τ̂∗ has finite mean.

Theorem 3.7 is again a consequence of the analysis of Sections 4 and 5 and the analogue
of Remark 3.4 applies here as well. An example including the case when X is a d-
dimensional Bessel process for d > 2 is provided in Section 7.

4 Reduction to a one-dimensional problem

4.1 Reduction of problem (3.3)

The aim in this subsection is to reduce (3.3) to a one-dimensional optimal stopping
problem.

We begin by reducing (3.3) to an optimal stopping problem in which X starts at x = 1.
More precisely, the self-similarity of X implies that the process∫ t∧ζ(x)

0

F ((s ∨X(x)

u )/X(x)
u ) du, t ≥ 0, (4.1)

is equal in law to the process

xα
∫ (x−αt)∧ζ(1)

0

F (((s/x) ∨X(1)

u )/X(1)
u ) du, t ≥ 0. (4.2)

Note that the process in (4.1) is adapted to G, whereas the process in (4.2) is adapted to
G̃(x) = {G̃(x)

u : u ≥ 0}, where G̃(x)
u := Gx−αu. We conclude that for 0 < x ≤ s,

v(x, s) = inf
τ
Ex[

∫ τ∧ζ

0

F ((s ∨Xt)/Xt) dt]

= xα inf
τ ′
E1[

∫ (x−ατ ′)∧ζ

0

F (((s/x) ∨Xt)/Xt) dt],

where the first infimum is taken over G-stopping times τ and the second over G̃(x)-
stopping times τ ′. In particular, the observation following Theorem 3.2 regarding the
finiteness of the mean of ζ when X ∈ C1 and the fact that F ∈ [−1, 1] on [1,∞) imply that
for both optimal stopping problems an optimal stopping time is given by the first hitting
time of the (closed) stopping set. Before we can continue with the reduction of (3.3), we
need to introduce a new filtration H := {Ht : t ≥ 0} in G. Recall that the process

ϕ(t) =

∫ t

0

(X(1)
u )−α du, t < ζ(1),

is right-continuous and adapted to G. Then

Iu = inf{0 < t < ζ(1) : ϕ(t) > u}, u ≥ 0,
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is a right-continuous process which is strictly increasing on [0, ϕ(ζ(1)−)). In particular, Iu
is a G-stopping time for each u ≥ 0. We now use Iu, u ≥ 0, to time-change the filtration
G according to

Hu := GIu , u ≥ 0. (4.3)

By Lemma 7.3 in [12] it follows thatH is right-continuous. Also observe that the Lamperti
representation ξ is adapted to H. Finally, denote by M(x)

1 the set of all G̃(x)-stopping
times and byM2 the set of all H-stopping times. As a final piece of notation before we
formulate the main result of this subsection, define the measure Pα by

dPα

dP1

∣∣∣∣
Ht

= eαξt−ψ(α)t1{t<e}. (4.4)

Lemma 4.1. Let f(z) = 1 − 2e−Φ(q)z, z ≥ 0, where Φ and q are as at the beginning of
Subsection 3.1. For 0 < x ≤ s, we have

v(x, s) = xα inf
τ ′∈M(x)

1

E1[

∫ (x−ατ ′)∧ζ

0

F (((s/x) ∨Xt)/Xt) dt] (4.5)

≥ xα inf
ν∈M2

Eα[

∫ ν

0

eψ(α)uf(Y log(y)
u ) du], (4.6)

where y = s/x, Y log(y)
u := log(y) ∨ ξu − ξu and ξu := sup0≤t≤u ξt for u ≥ 0. In particular,

under Pα the spectrally negative Lévy process ξ is not killed.

Proof. Using the fact that ϕ is strictly increasing on [0, ζ) and the Lamperti transforma-

tion shows that for τ ′ ∈M(x)
1 ,

E1[

∫ (x−ατ ′)∧ζ

0

F ((y ∨Xt)/Xt) dt] (4.7)

= E1[

∫ (x−ατ ′)∧ζ

0

F ((y ∨Xt)/Xt)1{t<ζ} dt]

= E1

[ ∫ (x−ατ ′)∧ζ

0

f
(

log(y) ∨ ξϕ(t) − ξϕ(t)

)
1{ϕ(t)<ϕ(ζ)} dt

]
.

Next, note that ϕ′(t) = (X
(1)
t )−α = e−αξϕ(t) for t < ζ(1). Hence, changing variables with

u = ϕ(t) shows that the right-hand side of (4.7) is equal to

E1[

∫ ϕ((x−ατ ′)∧ζ)

0

eαξuf
(

log(y) ∨ ξu − ξu
)
1{u<e} du].

As τ ′ ∈M(x)
1 , it follows that ϕ((x−ατ ′)∧ ζ) is a H-stopping time that is less or equal than

e, and hence we conclude that

v(x, s) ≥ x−α inf
ν∈M2

E1[

∫ ν

0

eαξuf
(

log(y) ∨ ξu − ξu
)
1{u<e} du]. (4.8)

In other words, we have found a lower bound for v(x, s) in terms of an optimal stopping
problem for the Lamperti representation ξ reflected at its maximum. Using Fubini’s
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theorem and a change of measure according to (4.4) yields for ν ∈M2,

E1[

∫ ν

0

eαξuf
(

log(y) ∨ ξu − ξu
)
1{u<e} du]

=

∫ ∞
0

E1[eαξuf
(

log(y) ∨ ξu − ξu
)
1{u<e}1{u<ν}] du

=

∫ ∞
0

Eα[eψ(α)uf
(

log(y) ∨ ξu − ξu
)
1{u<ν}] du

= Eα[

∫ ν

0

eψ(α)uf(Y log(y)
u ) du].

Finally, note that the Laplace exponent of ξ under Pα is given by the expression ψα(θ) =

ψ(θ + α)− ψ(α), θ ≥ 0. In particular, ψα(0) = 0 and hence ξ is not killed under Pα.

Despite the inequality in (4.6), we are in a good enough position with this lemma to
deduce the solution of (3.3). To see why, suppose that the optimal stopping time for (4.6)
is given by

ν∗ = inf{t ≥ 0 : Y
log(y)
t ≥ k∗}

for some k∗ > 0. Additionally, setting K∗ := e−k
∗
, define

τ∗ = inf{t ≥ 0 : Xt ≤ K∗(s ∨Xt)},
τ ′ = inf{t ≥ 0 : Xx−αt ≤ K∗((s/x) ∨Xx−αt)}.

It then holds that

Ex

∫ τ∗

0

F ((s ∨Xt)/Xt) dt] = xαE1[

∫ x−ατ ′

0

F (((s/x) ∨Xt)/Xt) dt]

= xαEα[

∫ ν∗

0

eψ(α)tf(Y
log(s/x)
t ) dt]

and thus τ∗ is optimal for (3.3). Hence it remains to show that the optimal stopping time
for (4.6) is indeed of the assumed form. This is done in Section 5.

4.2 Reduction of problem (3.6)

Analogously to the previous subsection, we want to reduce (3.6) to a one-dimensional
optimal stopping problem.

LetM(x)
1 be the set of all G̃(x)-stopping times andM2 the set of all H-stopping times

whenever X ∈ Ĉ1 is of type (iii). On the other hand, if X ∈ Ĉ1 is of type (i), then denote
byM(x)

1 the set of all integrable G̃(x)-stopping times and byM2 the set of all H-stopping
times ν such that

Ê−α[

∫ ν

0

eψ̂(−α)t dt] <∞,

where

dP̂−α

dP1

∣∣∣∣
Ht

= e−αξ̂t−ψ̂(−α)t1{t<e}. (4.9)

Following the same line of reasoning as in Subsection 4.1, one may obtain the
analogue of Lemma 4.1; see Lemma 4.2 below. The only difference is that we express
all in terms of the dual process ξ̂ so that we obtain a one-dimensional optimal stopping
problem in (4.11) that is of the same type as in (4.6) (a one-dimensional optimal stopping
problem for a spectrally negative Lévy process reflected at its supremum). The advantage
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of this is that once the one-dimensional problem is solved, we can deduce the solution for
both (3.3) and (3.6). Moreover, the fact that (4.6) and (4.11) only differ by switching to
the dual essentially says that the problem of predicting the time at which the maximum
or minimum is attained is, at least on the level of Lamperti representations, essentially
the same.

Lemma 4.2. Let f̂(z) = 1 − 2e−Φ̂(q)z, z ≥ 0, where Φ̂ and q are as at the beginning of
Subsection 3.2. For 0 < i ≤x, we have

v̂(x, i) = xα inf
τ ′∈M(x)

1

E1[

∫ x−ατ ′∧ζ

0

F̂ (Xt/(i ∧Xt)) dt] (4.10)

≥ xα inf
ν∈M2

Ê−α[

∫ ν

0

eψ̂(−α)uf̂(Ŷ log(ŷ)
u ) du], (4.11)

where ŷ = x/i, Ŷ log(y)
u := log(y) ∨ ξ̂u − ξ̂u and ξ̂u := sup0≤t≤u ξ̂t for u ≥ 0. In particular,

under P̂−α the spectrally negative Lévy process ξ̂ is not killed.

Analogously to Subsection 4.1, it follows that if the optimal stopping time for (4.11)
is given by ν∗ = inf{t ≥ 0 : Y

log(y)
t ≥ k̂∗} for some k̂∗ > 0, then

τ̂∗ = inf{t ≥ 0 : Xt ≥ K̂∗(i ∧Xt)}

is optimal in (3.6), where K̂∗ := ek̂
∗
. The remaining task is again to solve (4.11) and

show that the optimal stopping time is indeed given by ν∗. This is done in Section 5.

5 The one-dimensional optimal stopping problem

In this section we solve a separate optimal stopping problem which is set up in such
a way that once it is solved one can use it to deduce the solution of (4.6) and (4.11) and
hence the solution of (3.3) and (3.6) respectively. This section is self-contained and can
be read completely independently of Sections 3 and 4. Therefore, for convenience we
will reuse some of the notation – there should be no confusion.

5.1 Setting and formulation of one-dimensional problem

Let us spend some time introducing the notation and formulating the problem.
Suppose that Ξ = {Ξt : t ≥ 0} is an (unkilled) spectrally negative Lévy process defined on
a filtered probability space (Ω,F ,F := {Ft : t ≥ 0}, P̃) satisfying the natural conditions;
cf. [6], Section 1.3, p.39. For convenience we will assume without loss of generality
that (Ω,F) = (R[0,∞),B[0,∞)), where B is the Borel-σ-field on R. Let Ξt = sups≤t Ξs,
t ≥ 0. The reflected process Ξ− Ξ on (Ω,F) is denoted by Y = {Yt : t ≥ 0}. Further, let
q ≥ 0 and suppose that Ξ under P̃ is such that limt↑∞ Ξt = −∞ whenever q = 0. Also
assume that the Lévy measure associated with Ξ has no atoms whenever Ξ is of bounded
variation. This is a purely technical condition which ensures that the q-scale functions
W (q) associated with Ξ are continuously differentiable on (0,∞); see (2.5). Next, let
β ∈ R \ {0} such that Ẽ[eβΞ1 ] <∞. This condition is automatically satisfied if β > 0 due
to the spectral negativity of Ξ and hence it is only an additional assumption when β < 0.
The Laplace exponent is given by

φ(θ) := log(Ẽ[eθΞ1 ]), θ ≥ 0 ∧ β,

and its right-inverse is defined as

Φ(λ) := sup{θ ≥ 0 : φ(θ) = λ}, λ ≥ 0.
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In particular, note that Φ(q) > 0 and define

f(y) := 1− 2e−Φ(q)y, y ≥ 0.

Moreover, denote by P̃β the measure obtained by the change of measure

dP̃β

dP̃

∣∣∣∣
Ft

= eβΞt−φ(β)t, t ≥ 0.

Finally, for y ≥ 0, let Pβy be the law of

(y ∨ Ξt − Ξt,Ξt) t ≥ 0,

under P̃β .
We are interested in the optimal stopping problem

V ∗(y) := inf
τ∈M

Eβy [

∫ τ

0

e−qt+φ(β)tf(Yt) dt] (5.1)

for y ≥ 0 and (q, β) ∈ A, where

A := {(q, β) ∈ [0,∞)×R \ {0} : q > φ(β) or q = 0 and β < 0},

and the setM denotes the set of F-stopping times such that

Eβy [

∫ τ

0

e−qt+φ(β)t dt] <∞. (5.2)

Note that M is the set of all F-stopping times except when q = 0 and β < 0 in which
case (5.2) is indeed a restriction because φ(β) > 0 due to the assumption that limt↑∞ Ξt =

−∞.

5.2 Solution of one-dimensional problem

Given the underlying Markovian structure of (5.1), it is reasonable to look for an
optimal stopping time of the form

τk = inf{t ≥ 0 : Yt ≥ k}, k > 0.

However, when q = 0 and β < 0, we need to check whether τk ∈M.

Lemma 5.1. Let k > 0. If q = 0 and β < 0 (and hence φ(β) > 0), it holds that
Eβy [
∫ τk

0
eφ(β)t dt] <∞ for all y ≥ 0.

Proof. Recall that Ξt := sup0≤u≤t Ξu, t ≥ 0, and write τk,y := inf{t ≥ 0 : y ∨ Ξt − Ξt ≥ k}
for y ≥ 0. If y ≥ k the assertion is clearly true and hence suppose that y < k. Using the
fact that β < 0 in the second inequality, we have

Eβy [

∫ τk

0

eφ(β)t dt] = Eβy

[
eτkφ(β)

φ(β)

]
− 1

φ(β)

≤ φ(β)−1Eβy [eτkφ(β)]

= φ(β)−1Ẽ[eβΞτk,y ]

= φ(β)−1Ẽ
[
e−β(y∨Ξτk,y−Ξτk,y)+β(y∨Ξτk,y )]

≤ φ(β)−1Ẽ
[
e−β(y∨Ξτk,y−Ξτk,y )].

It is now shown in Theorem 1 in [2] that the expression on the right-hand side is finite.

EJP 0 (2012), paper 0.
Page 13/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Optimal Prediction for Positive Self-similar Markov Processes

The next question we address is what the value function associated with the stopping
times τk looks like. To this end, introduce the quantity

Vk(y) := Eβy [

∫ τk

0

e−qt+φ(β)tf(Yt) dt], y ≥ 0.

The next result gives an expression for Vk in terms of scale functions.

Lemma 5.2. For k > 0 and y ∈ [0, k) we have

Vk(y) = −
∫ k

y

f(z)W
(q−φ(β))
β (z − y) dz

+
W

(q−φ(β))
β (k − y)

W
(q−ψ(β))′
β (k)

(∫ k

0

f(z)W
(q−φ(β))′
β (z) dz −W (q−φ(β))

β (0)

)
. (5.3)

Proof. Define for η ≥ 0 the functions

Ṽk(y) := Eβy [

∫ τk

0

e−ηtf(Yt) dt].

Now recall from Theorem 8.11 in [14] that the density of the η-potential measure of Y
upon leaving [0, k) under Pβy is, for y, z ∈ [0, k], given by

U (η)(y, dz) =

(
W

(η)
β (k − y)

W
(η)′
β (z)

W
(η)′
β (k)

−W (η)
β (z − y)

)
dz

+W
(η)
β (k − y)

W
(η)
β (0)

W
(η)′
β (k)

δ0(dz). (5.4)

Here and for the remainder of this section, unless otherwise stated, all derivatives of
scale functions will be understood as the right limit of their densities with respect to
Lebesgue measure. Using the expression in (5.4), we see that for y ≥ 0,

Ṽk(y) =

∫ k

0

f(z)

(
W

(η)
β (k − y)

W
(η)′
β (z)

W
(η)′
β (k)

−W (η)
β (z − y)

)
dz

−W (η)
β (k − y)

W
(η)
β (0)

W
(η)′
β (k)

. (5.5)

If (q, β) ∈ A is such that q > φ(β) the result follows by setting η = q − φ(β). Hence, the
remaining case is when q = 0 and β < 0 (and hence φ(β) > 0). In this case, note that by
Lemma 5.1 we have for any w ∈ U := {z ∈ C : Re(z) > −φ(β)},

|Eβy [

∫ τk

0

e−wtf(Yt) dt]| ≤ Eβy [

∫ τk

0

eφ(β)t dt] <∞.

Now define for w ∈ U the functions

g(w) := Eβy [

∫ τk

0

e−wtf(Yt) dt] and

gn(w) := Eβy [

∫ τk

0

e−wtf(Yt) dt1{τk≤n}], n ≥ 0.

The functions gn are analytic in U since one can differentiate under the integral sign.
Moreover, for w ∈ U we have the estimate

|g(w)− gn(w)| ≤ Eβy [

∫ τk

0

eφ(β)t dt1{τk>n}]

EJP 0 (2012), paper 0.
Page 14/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Optimal Prediction for Positive Self-similar Markov Processes

which together with the fact that the right-hand side tends to zero as n ↑ ∞ implies that
gn converges uniformly to g in U . Thus, Weierstrass’ theorem shows that g is analytic
in U . Next, we deal with the right-hand side of (5.5). From the series representation
of W (q)(x) provided in the proof of Lemma 3.6 in [13], it is possible to show that (after
some work) the right-hand side of (5.5) is also analytic in η (on the whole of C). By the
identity theorem it then follows that (5.5) holds for η ∈ U , in particular for real η such
that η > −φ(β). Finally, to obtain the result for η = −φ(β), take limits on both sides
of (5.5) and use dominated convergence on the left-hand side and analyticity on the
right-hand side. This completes the proof.

Having this semi-explicit form for Vk, the next step is to find the “good” threshold
k > 0. This is done using the principle of smooth or continuous fit (cf. [17, 18, 19])
which suggests choosing k such that limy↑k V

′
k(y) = 0 if Ξ is of unbounded variation

and limy↑k Vk(y) = 0 if Ξ is of bounded variation. Note that, although the smooth or
continuous fit condition is not necessarily part of the general theory of optimal stopping,
it is imposed by the “rule of thumb” outlined in Section 7 of [1].

First assume that Ξ is of unbounded variation. In that case, we know that scale
functions are continuously differentiable on (0,∞). Using (2.4) and (2.6), it follows that

V ′k(y) =

∫ k

y

f(z)W
(q−φ(β))′
β (z − y) dz −

W
(q−φ(β))′
β (k − y)

W
(q−φ(β))′
β (k)

∫ k

0

f(z)W
(q−φ(β))′
β (z) dz.

Letting y tend to k yields

0 = lim
y↑k

W
(q−φ(β))′
β (k − y)

W
(q−φ(β))′
β (k)

∫ k

0

f(z)W
(q−φ(β))′
β (z) dz. (5.6)

Now note that by (2.4) and (2.7) we have

lim
y↑k

W
(q−φ(β))′
β (k − y) = lim

y↑k
e−β(k−y)(W (q)′(k − y)− βW (q)(k − y)) ∈ (0,∞].

Similarly, W (q−φ(β))′
β (k) = e−βk(W (q)′(k)− βW (q)(k)) which is clearly positive if β < 0. If

β > 0, this is still true because W (q)′(z)/W (q)(z) > Φ(q) for z > 0 and Φ(q) > β. In view
of (5.6), we are forced to conclude that∫ k

0

f(z)W
(q−φ(β))′
β (z) dz = 0.

Similarly, if Ξ is of bounded variation, we get

0 =
W

(q−φ(β))
β (0)

W
(q−φ(β))′
β (k)

(∫ k

0

f(z)W
(q−φ(β))′
β (z) dz −W (q−φ(β))

β (0)

)
and hence, using (2.4) and (2.6), we infer∫ k

0

f(z)W
(q−φ(β))′
β (z) dz = W (q)(0). (5.7)

Summing up, irrespective of the path variation of Ξ, we expect the optimal k > 0 to
solve (5.7) and therefore we need to investigate the equation more closely.

Lemma 5.3. The equation

h(k) :=

∫ k

0

f(z)W
(q−φ(β))′
β (z) dz −W (q)(0) = 0 (5.8)

has a unique solution k∗ on (0,∞). In particular, k∗ > log(2)/Φ(q).
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Proof. Using (2.4), it follows that

h′(k) = f(k)e−βk(W (q)′(k)− βW (q)(k))

for k > 0. If (q, β) ∈ A such that β > 0, then Φ(q) > β and, using (2.4),

W (q)′(z)

W (q)(z)
=
W ′Φ(q)(z)

WΦ(q)(z)
+ Φ(q) > Φ(q) > β

for z > 0. Therefore, we see that h′(k) < 0 on (0, k0), h′(k0) = 0 and h′(k) > 0 on (k0,∞),
where k0 = log(2)/Φ(q). The same is of course true if (q, β) ∈ A and β < 0. Additionally,
it holds that limk↑∞ h(k) > 0. Indeed, let z0 > k0 such that f(z) ≥ 1/2 for z ≥ z0 and
hence for k > z0,

h(k) = h(k0) +

∫ k

k0

f(z)W
(q−φ(β))′
β (k) dz −W (q)(0)

≥ h(k0) +
1

2

∫ k

z0

W
(q−φ(β))′
β (z) dz −W (q)(0)

= h(k0) +
1

2
(e−βkW (q)(k)− e−βz0W (q)(z0))−W (q)(0),

where in the last equality we have used (2.4). Again by (2.4), W (q)(k) = eΦ(q)kWΦ(q)(k)

which together with the fact that Φ(q) > β implies that the right-hand side tends to
infinity as k ↑ ∞. Combining this with the fact that f(k0) = 0 and the intermediate value
theorem shows that there is a unique k∗ > k0 such that h(k∗) = 0. This completes the
proof.

We are now in a position to formulate our main result of this section.

Theorem 5.4. The solution to (5.1) is given by

V ∗(y) = −
∫ k∗

y

f(z)e−β(z−y)W (q)(z − y) dz, 0 ≤ y ≤ k∗, (5.9)

with optimal stopping time τk∗ , where k∗ is as in Lemma 5.3.

Proof. Let V be defined as the right-hand side of (5.9) and V (y) = 0 for y > k∗. It is
sufficient to check the following conditions:

(i) V (y) ≤ 0 for all y ≥ 0;

(ii) the process

e−(q−φ(β))tV (Yt) +

∫ t

0

e−(q−φ(β))uf(Yu) du, t ≥ 0,

is a Pβy -submartingale for all y ≥ 0.

To see why these are sufficient conditions, note that (i) and (ii) together with Fatou’s
lemma in the second inequality and Doob’s stopping theorem in the third inequality show
that for τ ∈M,

Eβy [

∫ τ

0

e−(q−φ(β))tf(Yu) du]

≥ Eβy [e−(q−φ(β))τV (Yτ ) +

∫ τ

0

e−(q−φ(β))tf(Yu) du]

≥ lim sup
t↑∞

Eβy [e−(q−φ(β))(t∧τ)V (Yt∧τ ) +

∫ t∧τ

0

e−(q−φ(β))uf(Yu) du]

≥ V (y).
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Since these inequalities are all equalities for τ = τk∗ the result follows.
The remainder of this proof is devoted to checking conditions (i) and (ii).

Verification of condition (i): Recall that k∗ > k0 = log(2)/Φ(q) and that f(z) ≤ 0 on
(0, k0] and f(z) > 0 on (k0,∞). It follows that τk∗ ≥ τk0

and hence, using the strong
Markov property, we see that

V (y) = Eβy [

∫ τk0

0

e−(q−φ(β))tf(Yt) dt] + Eβy [

∫ τk∗

τk0

e−(q−φ(β))tf(Yt) dt]

= Eβy [

∫ τk0

0

e−(q−φ(β))tf(Yt) dt] + Eβy [e−(q−φ(β))τk0V (Yτk0
)]

≤ 0,

where the last inequality follows from the fact that f(z) ≤ 0 on (0, k0] and V (y) ≤ 0 on
[k0,∞). This completes the proof of (i).

Verification of condition (ii): The proof of this appeals to standard techniques and,
hence, we only outline the main steps and omit the details.

As for a first step, one may use the Markov property to show that the process

Zt := e−(q−φ(β))(t∧τk∗ )V (Yt∧τk∗ ) +

∫ t∧τk∗

0

e−(q−φ(β))uf(Yu) du, t ≥ 0,

is a Pβy -martingale for 0 < y < k∗. Indeed, for t ≥ 0, the strong Markov property gives

Eβy [Zτk∗ |Ft] = Zτk∗ 1{τk∗<t} + Eβy [Zτk∗ |Ft]1{t≤τk∗}

= Zτk∗ 1{τk∗<t} +

∫ t

0

e−(q−φ(β))uf(Yu) du1{t≤τk∗}

+e−(q−φ(β))tV (Yt)1{t≤τk∗}

= Zt∧τk∗

from which the desired martingale property follows.
As for the second step, use Doob’s optional stopping theorem to deduce that for

0 < k < k∗ the process e−(q−φ(β)t)(t∧τk)V (Yt∧τk) +
∫ t∧τk

0
e−(q−φ(β))uf(Yu) du, t ≥ 0, is a

Pβy -martingale for 0 ≤ y < k. Note that for y ∈ [0, k∗),

V (y) = −
∫ k∗−y

0

f(z + y)e−βzW (q)(z) dz.

Recalling the smoothness properties (2.5) of the scale function, an appropriate version
of Itô’s formula (cf. Theorem 70, Chapter IV of [20]) implies that

(Γ̂βV )(y)− (q − φ(β))V (y) + f(y) = 0, y ∈ [0, k∗), (5.10)

where Γ̂β is the generator of −Ξ under P̃β .
Finally, applying the appropriate version of Itô’s formula one more time to the process

At := e−(q−φ(β))tV (Yt) +

∫ t

0

e−(q−φ(β))uf(Yu) du, t ≥ 0,

(note in particular that V is continuously differentiable at k∗ when Ξ is of unbounded
variation and it is continuous at k∗ otherwise), writing κ = q − φ(β), we get after some
standard calculations that

dAt = e−κt[(Γ̂βV )(Yt)− κV (Yt) + f(Yt)]dt+ e−κtV ′(Yt)dΞt + dMt, t ≥ 0,
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where the final term on the right-hand side is a martingale. Now using (5.10), the
observation that Y does not jump downwards, V = 0 on (k∗,∞) and the fact that
k∗ > log(2)/Φ(q), which implies that f ≥ 0 on (k∗,∞), we see that is a Pβy -submartingale
for all y ≥ 0. This finishes the sketch of the proof of (ii).

6 Proofs of main results

Proof of Theorem 3.2. Write Θ(x) in place of Θ to emphasise the dependency on the
initial position X0 = x > 0. Self-similarity, and in particular the Lamperti transform,
implies that

x−αΘ(x) =

∫ G

0

eαξt dt, (6.1)

where G = sup{t > 0 : ξt = ξe or ξt− = ξe}. It follows that Ex(Θ) < ∞ for all x > 0 if
and only if E1(Θ) <∞. Let {`t : t ≥ 0} be the local time process at 0 of ξ − ξ. Following
standard excursion theory, cf. Chapter 6 of [14] or Chapter VI of [4], making particular
use of the fact that the ladder height process of a (killed) spectrally negative Lévy
process is a (killed) unit drift, we have

E1(Θ) = E1

[∑
t<χ

e
αξ
`
−1
t−

∫ ςt

0

e−αεt(s)ds

]
+ E1

[∫ e

0

eαξt1(ξt−ξt=0)dt

]

= E1

[∑
t<χ

eαt
∫ ςt

0

e−αεt(s)ds

]
+ E1

[∫ e

0

eαξt1(ξt−ξt=0)dt

]
, (6.2)

such that the sum is taken over a Poisson point process of excursions of ξ − ξ from zero,
{(t, εt) : t ∈ I}, where I is the index set of the point process, εt := {εt(s) : s ≤ ςt} such that
εt(s) = ξ`−1

t−
−ξ`−1

t−+s, and ςt is the excursion length of εt; moreover, χ := inf{t > 0 : ςt =∞}
in the case that e = ∞ and, otherwise, χ := inf{t > 0 : ςt > e(t)}, where, for each
excursion indexed by t > 0, e(t) is an independent copy of the exponential random
variable e. Write n for the intensity measure of this Poisson point process of excursions.
For the case of a spectrally negative Lévy process, it is well known that χ is exponentially
distributed with parameter Φ(q). Note that Φ(q) is strictly positive if ξ drifts to −∞
or ψ(0) < 0, i.e. the process ξ is killed. If we write a = limp→∞Φ(p)/p, then it is also
known (cf. the computations in Section 6.3 of [14]) that the second expectation on the
right-hand side of (6.2) is equal to aE1[

∫ e

0
eαξtd`t]. The compensation formula and the

observation that χ = `e now tell us that

E1(Θ) = E1

[∫ χ

0

eαtdt

]
n

(∫ ς

0

e−αε(s)dz; ς < e

)
+ aE1

[∫ χ

0

eαtdt

]
=

1

α
E1[eαχ − 1]

(
n

(∫ ς

0

e−αε(s)dz; ς < e

)
+ a

)
(6.3)

such that both sides are finite (resp. infinite) at the same time. We immediately see that
E1[exp(αχ)] <∞ if and only if Φ(q) > α, that is to say, if and only if ψ(α) < 0. Appealing
to Exercise VII.6.5 in [4] we can quickly identify

n

(∫ ς

0

e−αε(s)dz; ς < e

)
=

∫
[0,∞)

e−αydV̂Φ(q)(y), (6.4)

where V̂Φ(q) denotes the renewal measures of the descending ladder height processes of
(ξ,PΦ(q)). Furthermore we have (see for example [5])∫

[0,∞)

e−αydV̂Φ(q)(y) =
α

ψ(α+ Φ(q))
, (6.5)
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which is finite and hence, considering this in the context of (6.3), the result is proved.

Proof of Theorem 3.3. The result follows by Lemma 4.1 (and what was said just after it)
and Theorem 5.4. Specifically, using Theorem 5.4 with Ξ equal to ξ unkilled, β = α (noting
in particular that φ(α) < q by assumption), y = log(s/x) and then setting K∗ := e−k

∗

gives

v(x, s) = −xα
∫ − log(K∗)

log(s/x)

(1− 2e−Φ(q)u)W (q−φ(α))
α (u− log(s/x)) du

= −xα
∫ x

K∗s

z−1(1− 2e−Φ(q) log(s/z))W (q−φ(α))
α (log(x/z)) dz,

where in the second equality we changed variables according to u = log(s/z). The
expression for v(x, s) in the theorem now follows after an application of (2.4). As for the
optimal constant K∗, we see that K∗ satisfies the equation∫ log(1/K)

0

(1− 2e−Φ(q)z)W (q−φ(α))′
α (z) dz = W (q)(0) on (0, 1).

The fact that τ∗ has finite mean follows from Lemma 5.1 and the discussion preceding
it. However, one can see this directly by noting that τ∗ ≤ ζ and that ψ(α) < 0 (see the
discussion following Theorem 3.2). The proof is now complete.

Proof of Theorem 3.6. Note that, similarly to the proof of Theorem 3.2, it suffices to
consider the case that x = 1. Similarly to (6.1) we have, under P1, that

Θ̂ =

∫ Ĝ

0

eαξtdt =

∫ Ĝ

0

e−αξ̂tdt,

where Ĝ = sup{t > 0 : ξt = ξ
e

or ξt− = ξ
e
}. A similar analysis via excursion theory shows

that, as long as the right-hand side is finite,

E1(Θ̂) =
1

α
[1− e−αχ̂]

(
n̂

(∫ ς

0

eαε(s)dz; ς < e

)
+ â

)
,

where χ̂, n̂ and â play the same role as χ, n and a, but now for the process ξ̂. Following the
reasoning that leads to (6.4) and (6.5), after some computation, we see that, whenever
Φ̂(q)− α > 0,

n̂

(∫ ς

0

eαε(s)dz; ς < e

)
=

−α
ψ̂(Φ̂(q)− α)

. (6.6)

Note that the right-hand side is positive valued if and only if ψ̂(Φ̂(q)− α) < 0. Moreover,
the left-hand side of (6.6) is a monotone function of α and hence we see that, when q = 0,
E1(Θ̂) <∞ if and only if α < Φ̂(0), i.e. ψ̂(α) < 0. Moreover, if q > 0, then ψ̂(0) < 0 and
thus a necessary and sufficient condition becomes simply that ψ̂(Φ̂(q)− α) < 0. Since we
are assuming that X ∈ Ĉ, which dictates that ψ̂(−α) < 0 when q > 0, then convexity of ψ̂
implies ψ̂(Φ̂(q)− α) < 0.

Proof of Theorem 3.7. The result follows by Lemma 4.2 (and what was said just after it)
and Theorem 5.4. Specifically, using Theorem 5.4 with Ξ equal to ξ̂ unkilled, β = −α
(noting in particular that ψ(−α) exists by assumption with φ(−α) < q if q > 0), y =

log(x/i) and then setting K̂∗ := ek
∗

gives

v̂(x, i) = −xα
∫ log(K̂∗)

log(x/i)

(1− 2e−Φ̂(q)u)Ŵ
(q−φ̂(−α))
−α (u− log(x/i)) du

= −xα
∫ K̂∗i

x

z−1(1− 2e−Φ̂(q) log(z/i))W
(q−φ̂(−α))
−α (log(z/x)) dz,

EJP 0 (2012), paper 0.
Page 19/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Optimal Prediction for Positive Self-similar Markov Processes

where in the second equality we changed variables according to u = log(z/i). The
expression for v̂(x, i) in the theorem now follows after an application of (2.4). As for the
optimal constant K̂∗, we see that K̂∗ satisfies the equation

∫ log(K)

0

(1− 2e−Φ̂(q)z)Ŵ
(q−φ̂(−α))′

−α (z) dz = Ŵ (q)(0) on (1,∞).

Once again, the fact that τ∗ has finite mean follows from Lemma 5.1 and the discus-
sion preceding it. But, also again, we can see this through other means. When q > 0,
we know that τ̂∗ has almost surely finite mean on account of the fact that τ̂∗ ≤ ζ and
ψ̂(−α) < ∞ (see remark after Theorem 3.6). For the case q = 0, the comparison of τ̂∗

with ζ is of no use as the latter is almost surely infinite. One can nonetheless verify that
τ̂∗ is integrable by noting that e.g. under P1, τ̂∗ =

∫ τ̂a
0

e−αξ̂tdt, for an appropriate value

of a, where τ̂a = inf{t > 0 : (sups≤t ξ̂s) ∨ (− log i)− ξ̂t > a}. By performing an excursion
decomposition, similar in spirit to (6.2), one verifies directly the integrability of τ̂∗. The
proof is rather long and, of course, unnecessary given the conclusion of Lemma 5.1.

7 Examples

In this section we present two examples, one of which shows that our results are
consistent with the existing literature.

Corollary 7.1. LetX be a pssMp with index of self-similarity α > 0 such that its Lamperti
representation is given by ξt = σWt − µt, t ≥ 0, where σ > 0, µ > 0 and Wt, t ≥ 0, is a
standard Brownian motion. In other words, X is of type (ii) such that limt↑∞ ξt = −∞.
Moreover, suppose that α < 2µ/σ2 (this ensures that X ∈ C1). Then we have

v(x, s) =
1

µ

[
xα
(

1−
(
K∗s

x

)α)(
1

α
+

2

α

(
x

s

)Φ(0))

− xα

α− Φ(0)

(
1−

(
K∗s

x

)α−Φ(0))
+

2sα(K∗)α+Φ(0)

α+ Φ(0)

(
1−

(
K∗s

x

)−Φ(0)−α)]
,

where Φ(0) = 2µ/σ2, and K∗ is the unique solution to

Kα−Φ(0) +
2Φ(0)− 3α

α
Kα +

2α

α+ Φ(0)
Kα+Φ(0) − 2Φ(0)2

α(α+ Φ(0))
= 0

on (0, 1). In particular, K∗ ∈ (0, 2−1/Φ(0)).

Proof. It is easy to check that ψ(θ) = σ2

2 θ
2 − µθ, Φ(0) = 2µ

σ2 and W (0)(x) = exΦ(0)−1
µ . Also

note that α < Φ(0) by assumption. For convenience, write k = K∗. It now follows from
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Theorem 3.3 that

v(x, s) = −
∫ x

ks

(
1− 2(z/s)Φ(0)

)
zα−1 (x/z)Φ(0) − 1

µ
dz

=
1

µ

[
− xΦ(0)

∫ x

ks

zα−1−Φ(0) dz +

∫ x

ks

zα−1 dz

+2(x/s)Φ(0)

∫ x

ks

zα−1 dz − 2s−Φ(0)

∫ x

ks

zα−1+Φ(0) dz

]

=
1

µ

[
− xΦ(0)

(
xα−Φ(0)

α− Φ(0)
− (ks)α−Φ(0)

α− Φ(0)

)
+
xα

α
− (ks)α

α

+2(x/s)Φ(0)

(
xα

α
− (ks)α

α

)
− 2s−Φ(0)

(
xα+Φ(0)

α+ Φ(0)
− (ks)α+Φ(0)

α+ Φ(0)

)]

=
1

µ

[
xα

α− Φ(0)

((
ks

x

)α−Φ(0)

− 1

)
− xα

α

((
ks

x

)α
− 1

)

−2s−Φ(0)xα+Φ(0)

α

((
ks

x

)α
− 1

)
− 2sαkα+Φ(0)

α+ Φ(0)

((
ks

x

)−Φ(0)−α

− 1

)]
.

Adding the second and third term gives

v(x, s) =
1

µ

[
xα
(

1−
(
ks

x

)α)(
1

α
+

2

α

(
x

s

)Φ(0))

− xα

α− Φ(0)

(
1−

(
ks

x

)α−Φ(0))
+

2sαkα+Φ(0)

α+ Φ(0)

(
1−

(
ks

x

)−Φ(0)−α)]
.

Next, let us derive the equation for K∗. Using (2.4) and changing variables according to
u = ez shows that K∗ is the unique root of∫ 1/K

1

u−α−1(1− 2u−Φ(0))(Φ(0)uΦ(0) − αuΦ(0) + α) du = 0 on (0, 1). (7.1)

Solving the integral and rearranging gives the claim.

Corollary 7.2. LetX be a pssMp with index of self-similarity α > 0 such that its Lamperti
representation is given by ξt = σWt + µt, t ≥ 0, where σ > 0, µ > 0 and Wt, t ≥ 0, is a
standard Brownian motion. In other words, X is of type (i) such that limt↑∞Xt =∞.

1. If α 6= 2µ/σ2, we have

v̂(x, i) =
1

µ

[
xα
((

K̂∗i

x

)α
− 1

)(
1

α
+

2

α

(
i

x

)Φ̂(0))

− xα

α+ Φ̂(0)

((
K̂∗i

x

)α+Φ̂(0)

− 1

)
− 2iα(K̂∗)α−Φ̂(0)

Φ̂(0)− α

((
K̂∗i

x

)Φ̂(0)−α

− 1

)]
,

where Φ̂(0) = 2µ/σ2, and K̂∗ is the unique solution to

KΦ̂(0)+α − 3α+ 2Φ̂(0)

α
Kα +

2α

α− Φ̂(0)
Kα−Φ̂(0) − 2Φ̂(0)2

α(α− Φ̂(0))
= 0

on (1,∞). In particular, K̂∗ > 21/Φ̂(0).

EJP 0 (2012), paper 0.
Page 21/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Optimal Prediction for Positive Self-similar Markov Processes

2. If α = 2µ/σ2, we have

v̂(x, i) =
1

µ

[
xα
(

1

α
+

2

α

(
i

x

)α)((
K̂∗i

x

)α
− 1

)

− x
2

2α

((
K̂∗i

x

)2α

− 1

)
− 2iα log(K̂∗i/x)

]
,

and K̂∗ is the unique solution to

K2α − 5Kα + 2α log(K) + 4 = 0

on (1,∞). In particular, K̂∗ > 21/Φ̂(0).

Proof. Clearly, −ξt = σWt − µt and it is straightforward to check that ψ̂(θ) = σ2

2 θ
2 − µθ,

Φ̂(0) = 2µ
σ2 and Ŵ (0)(x) = exΦ̂(0)−1

µ . We derive the result for α 6= Φ̂(0), the case when

α = Φ̂(0) is similar and we omit the details. For convenience, write k = K̂∗. By
Theorem 3.7 we have

v̂(x, i) = −
∫ ki

x

(
1− 2(i/z)Φ̂(0)

)
zα−1 (z/x)Φ̂(0) − 1

µ
dz

=
1

µ

[
− x−Φ̂(0)

∫ ki

x

zα−1+Φ̂(0) dz +

∫ ki

x

zα−1 dz

+2(i/x)Φ̂(0)

∫ ki

x

zα−1 dz − 2iΦ̂(0)

∫ ki

x

zα−1−Φ̂(0) dz

]

=
1

µ

[
− x−Φ̂(0)

(
(ki)α+Φ̂(0)

α+ Φ̂(0)
− xα+Φ̂(0)

α+ Φ̂(0)

)
+

(ki)α

α
− xα

α

+2(i/x)Φ̂(0)

(
(ki)α

α
− xα

α

)
− 2iΦ̂(0)

(
(ki)α−Φ̂(0)

α− Φ̂(0)
− xα−Φ̂(0)

α− Φ̂(0)

)]

=
1

µ

[
−xα

α+ Φ̂(0)

((
ki

x

)α+Φ̂(0)

− 1

)
+
xα

α

((
ki

x

)α
− 1

)

+
2iΦ̂(0)xα−Φ̂(0)

α

((
ki

x

)α
− 1

)
− 2iαkα−Φ̂(0)

Φ̂(0)− α

((
ki

x

)Φ̂(0)−α

− 1

)]
.

Adding the second and third term gives

v̂(x, i) =
1

µ

[
xα
((

ki

x

)α
− 1

)(
1

α
+

2

α

(
i

x

)Φ̂(0))

− xα

α+ Φ̂(0)

((
ki

x

)α+Φ̂(0)

− 1

)
− 2iαkα−Φ̂(0)

Φ̂(0)− α

((
ki

x

)Φ̂(0)−α

− 1

)]
.

Next, let us derive the equation for K̂∗. Using (2.4) and changing variables according to
u = ez shows that K̂∗ has to satisfy the equation∫ K

1

uα−1(1− 2u−Φ̂(0))(αuΦ̂(0) − α+ Φ̂(0)uΦ̂(0)) du = 0 on (1,∞).

Solving the integral and rearranging gives the claim.
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Remark 7.3. Note that in contrast to Corollary 7.1, in Corollary 7.2 there is no condition
required to ensure that X ∈ Ĉ1, since in this case X is of type (i) and then the only
requirement is that the Laplace exponent of the Lamperti transformation of X exists.
This is clearly the case in Corollary 7.2.

Remark 7.4. If X is a d-dimensional Bessel process with d > 2, then X is a pssMp with
index of self-similarity α = 2 and of type (i) with limt↑∞Xt = ∞. It is known that its

Lamperti representation is given by ξt = Wt + (d−2)
2 t. Setting σ = 1 and µ = d−2

2 in

Corollary 7.2, one recovers Theorem 4 of [9]. In particular, if d = 3 one sees that K̂∗ is
the unique solution to

K3 − 4K2 + 4K − 1 = (K − 1)(K2 − 3K + 1) = 0

on (1,∞). Solving this equation shows that K̂∗ = (3 +
√

5)/2. The corresponding optimal
stopping time can then be expressed as

τ̂∗ = inf{t ≥ 0 : Xt ≥ K̂∗(i ∧Xt)} = inf{t ≥ 0 : (Xt − (i ∧Xt))/(i ∧Xt) ≥ ϕ},

where ϕ := K̂∗ − 1 is the golden ratio. This was first observed and proved in [9].

Remark 7.5. Note that according to Theorem 3.6, Ex(Θ̂) <∞ for all x > 0, if and only
if ψ̂(2) = (22)/2− 2× (d− 2)/2 < 0. That is to say, Θ̂ has finite mean if and only if d > 4.
This agrees with what is already known in the literature. See for example Lemma 1 of
[22].
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