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Abstract

This article proposes a class of goodness-of-fit tests for the autocorrelation function
of a time series process, including those exhibiting long-range dependence. Test
statistics for composite hypotheses are functionals of a (approximated) martingale
transformation of the Bartlett’'s T,-process with estimated parameters, which
converges in distribution to the standard Brownian Motion under the null hypothesis.
We discuss tests of different nature such as omnibus, directional and Portmanteau-
type tests. A Monte Carlo study illustrates the performance of the different tests in
practice.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Let f be the spectral density function of a second order stationary time series process
{X (t) },z with mean p and covariance function
™
Cov (X (5),X (0) = f(A)cos(Aj)dx; 7=0,£1,4£2,....
—7

We shall assume that {X (t)},., admits the Wold’s representation
X(t)=p+Y a(f)e(t—j), witha(0)=1and » _a®(j) < o, (1)
j=0 =0

for some sequence { (t)},., satisfying E (¢ (t)) = 0 and E (¢ (0) e (¢)) = 0% if t = 0; and = 0
for all ¢ # 0. Under (1), the spectral density function of {X (t)},., can be factorized as

0.2
FO) = Zh(), A o,
L 12
with 1 (\) := Z;’goa(j)ew*) .
Let
HZ{h@:/ loghg()\)d)\zo, 96@}, (2)
0

where © C RP is a compact parameter space. Much of the existing time series literature is
concerned with parametric estimation and testing, assuming that h belongs to H, i.e. h =
hg, for some 0y € ©, because the parameter 6y and the functional form of hy summarize the
autocorrelation structure of {X (t)},.,. Notice that h € H in (2) guarantees that a (0) = 1
in (1) and 0% = mingee 2 [y f(A) /hg (\)dX. For our purposes, 0% can be considered a
nuisance parameter, as is also the mean .
Classical parameterizations that accommodate alternative models are the ARMA, ARFIMA,

fractional noise or Bloomfield’s (1973) exponential models (see Robinson, 1994 for defini-
tions). For instance, in an ARFIMA specification, H consists of all functions indexed by a

parameter vector 6 = (d, n, 5/)/, where § € © C (—1/2,1/2) x RP* x RP2_ of the form

1
11— e

hg (A) = , A e (0,7, (3)

such that =, and ®5 are the moving average and autoregressive polynomials of orders p;

and pe, respectively, with no common roots, all lying outside the unit circle.



Before statistical inference on the true value 6y is made, one needs to test the hypothesis

Hy : h € 'H, which can be equivalently stated as

. Ge, (\) _ é
Hy: Goulm) 7 for all A € [0, 7] and some 6, € O, (4)
where
YA
Go (M) =2 =dX\, A€ [0,7].
o (A) o ho ()\) [ ]

Under Hy, Gy, is the spectral distribution function of the innovation process {e (t)},c, and
Gy, (1) = o2,
Given a record {X (t)}I_, and a consistent estimator 67 of 6y under Hp, a natural esti-

mator of Gy, is defined as Gy, 1 (\), where

Gor (V) =22 ﬁ%ﬂ By eo,m (5)
T 2 gyt
Here T = [T/2], [2] being the integer part of z, and for a generic time series process
{V®)}iez,
T 2
A&&%:§%;;;V@Mmi,j:1wwf

denotes the periodogram of {V (t)}L_, evaluated at the Fourier frequency \; = 2mj/T for
positive integers j.

The formulation of Hy in (4) suggests to use Bartlett’s T), — process as a basis for testing
Hy. The T), — process is defined as

%Iuysz[%%%%—%yxemmy

Notice that agr is scale invariant and that, for j # 0, mod (T'), Iy ();) is mean invariant,
so omission of j = 0 in the definition of Gy 7 entails mean correction. That is, ap 7 is
independent of both p and o2.

Under short-range dependence and Hyp, we have that

Ix (A))
h90 ()‘j)

see Brockwell and Davis (1991, Theorem 10.3.1, p. 346). So, it is expected that ag, r will

max =o0(1),

- — I ()‘j)
1<5<T

be asymptotically equivalent to Bartlett’s U, — process for {e (t)},c7,

GO N L on
G ) A<

(@uy:ﬁﬂ[

2



with }
TXm

]
> (M), Ae(o,q].
j=1

[
GO.(N) = 2?”

In fact, under suitable regularity conditions, we shall show below that the aforementioned
equivalence holds also true under long-range dependence. Observe that the U, — process
o). and the T}, — process ag, 1 are identical when {X (t)},.; is a white noise process.

The U, —process Y. is useful for testing simple hypotheses when the innovations {e (t)}_,
can be easily computed, as is the case when {X (t)},., is an AR model. However, there are
many other models of interest whose innovations {e (t)}z;1 cannot be directly computed,
e.g. Bloomfield’s exponential model, or difficult to obtain, like in models exhibiting long-
range dependence, such as ARFIMA models. In those cases, it appears computationally
much simpler to use ag, 7 for testing simple hypotheses.

The empirical processes a% and ap 7, with fixed 6, are random elements in D [0, 7], the
space of right continuous functions on [0, 7] with left hand side limits, the cadlag space. The
functional space D [0, 7] is endowed with the Skorohod’s metric (see e.g. Billingsley, 1968)
and convergence in distribution in the corresponding topology will be denoted by “=".

Under suitable regularity conditions on {e ()}, , it is well known that
ofp = By, (6)

where Bl is the standardized tied down Brownian motion at 7. In terms of the standard

Brownian motion B on [0, 1], B} can be represented as

B}r(A):B<5> —23(1), Ae o],

T

Grenander and Rosenblatt (1957) proved (6) assuming that {e (t)},, is a sequence of in-
dependent and identically distributed (iid) random variables with eight bounded moments.
The 4id condition was relaxed by Dahlhaus (1985), who assumed that {e(t)},., behaves
as a martingale difference, but still assuming eight bounded moments. Recently Kliippel-
berg and Mikosch (1996) proved (6) under iid {¢ (t)},.; , but assuming only four bounded

moments. The i¢d requirement is relaxed by the following assumption.

A1 The innovation process {e (t)},c;, satisfies that B (e (t)"| Fi—1) = p, with p, constant
(u = 0 and gy = 0?) for r = 1,...,4 and all t = 0,+1,..., where F; is the sigma
algebra generated by {e (s),s < t}.



Assumption Al appears a minimal requirement to establish a functional central limit
theorem for aOT, due to the quadratic nature of the periodogram.
To establish the asymptotic equivalence between ag, 7 and a%, we introduce the following

smoothness assumptions on h.

A2 (a) his a positive and continuously differentiable function on (0, 7;

(b) |0log h (A) JOX = O (A1) as A — 0+.

This condition is very general and allows for a possible singularity of h at A = 0. It holds
for models exhibiting long-range dependence, like ARFIMA (ps, d, p;) models with d # 0, as
can easily be checked using (3) and that |1 — e™| = [2sin (A/2)].

Theorem 1 Assuming Al and A2, under Hy, (6) holds and
/\Zl[g)ﬂ] ‘Oth’T (N — 04% ()\)’ =o0p(1).

We can relax the location of the possible singularity in h at any other frequency A # 0, as
in Hosoya (1997) or, more recently, Giraitis, Hidalgo and Robinson (2001), or even allow for
more than one singularity. However, for notational simplicity, we have taken the singularity,
if any, at A = 0. If the location of the singularity were at A\° # 0, then A2 would be modified

to

A2’ (a) his a positive and continuously differentiable function on [O, )\O) U ()\0, 7T];
(b) [9log h (\) /0N = O (\A - /\0]_1) as A — A0,

We now comment on the results of Theorem 1. This theorem indicates that ay, 7 is as-
ymptotically pivotal. One consequence is that critical regions of tests based on a continuous
functional ¢ : D [0, 7] — R can be easily obtained. Different functionals ¢ lead to tests with
different power properties. Among them are omnibus, directional and/or Portmanteau-type
tests. For example, classical functionals which lead to omnibus tests are the Kolmogorov-
Smirnov (¢ (g) = supxejo.] 19 (A)]) and the Cramér-von Mises (¢ (g) = 1 foﬁg()\)2 d\),
whereas Portmanteau tests, defined as weighted sums of squared estimated autocorrelations
of the innovations, and directional tests are obtained by choosing an appropriate functional
©, see Section 3 for details.

On the other hand, in practical situations the parameters 6y are not known and, thus,

they have to be replaced by some estimate fp. In this situation, as Theorem 2 below



shows, the T}, — process is no longer asymptotically pivotal, and hence the aforementioned
tests are not useful for practical purposes. The unknown critical values of functionals of
the T}, — process with estimated parameters can be approximated with the assistance of
bootstrap methods. This approach has been proposed by Chen and Romano (2000) or
Hainz and Dahlhaus (2000) for short-range models using the U, — process and by Delgado
and Hidalgo (2000), who allow also long-range dependence models using the T}, — process.
Alternatively, asymptotically distribution free tests can be obtained by introducing a tuning
parameter that must behave in some required way as the sample size increases. Among
them, the most popular one is the Portmanteau test, although it has only been justified
for testing short-range models. Box and Pierce (1970) showed that the partial sum of
the residuals squared autocorrelations of a stationary ARMA process is approximately chi-
squared distributed assuming that the number of autocorrelations considered diverges to
infinity with the sample size at an appropriate rate. A different approach, in the spirit of
Durbin, Knott and Taylor (1976) for the classical empirical process, is that in Anderson
(1997), who proposed to approximate the critical values of the Cramér-von Mises tests
for a stationary AR model. The method considers a truncated version of the spectral
representation of g, 7 with estimated orthogonal components. The number of estimated
orthogonal components must suitably increase with the sample size. A similar idea was
proposed by Velilla (1996) for ARMA models. Finally, another alternative uses the distance
between a smooth estimator of the spectral density function and its parametric estimator
under Hy. This approach provides asymptotically distribution free tests for short-range
models assuming a suitable behavior of the smoothing parameter as the sample size diverges,
see e.g. Prewitt (1998) and Paparoditis (2000). However, the final outcome of all these tests
depends on the arbitrary choice of the tuning/smoothing parameters for which no relevant
theory is available.

This article solves some limitations of existing asymptotically pivotal tests, only justified
under short-range dependence, by considering an asymptotically pivotal transformation of
ag,. 7 related to the cusum of recursive residuals proposed by Brown, Durbin and Evans
(1975). We show that our testing procedure is valid under long-range specifications. In
the next section we provide regularity conditions for the weak convergence of oy, v and its

asymptotically distribution free transformation. In Section 3, we discuss the behavior of



tests of very different nature -omnibus, directional and smooth/Portmanteau- under local
alternatives converging to the null at the rate 7-/2. Section 4 reports the results of a small
Monte Carlo experiment. Some final remarks are placed in Section 5. Section 6 provides a
Lemmata with some auxiliary results, which are employed to prove, in Section 7, the main

results of the paper.

2. TESTS BASED ON A MARTINGALE TRANSFORMATION OF THE Tp
-PROCESS WITH ESTIMATED PARAMETERS

A popular estimator of 6y is the Whittle estimator
O7 := argmin Gy 1 (1), (7)
0cO

with Gy defined in (5). Let us define

60 (N) = agloghs (); St Z%o ), ()

and introduce the following assumptions,



A3 (a) ¢y, is a continuously differentiable function on (0,7]; (b) ||0¢g, () /OA|| = O (1/X)

as A — 0+; and for some 0 < § < 1 and all A € (0, 7], there exists a K < oo such that
(¢) supgg.9—ao|<s} [P0 (Nl < K [log A[; (d)

1 hgo ) / K
) — 1+ ¢y, () (0 —bo)| < —5log” A;
01000 <5/2) 10— Bo]* | 7o ) b () (0= 00)| < 3
and (e) Xg, 1= 7" [ by, (A) ¢, (A) dA is positive definite.

These assumptions are standard when analyzing the asymptotic distribution of the Whit-
tle estimator 07 and they are satisfied for all parametric linear processes used in practice.
Standard ARMA models satisfy a stronger condition, replacing the upper bounds in A3(c)
and (d) by a constant independent of A. It can be easily shown that A3 is satisfied for
ARFIMA models. Note that A3 (e) and Lemma 1 in Section 6 imply that Sz is positive

definite for T' large enough.

A4 The estimator in (7) satisfies the asymptotic linearization
T2 (07— 00) = S | g, (et (@) +0, (1. )

The expansion (8), in Assumption A4, is satisfied under A1 — A3 and additional standard
identification conditions, see Hannan (1973), Giraitis and Surgailis (1990), or Velasco and

Robinson (2000) for a later reference.

Define
oo (A) 1= By (A) — (% /0A ey d>\> S /07r bg, (N) By (dX).

Theorem 2 Under Hy and assuming A1 — A4, uniformly in X € [0, 7],

T/\/7r

(a) o, (N) = Z b0 (Nj) | St /0 i b, (N) & (dX) +0p (1) ;

(b) pp 1 = Aoo.

Theorem 2 indicates that the asymptotic critical values of tests based on ag, 7 cannot
be tabulated. However, we can use a transformation of g, 7 that converges in distribution
to the standard Brownian motion. To this end, it is of interest to realize that Theorem 2

(a) provides an asymptotic representation of ay, 7 as a scaled cumulative sum (cusum) of



the least squares residuals in an artificial regression model. For that purpose, observe that

by (2), and using the fact that ¢, is integrable (A3 (c)),

/O " gy (A dA = 0. ()

Now, because Lemma 1 in Section 6 with ¢ (\) = ¢,, (A) and (9) imply that

HZZ:l bg, (Ak) H = O (logT), the uniform asymptotic expansion in Theorem 2 (a) indicates

that
o 1 [f/\/w]
sup |, 7 (N) — =57—~=—2 ur (§)| =0, (1),
/\6[0771'} TT( ) G% (71') T1/2 ; ( ) P( )
where

T -1
ur (7) = I () = Yoy A1) [ D00 k) Yoo Q) | D70 M) e (M), G =1,...,T
k=1 pst

are the least squares residuals in an artificial regression model with dependent variable
I. (Aj) and a vector of explanatory variables vy, (A;) = (1, ¢, ()\j)),. This fact suggests
to employ the cusum of recursive residuals for constructing asymptotically pivotal tests, as
they were proposed by Brown, Durbin and Evans (1975), see also Sen (1982).

Let us define

T

. 1
Agr (§) = 7 > v (k)7 (k)
k=j+1

and assume that
A5 Ag, 1 (T) is non singular for T = T— p—1.

The (scaled) cusum of forward recursive least squares residuals is defined as

[T)\/ﬂ]

Z GT(j), A€ [O77T]7

j=1

_ 2 1
CIONE

BY () :

where
er (§) == I (\j) — 79, (M) br (), 4 =1,..., T,

are the forward least squares residuals and

T
br ()= Ak () 2 0, O - ().
k=j+1



It is worth observing that the motivation to employ only the first 7' Fourier frequencies to
compute the recursive residuals is due to the singularity of Agr (j) for all j > T.

The empirical process ,6’% can be written as a linear transformation of oz%,
/89’ ()‘) - EOO,TO‘% ()‘) ;A E [07 7T] )

where, for any function g € D [0, 7],

_ [T)\/ﬂ']
T 1 @ - -
L N=g[=\)-= ’A-Al'/ M) g(dX).
0,79 (\) g(T ) = ; Yo (N) Agp (4) Amw( >g( >
The transformation Lg, 7 has the limiting version L0, defined as
1 A B B s 5 5 B
0 _ / -1
L% (N =g~ — /0 Yo, (V) 45,1 (3) A 70, () 9 (d3) X,

where

Agy (\) := A i Vo <)\> Voo (A) A,

Notice that L%, is the martingale innovation of a., see Khmaladze (1981).

This type of martingale transformation has been used by Khmaladze (1981) and Aki
(1986) in the standard goodness-of-fit testing problem, by Nikabadze and Stute (1997) for
goodness-of-fit of distribution functions under random censorship, by Stute, Thies and Zhu
(1998), Koul and Stute (1998, 1999) and Khmaladze and Koul (2004) for dynamic regression
models, and by Stute and Zhu (2002) for generalized linear models.

Henceforth, By (\) := B (A\/m) for A € [0,7].

Theorem 3 Under Hy and assuming Al — A5,
3% = Br.

Because 6% cannot be computed in practice, as it depends on 6y, it is suggested to use

Boy s Where

and




are the forward recursive residuals in the linear projection of Ix (\;) /hg (Aj) on 7y (N)),

and where

T
bo,r (J) = Z >\k x (A ))

In order to establish the asymptotic equivalence between ,6’% and By, p, we also need

some extra smoothness assumptions on the model under the null.
A6 For some 0 < 0 <1 and all A € (0, 7], there exists a constant K < oo such that

5 |60 () — g, (N) = G, (V) (0= )| < K llog A
w001 1 - 90H

and ¢, satisfies A3 (a) — (c).
This assumption holds for all models used in practice, like ARFIMA in (3), Bloomfield’s

exponential and the fractional noise models mentioned before. In fact, they satisfy even the

stronger condition with K |log A| replaced by K.
Theorem 4 Under Hy and assuming Al — A6,

sup |Bo,.r (N) = B7 ()| = 05 (1) .

A€[0,m]

Theorem 4 holds true, mutatis mutandis, with 67 replaced by any TY/2_consistent esti-
mator. Also, from a computational point of view, it is worth observing that
Agr (G+ 1)y (/\')7’9 (\) Agr (G +1)
T+ (M) Ag (G 4+ 1) 78 ()

Ay () = Agp (G +1) -

and
b G) = b (G4 1)+ 451 G) 70 ) | 238 = )b (1)

see Brown, Durbin and Evans (1975) for similar arguments.

Alternatively to 8y, 1, we could have considered the cusum of backward recursive resid-

uals, i.e. )
o [TA/]
B A= ————=— eop 1 (j), Ae[0,7],
07, T Go, 1 () T1/2 j—;-l T [0, 7]
where
_ Ix (>‘j) / T . . =~

eQ,T(j) = hé‘ ()\) 779(>\j)b9,T(])7 J :p+17"'7T7
J

10



=
bo,r (j) == 279 Ak )) and Ay (j) TZ% (M) 7o (Ak) -
k=1

In this case, we can take advantage of the computational formulae,

_ _ Ay () ve (Nja1) v (1) Ag 1 (5)
A 1 /- N=A 1 O,L J a 0 J 0, T
o e ) e Ak ()70 D)
and
, Ix (Nj+1) v N7
bo,r (j+1) =bor (j )+A9T(J+1)’79 (Aj+1) T Ogn) — 79 (Nj+1) bo7 ()| -

This formulation may be useful in small samples when we suspect that the main discrep-
ancy between the null and the alternative is near m. However, from Theorems 3 and 4, it is
easily seen that the empirical processes BgTyT and 3y, 7 have the same asymptotic behavior.

Let ¢ : D [0, 7] — R be a continuous functional, under Hy and the conditions in Theorem
4,

d
¥ (BQT,T) — Y (Bﬂ') )

as a consequence of the continuous mapping theorem. For instance,

g
Kr = sup |Bo,r (?>
j*17 ST

2 s
Cr — ZﬂeT, (Z) 22 [t [ 5w

0 0

d d
= sup [Bx(A)|= sup [B(w)[,

A€[0,7] we[0,1]

The above limiting distributions are tabulated, see e.g. Shorack and Wellner (1986, pp. 34
and 748.)

3. LOCAL ALTERNATIVES: OMNIBUS, DIRECTIONAL AND
PORTMANTEAU TESTS

In this section, we shall show that tests based on 3y, ;- are able to detect local alternatives

of the type

1 1
Hip: h(X) = hg, (N) <1 +7‘T/2l (A + fsT (A)) , A € [0,7] and for some 6y € O,

where ;"1 (X)dX = 0,1 ()) satisfies the same properties as ¢, in A3(a)—(c), 7 is a constant,
possibly unknown, and for some finite Ty, supy~r, [s7 (-)| is an integrable function. Let us

consider some examples.

11



Example 1 If we wish to study departures of the white noise hypothesis in the direction of
fractional alternatives, we have that

ny 1
hoo (N)  |2sin(\/2) 24T

A€ 0,7,
for some d # 0. By a simple Taylor’s expansion up to its second term,
I(A) = —2log|2sin(A/2)| and T =d,

respectively, with the remainder function sy being such that for some 0 < e < 1, sy (N)] <

KX~ for all large T and some K < oc.

Example 2 If we consider departures in the direction of MA(1) alternatives, we obtain

that
My 1
he (\) 712

Thus, 7 =1, 1 (\) = —2cos (A\) and s7 (\) = n?.

Example 3 If we consider departures in the direction of AR(1) alternatives, then

h(\) [ 1 1 2} !

=|1—0=—2cos(\)+ =0 ,Ae (0,7,

Fou OV Fp 208N+ = [0, 7]

Thus, T =6 and  (X) = 2cos () with |s7 (N\)| < K, for all large T and some K < oco.
For X\ € [0, 7], let us define

ry=2 A{z(&) )42 % [T, ()1 () dx} a0

and

We have the following theorem.
Theorem 5 Assuming the same assumptions as in Theorem 4, under Hip,
BQT,T =M.

Using the fact that M and B; are identically distributed, except for the deterministic
shift 7 - L, and taking into account that 2'/2sin (( — 1/2)A\) and 1/ (j — 1/2)* 72 are the

12



eigenfunctions and eigenvalues in the Kac-Siegert representation of B, (Kac and Siegert,

1947), the orthogonal components of M

m(j) = 2%/2 (j— %) /()Trsin <(] - %) A) M\ dx j=1,2,..

are independently distributed normal random variables with mean 7 - ¢ (j) and variance 1,

0(j) =22 <j %) /Oﬂsin ((;%) A) LN d j=1,2,....

Using, the (asymptotically) orthogonal components of Boy.1s

mr (j) = 242 <j - %) /0 sin ((g - %) A) Bopr (N dX, j=1,2,...,

we obtain the spectral representation,

Bop,r (A) =22 Z i SH; Chs Iy

By Theorem 5 and the continuous mapping theorem, finitely many of the my (j)’s converge

where

%))\),)\G[O,W].

in distribution to the corresponding m (j)’s under Hyp. Using Parseval’s Theorem,
5 d m*(j)
Cr = Z i — 122
j=1 2
Using similar arguments to those in Eubank and LaRicca (1992) in the context of the

standard empirical process with estimated parameters, tests based on

with a reasonable choice of n > 1, will lead to gains in power, compared to C’T, in the
direction of alternatives with significant autocorrelations at high lags. These Portmanteau
tests are related to Neyman’s (1937) smooth tests, a compromise between omnibus and

directional tests, and for each n > 1, under Hy7, we have that
Wn T _> Xn 2 Z 62

That is, tests based on V~VnyT are asymptotically pivotal under Hy (7 = 0) for each choice of

n, and more importantly, they are able to detect local alternatives converging to the null

13



at the parametric rate T-/2, provided that ¢ (7) # 0 for some j = 1,...,n. The latter is in
contrast with the classical Portmanteau tests based on

- K s 2

Qupr = (T"pr (7)), (11)

j=1

where pr (j) is some estimate of the j — th autocorrelation of the residuals. It has been
shown that QnT’T is approximately distributed as a X%T,p under Hy specifying a short-
range model and assuming that np diverges as T'— oco. On the other hand, the resulting
test is able to detect alternatives converging to the null at the rate n;/ i-1/2 (see e.g. Hong
1986), which is slower than 7-1/2.

In practice, it is recommendable to use the discrete version
n
W =Y 17 ()
j=1

of Wn,T, with

o) =2 (5-3) - 25 (1) %) e ()

On the other hand, optimal tests of Hy in the direction Hip can be constructed apply-
ing results in Grenander (1950) (see also Grenander 1981, and references therein), as was
suggested by Stute (1997) in the context of goodness-of-fit testing of a regression function.
Asymptotically, testing for Hy in the direction of Hi7 is equivalent to test Hy : E (m (5)) = 0
for all j > 1, against Hy : E(m (j)) = 7-£(j) for all j > 1 with L known, but maybe with
unknown 7. Under Hy, the distribution of {m (j)} j>1 18 completely specified, as is also un-
der H; when the parameter 7 is known. Then, the likelihood-ratio for a finite dimensional

set (m(1),...,m(n)) is

n .
, N T-L(9)
A, = : -—F11-
e (73000 () - =52 (12)
7=1
Grenander (1950) showed that A, —, Ax as n — oo, and that the most powerful test at
the « significance level has a critical region of the form {As > k}, with Py {As >k} =
if 3222, % (§) < oo. The latter condition is satisfied in our context by Parseval’s Theorem
and A3(c) because [ is a square integrable function.
Define . .
Zj:l”]) -m (§)

P = .
<Z§il e (J)) v

14



Then under Hy, ¥ 4N (0,1), and in view of (12), ¢ forms a basis to obtain optimal critical
regions. When the sign of 7 is known, the critical region of the uniformly most powerful test
at the « significance level is {¢) > z1_4} when 7 > 0 and {¢) < —21_o} when 7 < 0, where
2y is the v quantile of the standard normal. Also, when the sign of 7 is unknown, the most
powerful unbiased test at the « significance level has critical region given by {|¢| > 21_q /2}.

These arguments suggest an (asymptotically) optimal Neyman-Pearson test in the direc-

tion of Hyr based on the first n orthogonal components of 3y, 1, using the test statistic
> i1 (g) - (4)
w2
<Zj:1 2 (j )>

Schoenfeld (1977) proposes the same type of statistic in the standard goodness-of-fit testing

wn,T =

context. Under Hy and the assumptions in previous sections, we have that
QLn,T 4N (0,1) as T'— oo for each fixed n.

Also, arguing as in Schoenfeld’s (1977) Theorem 3, it can be shown the convergence in

distribution of @AZJn%T when np increases with 7. Approximately optimal tests for Hy in

the direction of Hyr reject Hp at the « significance level when QLnT,T‘ > 21_q2 if T has

unknown sign, TZJnT’T > 21— When 7 > 0 and {pnT’T < —21—q When 7 < 0.
4. SOME MONTE CARLO EXPERIMENTS

A small Monte-Carlo study has been carried out to investigate the finite sample per-
formance of the different tests. To that end, we have considered the AR(1), MA(1) and
ARFIMA(0, dy, 0) models

(1—060L) X (1) =€ (1), (13)
X(t) =1 —=mnoL)e(t), (14)
(1-L)*X () =< (1), (15)

respectively, where the parameter 6y equals to dg, 1 and dy for the different models and L
is the lag operator. The innovations {e (t)}z;l are 71d N(0,1), and the sample sizes used
are T' = 200 and 500 with different values of the parameters dg, 7y and dp. For models
(13) and (14), we have considered dg,n, = —0.8,—0.5,0.0,0.5,0.8, whereas for model (15),
dp = 0.0,0.2,0.4. The ARFIMA model was simulated using an algorithm by Hosking (1984).
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For the three models and all values of 6y, we have computed the proportion of rejections
in 50,000 generated samples for both sample sizes. Whittle estimates are obtained according

to (7). For each of the models considered, ¢y is given by

0 — cos A

1—2(5005)\4—(52;
7 — COoS A

1 —277(:05)\4-772;
= —2log|2sin (A/2)].

AR(1), 9:5:¢5(A):210g’1—5e”\ )

MA(1), 6=1:0,00) = 8log)1—ne

ARFIMA(0,d,0), 6 =d: ¢y(\) = % log ‘1 e

We also report, as a benchmark, the proportion of rejections using

1
c%::;/o ag, (N dx = TZPHOT :

which is suitable for testing simple hypotheses. In addition, for the sake of comparison, we

provide the results for the Box and Pierce (1970) test statistic (11) using several values of
np increasing with 7', where p (j), j > 1, are the sample autocorrelations of the residuals

{&(t)}L,. Specifically, for the AR(1) model,

et)=(1—6rL) X (1),

with X (¢) = 0 for ¢ < 0; for the MA(1) model,

e(t)=X(t) —nre(t—1),

with & (0) = 0, whereas for the ARFIMA(0, d,0) model,

t—1

e(t) = 9(j,dr)X(t - j),

=0

where 9(j,d) are the coefficients in the formal expansion (1 — L)% = > 20V, d)L7, with

; — F(]_d) . _ > a—1_—=x
ﬂ(j’d)_f‘(—d)l“(j—i-l)’ F(a)—/o v e % dz.

The standardized values of QnT;p, (Qn%T — nT) / V2n7, are compared with the 5% critical
value of the standard normal, see Hong (1996), instead of the usual X%an) approximation
correcting by the loss of degrees of freedom due to parameter estimation, which is justified
under Gaussianity. Both approximations provide similar proportion of rejections. We have
also tried the weighting suggested by Ljung and Box (1978), which produced very similar

results.
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First we analyze the size accuracy of the Cramér-von Mises test based on 3y, p. The
empirical sizes of the tests based on C’T, reported in Table 1, are reasonably close to the
nominal ones. The asymptotic approximation improves noticeably when the sample size
increases from 7" = 200 to T" = 500, being this improvement uniform for all the models,
although the empirical size is smaller than the nominal level. Tests based on Q7 have
serious size distortions for the smaller sample size and large values of |n| in the MA (1) model,
since Whittle estimates can be quite biased in these cases. The empirical size of tests based
on Qn, 1 depends substantially on the number of autocorrelations used. In addition, for
the larger choices of ny implemented, Qan over-rejects Hy. The usual recommendation
nr=o (Tl/ 2) seems also reasonable here, in terms of size accuracy.

Next, we study the power performance of the tests. To this end, we report first, in Table
2, the proportion of rejections under the alternative hypothesis for different non-nested
specifications with the model specified under the null. We cannot conclude that one test is
clearly superior to the others in any of the four cases analyzed. As expected, the power of
the Portmanteau test decreases as np increases. In view of Tables 1 and 2, we can conclude
that a choice of large np, around T-1/2 produces reasonable size accuracy, but such a
choice is not the best possible one in order to maximize the power. The test based on Cp
is fairly powerful compared to the Portmanteau test for all cases considered, and it works
remarkably well when testing an AR(1) in the direction of a MA(1) alternative.

Finally, we analyze the power of the different tests when testing an AR(1) specification
in the direction of local ARFIMA(1,d,0) with d = 7/T7"/2, and in the direction of local
ARMA(1,1) alternatives with moving average parameter n = 7/T%/2, for different values
of 7. The proportion of rejections for these designs is reported in Tables 3 and 4. We also
consider tests based on the test statistics WnyT and ﬂznj (one sided and two sided, {p,f T
and ’{bnT’ respectively) choosing n = 3 and 6, which has been recommended by Stute,
Thies and Zhu (1998) for a different goodness-of-fit test problem. Of course, tests based on
the first n (asymptotic) orthogonal components of 3y, are sensitive to the choice of n,
as it also happens with tests based on the n (asymptotic) orthogonal components of oy,
(the estimated autocorrelations of the innovations) in Portmanteau tests. The omnibus
test based on Cp still works fairly well compared to the others, including the optimal and

smooth tests. The directional tests are the most powerful in the directions for which they
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are designed, and the tests based on WmT and Qn%T work very similarly, though Wn,T

exhibits a better size precision for the choices of n considered.
5. FINAL REMARKS

Our results can be extended to goodness-of-fit tests of models that can accommodate
simultaneously stationary and non-stationary time series. For instance, if the increments
Y () :=(1—-L)X(t),t = 0,£1,..., are second order stationary with zero mean and
spectral density g such that

/\111& AP g (A) = G > 0 for some d € [0.5,1.5),

we can define the pseudo-spectral density function of {X (t)},., f, as

1
11— e

f)= g

Thus, when d # 1, g has a singularity at A = 0, as it happens with many long-range
dependent time series (cf. A2). If {X ()}, is stationary, f becomes the standard spectral
density function.

If either {Y (t)},c; or {X (t)},cz satisfy a Wold’s decomposition, f admits the factoriza-

tion

o2

T2

) h(N),

where h satisfies A2. Thus, given a parametric family H, for example the ARFIMA speci-

fication given in (3), a T), — process for testing that h € H is

~ GY ~(A) A
WA = Y2 | e 2
g 1 (N) . @ x| A€ 0,7,

where G is analogous to G 7, but using the tapered periodogram, e.g.
2
T .
oy S w () X (1) e
RRAEEED SR

Here O = argmingee Gy 1 () is the Whittle estimator proposed by Velasco and Robinson

(2000), which admits a similar asymptotic first order expansion as in (8), and where w is a

taper function, e.g. the full cosine taper

1 2mt
w(t):i(l—cos(%>>, t=1,...,T.
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If the full cosine taper is used, because of its desirable asymptotic properties (see Velasco,

1999), it is recommended in practice to base our tests on the empirical process BIH’JTyT, where

P2 1/2 m
/ngT ()\ ):: <_"4> w e T . 17"'777
S T GeT ;
with
i o= D 0t )0 ) = A5 )% 3 20 ) Y
0,7 \J) = ho () Yo \Aj) 09T J)5 0o J) = Ag ~k:j+1’79 k ho %)
and

TS wh(t
P2 . Thm Zt:lw ( )2 — 513_2
(Xriw )
Under appropriate regularity conditions, it can be proved using tools in Velasco (1999) and

Velasco and Robinson (2000) that 34 7 = Bx.

Finally, the methodology can be extended to test the correlation structure of the inno-
vations of regression models (e.g. distributed-lags models) using the martingale part of the
U, — process based on the residuals. When E (2 (t)u (s)) = 0 for all ¢, s, where {2 (t)}]_,
are the regressors and {u (t)}tT:1 the error term, the residual U, — process is asymptotically
equivalent to the U, — process based on the true innovations, and there is no need of using
tests based on the martingale part of the U, —process. When E (z (t) u (t — s)) # 0 for some
s > 0, the first order expansion of the residuals U, —process depends on the cross-spectrum
of the innovations and regressors. However, it seems possible to apply the results in this
paper to implement tests based on the (approximate) martingale part of this U, — process

with estimated parameters.
6. LEMMAS

This section provides a series of lemmas which will be used in the proofs of the main
results. Some of them can be of independent interest. Henceforth, z(¥) denotes the k — th
element of a p x 1 vector z and K a finite positive constant. Also, we shall abbreviate g (\;)

by g; for a generic function g ().

Lemma 1 Let ¢ : (0,71] =R? be a function such that ||¢ (\)|| < K |log A", £> 1, and
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10C (X) JOA| < KX~ log | for all A\ > 0. Then, as T — oo,

T)\/TI' <10g T)
sup —— )dz|| < K~———+ 16
Ae[0,m) T Z S / ¢(@ T (16)
Proof. The left side of (16) is bounded by
1 [IN")\/W] 1 A
sup / ((z)dx sup ||= Z (j—/ ¢ (z)dx|| . (17)
Ae[0,m/T) /\€[7r/T,7r] =1 T Jo
The first term of (17) is bounded by
1 /T (log T)
—/ I¢ (= )||d:1:<K/ |10g:v| de < K~ )
™ Jo T
Next, by the triangle inequality, the second term of (17) is bounded by
= T/\/7r
1 1 w/T (j+1)m/T
s e -2 [ c@as+ s > / I¢; = ¢ @) dz. (18)
/\E[W/Tﬂr] T Jo /\E 7r/T7r

- Ny
The first term of (18) is bounded by KT~! (log T> since ||¢ (z)|| < K [logz|*. Next, by

the mean value theorem, the second term of (18) is bounded by

T-1 .(j+1)r/T 1
K / =
=1 jﬂ/f" )‘j

7
T

(VAN

log z|* ! da

T—

1 [U+YT/T
Z;/ log z|*~* da
=17 i

7r/T

K <log T

VAN

0

The next lemma corresponds to Giraitis, Hidalgo and Robinson’s (2001) Lemma 4.4,

which we state, without proof, for easy reference. For this purpose, let u; := h;l/ 2 (27TT)71/ 2 Zle

vj = (2nT) Y2 ST e(t)ei™ and Rx. () the spectral coherency (Brillinger, 1981, pp. 256-
257) between X and e. Also herewith ¢ will denote the conjugate of the complex number

C.

Lemma 2 Assuming A1 and A2, then, as T — oo, the following relations hold uniformly
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over1§j<k‘§f:

B (ujv;) = Rxej+O(j 'og(j+1));
E (ujv;) = ( “Llog (j + 1))

max (|E (ux75)], |E (ugvy)|) = ( ~llog (k)

max (|E (v@;)], |E (veuj)|) = ( “log (k)

The next lemma corresponds to the proof of expression (4.8) of Robinson (1995b, pp. 1648-
1651), using the orders of magnitude of the terms ai, as, by and by in Robinson (1995b) and
his Lemma 3, but using our Lemma 2 instead of Robinson’s (1995a) Theorems 1 and 2

when appropriate.

Lemma 3 Let ¢ :[0,7]=RP satisfy the same conditions of ¢g, in A8 (a) — (c). Then,

assuming A1 and A2, asT—>oo,f07"1§r<s§Tv,hzl,...,p
2
S

B[S (W (1 - 1) gK10g2(T>Z{j—110g +Z( ~log” (T +j—1k-1/2)}.

j=r j=r
Lemma 4 Let ¢ :[0, 7] —=RP satisfy the same conditions of ¢y, in A3 (a) — (c) and write

T/\/ﬂ' 2 T)\/ﬂ' 7 2
) . ~< . Xy 9
S0 mn 26 () @0=as 2o (T8

Then, under the conditions of Theorem 1, for some 0 < < 1/6,

E sup a5 (A) — o ()\)H -0 (T*‘5> . (19)

A€[0,7]

Proof. It suffices to show that (19) holds true for each element of the vector d% (A) —

afp (M\). Then, by the triangle inequality, the left side of (19) is bounded by

T/\/TI' T)\/T"

E sup — Z ’C “u]—vj] +2E sup Z C w; —Uj)| . (20)

Ae[0,7] T1/2




-1

by Lemma 2, because E ]vj]2 = (27)"" 02 and by assumption, Cg-k)’ < KlogT.

Next, to show that the second term of (20) is O (T°), it suffices to show that

L o), o 5
e 26 ) () (21)
By the triangle inequality, the left side of (21) is bounded by
s 7]
Bomax =3 W@ —7)| + Bl == 3 Wy (@ —75)]  (22)
s=1,..,|T] T1/2 = g a\Y J T1/2 ~ g a\% j
1 S
+E - max|=— > Vi@ -7, (23)

=[]+, T e j=[TP]+1

where % <p< % Using the inequality
2 2 2
(supp]cp]) :supp|cp] < Z]cp] , (24)
p

by the Cauchy-Schwarz inequality, the square of (22) is bounded by
2

[T ] s
4 _ ~53_ _
L3 8IS @) ~0(F er) o (r)

using Lemma 3.
To complete the proof, we need to show that (23) = O (T*‘;). To that end, let ¢ =
0,..., [fg} — 1 with % < ¢ < (3. By the triangle inequality, (23) is bounded by

. o, EROTE
—  m ®
E= _ I ”s
T1/2 s:[f@ﬁ}i,j > > ¢ vj (U —75) (25)

j=[T8]+1 J=[T8]+1
[T7]+a(s)T/[T¢]
k) —
——  max Z ¢ vj (j — )
/2 (7 7 . J

T [TB]H,,,.,T j:[Tﬁ]H
where ¢(s) denotes the value of ¢ = 0,..., [fg} — 1 such that {Tﬁ} + q(s)f/ [Tﬂ is the
largest integer smaller than or equal to s, and using the convention Zg =0ifd<ec.

By the definition of ¢ (s) and the Cauchy-Schwarz inequality, the square of the second

term of (25) is bounded by

X (7)) B G I

B max > Py <= Y B Y Py -y

T g=0,...,[T5]-1 j=[7]+1 q=0 J=[T8]+1

N
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by (24). But, using Lemma 3, we have that the right side of the last displayed inequality is
bounded by

log* T Ml gl T 1/2 L(1—¢)
K—— +— + lg|y/ " T3

q=0

< Klog'T <TV§_B + f<—%> < KT%,

where |q|, = max {1, |q|}. To complete the proof we need to show that the first term in
(25) is O (). To that end, we note that this term is bounded by

s

(k),, =
max  max —v5)|,
T1/2 4=0,. [Tg] 1 8 ‘ ~Z N C ( ])
j=1+[T8)+qT/[T¥]
where the max, runs for all values s =1+ [fﬁ} +qT/ [fg} Yo [fﬁ} +(q+1)T/ [fg}
By the Cauchy-Schwarz inequality and (24), the square of the last displayed expression is
bounded by

T<] 1 [TP]+(q+1)T/[T¥) s

> E S @)

9=0 s=1+[T8)+qT/[T5] |j=1+[TF]+qT/[T5]

7 (T2 [P+ et )T/ 1] =1
1 T(1=5)/2
2 {’Q|++ g} }

=0 s:l-‘r[Tﬁ] q’f/[f“ﬂ

'ﬂ»—t

log T
T

IA

(Tl logT + T30~ <>) < KT30-3) 1064 T < KT,

where in the first inequality we have used Lemma 3 and that for ¢ > 1 and ¢ > 0,

[T8)+(q+1)T/[T<]

> K KT=9)(1-%)
> S ———— > L= P
J=L4 [P aT ] (T2 +aT" )" \jmrs 7o raiy (7]
This completes the proof. O

Remark 1 Lemma 4 holds true for agT()\) and dgp()\) replaced by

respectively. This is so, because the triangle inequality implies that

E sup |65 (\) —ay (V] < 2B sup [ad () — a5 )]
Ae[0,7] Ae[0,7]
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Define for p and ¢ € [0, 7],

Cs (M? 19) = TT1/2

where ( is as in Lemma 1 and p < 9.

[Tﬂ / TI']

D

p:[f,u/ﬂ]—i—l
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Lemma 5 For 0 < pu<v1,92 <m, as T — o0,

T—1T—t
Z Z Cs ,LL, 191 N?Q?Q) (M? 1917192) (1 +o (1)) s (27)
t=1 s=1

where g (p,91,92) = 7+ fﬁlwz ¢ (uw) ¢ (u)du — (71'71 ffl ¢ (u) du) <7T*1 sz ¢’ (u) du).

Proof. A typical component of the matrix on the left of (27) is

[T9: /7] [T92/7] T—17T—t
=D DI LID DI 2D ) BT WL
1=[Tu/m|+1 po=[Tp/x]+1 =1 s=1

[f’ﬁl /7r] A [f‘ﬁg /7r]

A T-17—t
= Z (’“1) Z Z cos? (sAp) (28)
=1 s—1

2T £
p=[Tp/m|+1
[761/x] [792/x] T—17T—t
+’_Z"Z’f Z C(kl _ Z 1(0122) {COS (S>‘P1+p2) + cos (S>‘p1 —Pz)} :
p=[Tu/a]+1  po=[Tu/n]+ipastp  1=15=1

Because cos? A = (1 + cos (2)\)) /2, then using formulae in Brillinger (1981, p. 13) we have
that S22 ST cos? (sAy) = (T — 1)? /4 and, for p; # p,

T-1T-t

Z Z {cos (8Apy4ps) + €08 (8Ap; )} = =T,

t=1 s=1

and hence we conclude that the right side of (28) is, recalling that T = [T'/2],

(T - 1)2 1 [T&l/w]/\[fﬁg/ﬂ] 9 [T&l/w] [T&z/w]
CELTY ] -2 Y @y @
T £ T < ! £
p:[T,u/ﬂ']-i-l T plz[T,u/Tr]-i-l pg:[T,u/ﬂ']-i-l

p27#p1

= g™k (,91,95) (1+0(1)),

by Lemma 1 and where g(*1%2) (4 91, 9) denotes the (ki,ks)th element of the matrix
g (p, 91, 72). O

We now introduce the following notation. For 0 < vy < vp <,

1 [T /] T1/2 T
817T (’Ul, ’Ug) = ? Z Cp (T Z (52 (t) — 0'2)> (29)
p= [T‘vl /7r] +1 t=1
T t—1
Ear (v1,v2) ZS ZS ct—s (v1,v2), (30)
=2 s=1

where ¢ (-, -) is given in (26) and ( is as in Lemma 1.
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Lemma 6 Let 0 < vy < v < vg < 7. Then assuming Al, for k = 1,...,p and for some
B>0and0<d <1,

B B _ .
E(!é’ﬁ? (01,0 |5 (0,02)] ) <K(m-u)", =12 (31)

where S{k% (v1,v) and SZ(k% (vi,v) are the kth components of (29) and (30) respectively.

Proof. We begin with j = 1. By Lemma 1,

) [Tv2/7r (k) ‘log T 1-6/2
— ——/ C dZL‘ <Kf<K(,U2_U1) )
[T’Ul/ﬂ'

after we notice that we can take T-! < (vy — v1), since otherwise (31) holds trivially. On
the other hand, Al implies that [ (ZtT (2 () = 02)>2 < KT. So, using the inequality
(vg —v) (v —v1) < (v2 — v1)? and Cauchy-Schwarz inequality, we have that E (’51 7 (v1,v ’ ’E(k) v UQ)D <
K (va —v1)?7°.
To complete the proof, it suffices to examine that the inequality in (31) holds true for

j =2. Now

4
E(ggf“}(vl,@)fzwn S Y, (o, v) B (tr) e (s1) e (ta) € (54)) -

j=11<s;<t;<T
Since the number of equal indices in the set {¢1, s1, ..., t4, s4} does not exceed 4, by Assump-
tion Al, it follows that |E (e (t1) e (s1) ...e (ta) € (s4))| < K. Moreover, by Al, the inequality
|E (e (t1) e (1) ... (ta) € (s4))] # 0 can hold only if any t;, s; are repeated in {t1, s1, ..., 14, 54}
at least twice. Hence by Cauchy-Schwarz inequality, we obtain that

1/2

> (Cgf)—sj (1, Uz)>2

j=1 \1<s;<t;<T

= K Z (cg )S(vl,v2)>2

1<s<t<T

=
Eﬂk

E (82(k7)“ (1, Uz))4 <

2

But by Lemma 5, the right side of the last displayed equation is bounded by

K (% () - 5/ (0w du)> < K (vg — v

because ‘fvvf <C(k) (x))pd:r‘ < Klvg — v1]1_5/2 for p = 1,2. This concludes the proof choos-

ing 8 = 2 by the Cauchy-Schwarz’s inequality. O
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Lemma 7 Denote 1, := I. , — 0%/ (27) and
[T’U/ﬂ'] o T
1 _
Ry (v) = Tm D Gy amd Bp(v) == 3 Gnpy (0Sv<m)

1/2
p=1 T p=[Tw/x]|+1

with ¢ as in Lemma 1. Let 0 < v; < v < ve < m. Then assuming Al, for some > 0 and
0<d<1,

- 5
(a) (HRJ vy) — R ( H HR’ —RJ, (vl)H )gK(vgv1)2_5,j:1,2. (32)
(b) B} (v) 5N (0,472VO) (0)), 5 =1,2,
where VY (v) = o4 fov w) ¢’ (u) du/m + ok [ ¢ (v)du [y ¢' (u) du/m? and

V@ (v) = ot [T ¢ (u) ¢ (u) du/m+ok [T ¢ (u)du [] ¢ (u du/w with k denoting the fourth

cumulant of {e (t /O'}tez.

Proof. We begin with (a). We shall consider R2 (v) only, R (v) being similarly handled.
From the definition of 7,, and that

o [T‘vg/ﬂ]
R’% (U) - R%“ (1}2) = m ,Z Cpnpa
p:[Tv/ﬂ]+1

we have that
R3. (v) — R% (v2) = E1.r (v,12) + Ear (v, v2)
where & 7 (v,v2) and & 1 (v, v2) are given in (29) and (30) respectively. Now (32) follows
immediately from Lemma 6 and standard inequalities.
Part (b). We will examine Rk (v) 4N (0, 472V (v)), being the proof for j = 2 identi-
cally handled. But this follows by an obvious extension of Theorem 4.2 of Giraitis, Hidalgo
and Robinson (2001) because ( (u) satisfies the same conditions of hy, (u) there. O

Lemma 8 Assume Al — A4. Then, we have that for some 0 < § < 1/6,

[TA/x] [TA/x]

2w Ix; o2 o?
@ =5 ; Cj<h9T,]j %> = T1/2 Z Cj(e, 77) (33)
2 [T/\/7r]
Z CJQSGOJ Tl/ (9T*00)
7=1



- ;
[77/7] 073 [77/7]
o’ r / F1/2
- ? Z Cj¢00,j = (07 — bo)
J=[TA/m]+1

()

where the O, (1/T5) is uniform in X € [0, 7], and where ¢ (u) and || (u)|| are as in Lemma
1.

Proof. We examine (a), part (b) being similarly handled. The difference between the
left side of (33) and the first term on its right side is

[f‘)\ / 7r]

% p J /—:;ZJ] {Zj—:; -1+ ¢/90,j (07 — 90)} (34)
[TA/] IX,] [TA/] I,
T1/2 Z Cj ( 007 ,J> - T1/2 Z Cj¢0°]h (61 — 6o) .
First we notice that
br =60 =0, (T77). (35)

which follows by (8) in Assumption A4, and because

Ix k 5
T1/2 Z¢90, ( iy a,k) =0, (T > , (36)
(recall that under Hy, hj = hyg, ;), by Lemma 4 and Markov’s inequality, and
mw L ;. (o 1 7r , ) 4 x o .
i ;%k kSN0 [ dn, () gy () du ) £ [ g, () Br () (37

by Lemma 7 with ( (u) = ¢y, (u). Notice also that Z"kle b9y = O (logT) by Lemma 1
because (9) and that A3 part (c) implies that ¢y (\) satisfies the same conditions of ¢ ()

in Lemma 1.
Next, A3 part (d) implies that, uniformly in A € [0, 7], the norm of the first term of (34)
is bounded by

[T/\/ﬂ']
KT 07 — 00 = z log? Ay 65| 5252 = 0, (T172). (38)

28



because (35) implies that we can take § = KT~/2 in A3 part (d) so that )\;6 < K when

6 < KT~Y2? and j > 1, and also because by Markov’s inequality and Lemmas 4 and 7,

T/\/7r

2
sup Z pog 3, 6] (722 5 )| = 0 (77)

A€[0,7]

and because by Lemma 1 with ||¢ (u)|| [log® (u)| there,

[T}\/ﬂ]

1 1
sup |= Z }log2)\jH|CjH —;/0 }log ) ¢ (w)]| du —O(T_1/2)

xejo,n] | T =

The second term of (34) is O, (T“;) by Lemma 4 and Markov’s inequality. Next, proceeding
similarly as in (38), since ¢ (A) ¢p, (A) satisfies the same conditions of ¢ (A) [log A|, the third
term of (34) is T~ 'o? Z[T/\/W] ngzﬁ’go’jflﬂ (01 —60)+0, (T_‘;), which concludes the proof.[]

Lemma 9 Assuming Al, for any 0 < v < (1 —40) /4, with § as in Lemma 7, we have that
forallk=1,.. p,

et nm €800\
(a) E (7;, — )\1)1) - (7;_ — )\2)’0 < I(()‘2 - )‘1) (39)
4
e g, m) &R (g, m) o
O B e | SEKQema (40)

for all0 < \j < Ay < m, and where El(kj)w (A1, A2) and SQ(k% (A1, A2) are given in (29) and (30)

respectively.

Proof. We begin with (b). By standard inequalities, the left side of (40) is bounded by

KE (ﬁgﬁ (A1, >\2)>4 + K ((77 _1)\1)U - _1)\2)U>4E <82(kT) ()\2,71'))4-

By Lemma 6, for any 0 < § < 1, we have that the last displayed expression is bounded

by
(28 4
K(?; - i‘\_i))% + K ((7T 1}\1)1; e 1)\2)1)) (m— >\2)2—5 ‘ (41)

Consider the case that Ay — A\; < 271 (7 — \g) first. By mean value theorem, (41) is

K()\Q — )\1)276 + K U4 ()\2 — )\1)4
(r=A)" (=)™ (r = A) T (B (= M)+ (1—B) (= M)t
< K ()\2 . )\1)276741) + K (7‘( . )\2)76741)72 ()\2 . )\1)4
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where 8 = (A1, A2) € (0,1), and then because 1 — Ay > g —Ajand m— A\ > 71— A2 >0

But the right side of the last displayed inequality is bounded by K (Aa — A1)?~° 4 since
Ao — A1 <271 (m— ).

Next, consider the case for which 271 (r — A2) < Ag — A1. Using the inequality a¢ — b <
(a —b)* for any 0 < ¢ < 1 and a > b, we have that (41) is bounded by

o A2 = )™ (= x)* ™ -4
( 2 1) (7'( o )\1)41) (7T o )\2)47) - ( 2 1)

where we have used that 0 < Ao — A1 <7 — A\ and m — A2 < 2 (A2 — A1). This completes
the proof of part (b).

Next part (a). By definition and Al, the left side of (39) is bounded by

[FAa /7] 2
K 1

% |2 (k)
(7T - )\1)21) j—? Z C]

J=[Tx/m]+1

1 1 2(1  Z *)
+K<(7TA1)“_(7TA2)“> =~Z ¥

S K ()\2 _ )\1)2—5—21)

by Lemma 1 and proceeding as in part (b).

]
In what follows we shall abbreviate vj qu 7 (q) by Hyr (q).
Lemma 10 Assuming Al — A5, for alle >0
R g & Ix; o2
lim limsupPr{ su — Lo T AR XL )| >eb =0
Ap—T T—yoop )\Og/\pgﬁ T —Z T1/2 Z 7907‘7 ( 01,5 27T>
k=[Txo/7]+1 Jj=k+1
(42)
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Proof. Abbreviate h;Tl jI x,; — Izj by »; and take \g > 7/2 without loss of generality.
Noting that hy ! iIx; — 02/ (2m) = 5 +1;, where n; = I j — 0/ (27), we have that
7/ P
1 Hy, (k)
sup |= Z 7%1/2 Z Yoo.; (3 + 1) (43)

Xo<x<n | T )
0T k=[Tro/n]+1 j=k+1

K d : G
< ? Z ||H907T ” (1E> sup T1/2 Z V00.5%i

k=[Tho/n]+1 [Tho/7|<k<T k1
_ 9
-2
o s =1/2 Z Y00,5M51| (>
[TXo/n|<k<T T j=k+1
for any 0 < 0 < 1. The first factor on the right of (43) is bounded by

T g1 ool 3
1 k2 T — |TXo/m
k=[Txo/7]+1

|45 00| < & (1 - %>_1 ,

because ||4g, (V)| > K~ (7 — A) by Assumption A5 and because Lemma 1 implies that
sup ‘ Agy.1 (k) — Ag, <[k‘7r/ﬂ> H =0 (T‘llog2 T).
[Tho/7|<k<T

Next, by Lemma 9, the second term inside the braces on the right of (43) is O, (1) for

using that

0 > 0 small enough, whereas Lemma 8 and (35) imply that the first term is bounded by

_3 B
(1 k) e (1-%)
T
P Z 790J¢90,y Op (1) + Op sup ~ 1/

[Tho/w|<k<T T j=k+1 [Tho/w|<k<T e

= Op <|7T - )‘0|%)

because T~ ! < T-1 < infﬁAo/w]<k<T (1 — k/f), 0 < 6 < 1 and an obvious extension of
Lemma 1 but with ¢ (X) = 7, (A) ¢, (A) there. So, (43) is O, (]77 — )\0]5), which implies
that (42) holds true because d > 0. O
Lemma 11 Assuming Al — A6,

T

1 Ix; o2 logT

sup ||=— E (Do, — Poy.5) ( = = —> = Op < (44)
1/2 T,J (%) h . 2 T1/2

xefo,r] || T j=[Earn]+1 orj 4T
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Proof. The expression inside the norm on the left of (44) is

1 I
T1/2 Z ¢903 ( = , IE,j) (67 — 6o)

3=[Tx /7r]

1 02
+m Z ¢90,g ej — (61 — 00)
=[TA/]

T

1 . Ty . 2
TF > <¢9m‘ — P05, — Poo,j (01 — 90)) <L - g—ﬂ) : (45)

ho -
j=[TA/x]+1 073
By A6 and then noting that |a — b| < (a — b) 4+ 2b for a > 0 and b > 0, the norm of the
third term of (45) is bounded by

2

T

HHT 00|| IXJ o2 o2 B log T

< i Zylog oo +?Z|log)\j] =0p (7o
=1

T.J

T
167 — 6ol N Ixg o
el Zjuog(w o

by (35) and then using Lemmas 8 and 7 with ¢ (A\) = |log A|, and Lemma 1 respectively. So,
uniformly in A the third term of (45) is 0, (1). Likewise, the first term of (45) is O, (Tﬁl/ ?)
uniformly in A using Lemma 8 with ¢ (A) = gbgo (M) and (35). Observe that Q.bgo (M) satisfies
the same conditions that ¢ (\) in Lemma 8 by A6. Finally, the second term of (45) is
O, (T71/2) by Lemma 7 with ¢ (\) = ¢y, (V). O

Lemma 12 Assuming Al — A6, for all e > 0,

1 [T/\/W] H, 2
lim lim sup Pr su — 00, T A% - >e 5y =0.
Jmlmswpprd sp |2 30 e z o (7~ 55)
q:[T/\0/7r]

Proof. Notice that (35) implies that it suffices to show (46) in the set
{ll67 — 60| < KT*1/2m51}, where mg + mz'T~1/2 — 0. On the other hand, Lemma 11

and then Lemma 8 imply that, uniformly in g,

2 T
o ~ _
T1/2 Z Vor,i%% = ? Z 7907j¢/90,j T'/? (6o = 07) + Oy <T 5)
Jj=q+1 Jj=q+1
1 —1/2
T1/2 Z Yor i = Fg > Y0055+ Op (T /> (47)
Jj=q+1 Jj=q+1
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proceeding as in the proof of (44) but with s + n; replaced by 7; there. Observe that we
can take \g > m/2. Next, uniformly in g, A6 implies that

sup  [[Agy,1 (q) — Aoy, (@)l = (T — Xo) Op ([|61 — bol|)
[TAo/m|<q<T

which will imply that, with probability approaching one, as T" — oo,

ot o] gt o] 1+ ) < (1-8)

because || Ag, (\)|| > K~! (7 — \) and Lemma 1 implies that

sup ’AHO,T (@) — Ag, ([qw/ﬂ) H — O(T~'10g2T). So, we have that for 0 < § <
[TAo/m|<q<T
1/2,
[T/7] 7
1 Hy,. 7 (q) Ix; o2
x| T 2 TR 2 Yoy T (48)
OETT g=[Tro/a]+1 j=q+1 5]
. [TA/] , .y
< K sup |= 1_4
sk lE 3 e (1-)
q=[TXxo/7]+1
—6/2 T
q 1 /2
X sup <1:) — Yoo || + O (17 = 2ol 7
[TAo/m|<q<T T T1/2 j;l 0,713 p( )

by (47) and because T-1 < T-! < inf[TAo/w]<q<T <1 — q/f) But Lemma 9 implies that

=62 -

(-2) " ex (T ~ [M/7] )‘”2
T — -~ Y

SUP[Txo /| <q<T = O, (1), and A3 implies that

[T)\ / 7r]

1
Sup = Z HVHO,Q

dorsn T g=[Txo/m]+1

T

and hence the left side of (48) is O, (|7T — )\0|6/ 2). From here we conclude that (46) holds

true because § > 0. O
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7. PROOFS

This section provides the proofs of the main results which are based on the series of

lemmas given in the previous section.
Proof of Theorem 1

Part (a) follows by Lemma 4 with {(\) = 1 there. The proof of part (b) follows immedi-
ately from part (a) and Lemma 7 with ¢ (A) =1 there. O

Proof of Theorem 2

Part (a). By Lemma 8 with ¢ (A\) = 1 there and the definitions of Gor (A\) and G (),

we have that

T/\/ﬂ'
P G -G O) = |55 by | TV 000 ) (19)
T/\/7r T
_ 27 Ix
= - S 1—~ —_—
Z ¢90,J T GHO,T (7_‘_) T1/2 ;¢907kh907k

+Op (1) )
by (8) and (9), and where the o, (1) is uniform in A € [0, 7]. Likewise,
TV2 (Gop e (7) = G (M) = 0p (1) (50)

because (36) and (37) and that by Lemma 1 with ¢ (\) = ¢4, () and (9), we have that
1T

Lemma 1 with ¢ () = ¢g, (X) ¢p, (A) implies that [|Sp — Xg, || = O (T log®T).
On the other hand, noting that (50) and Al imply that

‘ =0 (Tﬁllog T). So, (50) holds true. Also, it is worth noticing that

GY (1) = 02 + O, (T‘1/2> : (51)

and that }GgoyT (m) — G% (71')‘ = 0p <fﬁ1/2> by Lemma 4, then by (49),(50) and (36),
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uniformly in A\, we obtain that

T2 (Gopr \) = GF (V)

ag,7(A) = ap(N)+

G (7)
Gy T<A>ff1/2< L] ) (52)
B Gopr(m) G (m)
(2] o r
- 0 - / —1
= arp (A)*f ]Z_; Poo,i5T GY. () T/2 g%o,kfe,k +op (1),

which concludes the proof of part (a).

Next part (b). Taking into account part (a), part (b) follows because Lemma 7 guarantees
the fidi’s convergence of . and its tightness. Tightness of the second term on the right of
(52) follows by (37) and Lemma 1 and then because fo by, (w)du is Holder’s continuous of
order greater than 1/2 by A3. This concludes the proof of the theorem. O

Proof of Theorem 3

Using (51) and recalling that Hy 1 (j) = %)J'Ag_} (7), we obtain that

[T/\/ﬂ]
1 2
BE(N) = Fire <§Iaj - 1) Hy, 1 ( Z Y60,k ( 1) +o0, (1),
=1

k=j+1
(53)
where the o, (1) is uniform in A € [0, 7].
Suppose, to be shown later, that the convergence in [0, Ag] holds true for any 0 < A\g < 7.
Then, because B, and the limit of the process T-1/2 ZE?/W] (Ie,j — g—i) are continuous in

[0, ], Billingsley’s (1968) Theorem 4.2 implies that it suffices to show that for all ¢ > 0,

1 [T/\/ﬂ'] I

. . (2

lim limsupPr{ sup |= Z 0o, T V) Z Yoo k < I — 1> >ey =0,
A—=T T 00 Ao <A< Tj:ﬁ/\o/ﬂ'] T1/2 Ml

which follows by Lemma 10, cf. the second term on the right of (43).

So, to complete the proof we need to show that, for any 0 < Ag < ,

T 1
_f1/2 2 <§I£,j - 1> H00 T Z Y60,k ( 1) = mBﬂ— ()\) , (54)

k =j+1

in [0, \g]. Fidi’s convergence follows by Lemma 7 part (b) after we note that the second
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term on the right of (53) is

L T L kA[TA/7] o
= = Z Hoor (7) | Yoo,k <_218,k - 1)
TR\ T j=1 7
~_ 1 —kA[TA/7] , . .
and | T7°)> . 5 Hg, 1 (j) | Vo, satisties the same conditions of Lemma 7 for ¢ (), e.g.

those of h, (A) in Giraitis, Hidalgo and Robinson’s (2001) Theorem 4.2. Then, it suffices to

prove tightness. Since aOT is tight, we only need to show the tightness condition of

F)\/ﬂ'] T 9
1 ) 1 o
Ar(\) = = Z Ho, 7 (5) T1/2 Z Y60,k (Ie,k — %> . (55)
k

j=1 =jt+1

By Billingsley’s (1968) Theorem 15.6, it suffices to show that
E (|Ar (9) = Az ()] [Ar (V) — Az (9)]) < K [A = p|?

forall 0 < o < ¥ < A < and some § > 1/2. Observe that we can take 71 < |\ — p
since otherwise the last inequality is trivial. Because (A —9) (9 — ) < (A — p)?, by the

Cauchy-Schwarz’s inequality, it suffices to show the last displayed inequality holds for
E|Ar () — Ap (u)|* which is

L v T 2 2
73 Z HHOyT (]) Z Z 790,[17,90,ng|:([€,€1 - %) (IE,EQ - %>:| Héo,T (k)
T j,k:[Tp/w]Jrl O =j+1 lo=k+1
[T/
K , ~ ~ 2~ 5 5
<5 X s OHer 0] < K (B~ H ()] +7 18T )
j.k=[Tp/m]+1

where H (\) := 1 fo/\ Hy, (z) dz and HﬁT (\)-H (A)H < KT 'logT, where

Hy (V) o= Tyl

i—1  |[Hoor ()|l by Lemma 1. From here we conclude by Billingsley’s

(1968) Theorem 15.6, because H ()) is a monotonic, continuous and nondecreasing function

such that ‘ﬁ()\) - I?[(,u)} <SKMN=—pl’,6>1/2and T~ < |\ — yl. O
Proof of Theorem 4

By definition of 3y ;» and %, it suffices to show that

1 ad ] 1 1 r lx

X,k »J
[ E —— — L - He T (k‘) — E Yoo i (_ _ [7.> (56)
T1/2 k=1 (hHT,kJ c > 0 T j*k 1 0-J h‘gij =
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and

{T/\ / TI']

1 1 Ix;  Gopr(m ))
—_ — 9 s Yo ) < = — .
GOT,T (ﬂ-) T kz_l o7 T1/2 j ;_1 0.7 h9T7j 27
[T/\/ﬂ]
1 1 Ixj  Gopr (W))
- @@ — H 5J _ T 57
G9T7T (7T) T ; 9T7T T1/2 J %1 fVGT,j (h@TJ 27T ( )

converge to zero uniformly in A € [0, 7]. Expression (56) is o, (1), uniformly in A € [0, 7],
because the contribution due to the term in brackets in the last line of (52), that is

—Bp,.; (27T (GY (7?))_1 STIT—1/2 Z;‘f:l ¢907klg,k> is easily seen to be zero. Next, because
T)\/ﬂ'

= Z oo ell || 45, H— z 170051

j=k+1
(- 9)

7T
1
< K? Z 17601
[T)\/ﬂ-

< K Z H790,

N\ -1
by integrability of -4, and that HAHO’T (k) <1 - k/T) H > 0 by A3 and A5, it implies that
the contribution into (56) due to the term o, (1) on the right of (52) is negligible.
Next we examine (57). Because (50) and (51), it suffices to show that

A/ m T T
rz Hy,,r (k) Z o Ixi 0_2 _ Hy,r (k) Z o Ixj; 0_2
T T1/2 i 1000 \ hgp;  2m T1/2 19 \hopy  2m

0.3 j=kt1
(58)

converges to zero uniformly in A € [0, 7], after observing that

[T/x] 7 [T/x]

T
sup Z Hy, 1 (k) Z Yor; — Z Hp, 1 (k) Z Y6o,5| =0

Ael0,m] | j=k+1 k=1 j=k+1

First, we observe that Lemmas 10 and 12 imply that it suffices to show the uniform

convergence in \ € [0, \g] for any \g < 7. But (58) is equal to

[T/\/ﬂ'

H 1 T IX,J' O'2 59
= Z o1, T —T Z 790,3'*’79%3') —he T om (59)
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[ 1 & Ix; o2
— E _ _- E B AV B
+TV k=1 (HOO’T *) Horr ) T1/2 j=k+1 J00 (hGTJ 277) . (60)

So, the theorem follows if (59) and (60) are 0,(1) uniformly in A € [0, Ag].
To that end, we first show that

[Tx/w]
— o,(1), 61
AZ}EPW]T le 16605 = Porall = 00 (1) (61)
sup HA;O{T(A)ngol W = o), (62)
AE[0,\0]
sup HA Al H = o,(1). (63)
AE[0,X0]

(61) follows proceeding as with the proof of (44) in Lemma 11 but without the factor

ol

or X5~ o2/ (27), (62) follows because Assumption A5 implies that Ag, (A\g) > 0 and be-

cause by Assumption A3 Hgbgo ) P, ( M) || satisfies the same conditions of ¢ (A) in Lemma 1,
so that

sup [ Agy (A) — Agyr (V|| = O (T~ 10g?T),
AE[0,Ao]

whereas (63) follows proceeding as with the proof of (61) and (62).

Now we show that (59) is 0,(1) uniformly in A € [0, Ag], which follows by Lemma 11 and
(61) — (63) noting that <%—,0’j - 7/9T7j> = (0, qﬁgm - ¢/9T,j)7 so does (60) by (61) and (63)
and that

1 r Ix o?
swp |=— 3 s (LT )| =0,0)
- 1/2 0,J (h . 2 ) p
by Lemmas 7 and 8 with ¢ (\) = 7y, (A) there and observing (35) and that by Lemma 1,

~ f -
T S (] 00.5%00.5 = S Voo (2) &5, () dr 0
Proof of Theorem 5

Under Hi7, we have that by definition,

(/] (/]
2 Ix o3r
Goor(\) = = =t = lj
T o T
9 [’f)\/ﬂ'] 7 T/\/TI'
T X, J
+m;4%w)p;mh
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By Lemmas 1, 4 and 7 with ¢ (A\) = 71 ()), and because |s7| is integrable, we have that

2 ﬁ)\/ﬂ] o3r A /
_ - . - —1/2
Goor (\) = = ; L+ =7 /O I (u) du + o (T )

So, using (51) because [ I (u)du = 0, we have that uniformly in A € [0, 7],

o (Gor (V) A - o V7] Aooor
T2 <L——> e e e / I (u) du
Gopr(7) Gy (m)T = T TY2x Jo
J_
+op (1)
N
= aT()\)Jr;/ [(u)du+op(1).
0
From here the conclusion is straightforward. O
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Table 1.

Empirical size of omnibus and Portmanteau tests at 5% of significance.

T =200 T =500

Cr CY Qsr Qer Quor Quor Cr C% Qsr Qsr Qisr Qssr
50, HO : AR(l)
-0.8 492 469 3.34 372 391 3.61 5.07 5.17 3.56 3.87 4.35 3.97
-0.5 4.38 4.96 2.80 3.38 3.60 3.41 4.96 5.16 3.12 3.75 4.17 3.82
0.0 4.07 496 266 3.35 3.45 3.37 4.62 5.10 3.00 3.63 4.11 3.82
0.5 3.59 495 2.67 333 357 340 4.50 5.04 297 3.82 4.17 3.80
0.8 3.08 492 289 344 3.73 3.54 4.27 5.11 3.33 3.77 432 3.88
Mo, Ho : MA(1)
-0.8 4.25 837 4.32 4.54 4.42 3.95 4.89 6.67 4.13 4.39 4.56 4.07
-0.5 4.16 5.06 2.83 3.41 3.65 3.38 4.89 5.18 3.13 3.76 4.15 3.83
0.0 4.08 4.96 2.51 3.26 3.46 3.32 4.62 5.10 2.94 3.61 4.05 3.82
0.5 3.60 5.08 2.65 3.30 3.55 341 449 5.15 296 3.77 4.13 3.82
0.8 3.89 7.72 15.33 15.30 15.33 15.05 4.63 6.42 8.03 844 868 &.17
do, Hy : 1(d)
0.0 3.53 496 2.76 3.40 3.68 3.47 448 510 3.13 3.90 4.29 3.83
0.2 3.54 495 2.76 3.39 3.63 3.46 4.54 5.15 3.14 3.89 4.27 3.81
0.4 3.58 521 2.79 3.39 3.59 3.44 458 537 3.14 3.88 4.27 3.80
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Table 2.

Empirical power of omnibus and Portmanteau tests at 5% of significance.

Hy: AR(1). Hy : MA(1).

T = 200 T = 500
7 Cr Q31 Qer Quor Qo7 Cr Qv Qer Qisr @357
-0.8 100.00 99.97 9995 99.25 92.34 100.00 100.00 100.00 100.00 100.00
-0.5 80.82 70.16 55.53 44.38 31.25 99.84 99.23 9754 88.65 68.72
0.2 7.12 5.04 4.98 4.86 4.34 12.16 8.31 7.35 6.27 5.21
0.5 70.82 72.03 57.50 46.06 32.15 98.59 99.32 97.83 89.19 69.29
0.8 99.56 99.99 99.95 99.30 92.76 100.00 100.00 100.00 100.00 100.00
Ho : MA(1). Hy: AR(L).
T =200 T =500
J Cr  Q3r Qsr Qior Q71 Cr Qv Qsr Qs Q357
-0.8 100.00 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00
-0.5 84.36 77.15 66.51 57.37 44.02 99.73 99.47 9845 94.26 &82.89
0.2 7.16 3.71 3.99 3.94 3.63 12.04 6.65 6.42 5.73 4.80
0.5 77.08 74.86 64.04 54.79 31.78 99.19 99.41 9835 93.77 82.04
0.8 100.00 100.00 100.00 100.00 99.97 100.00 100.00 100.00 100.00 100.00
Hy: 1(d). Hy : AR(1).
T = 200 T =500
0 Cr  Q3r Qsr Quor Q71 Cr Qs Qer Qs Q357
0.2 11.34 12.84 13.00 11.27 13.13 34.92 33.35 33.01 2398 15.71
0.5 26.81 34.11 41.17 3555 24.94 75.29 81.36 87.81 80.73 5852
0.8 9.82 1286 21.01 21.32 1541 33.21 38.74 5753 61.63 39.15
Hy : AR(1). Hy : I(d).
T =200 T =500
d Cr  Q3r Qsr Quor Q1 Cr  Q3r Qsr Q517 Q357
0.1 8.22 4.98 5.66 5.11 4.83 16.79 12.07 14.09 12.34 9.10
0.2 1990 13.74 16.20 15.23 11.81 51.77 45.04 53.29 4754 36.11
0.3 36.03 25.92 32.00 3050 24.35 82.80 74.84 85.12 81.44 69.62
0.4 4883 34.86 43.78 43.31 3548 94.40 87.30 95.56 94.31 87.38
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Table 3.
Empirical size and power under local alternatives at 5% of significance

Hy : AR(1). Hy : ARFIMA(1,d = 7/T"/2,0).
T =200

p  Cr Wsr Wer |Ysp| |Yer T/J:—;T T/Jg,T Q31 Qo1
0 0.0 407 3.19 259 470 481 448 5.12 2.66 3.35
0.5 359 298 232 3.79 424 362 3.99 267 3.33
0.8 3.08 252 194 394 3.10 3.75 4.02 289 344

1 00 626 5.40 437 839 11.13 13.44 16.63 3.68 4.25
0.5 3.57 290 226 345 419 419 564 273 3.37
0.8 3.01 225 166 410 452 780 853 3.87 441

2 0.0 12.19 12.04 10.53 19.93 26.15 28.94 35.10 7.80 9.13
05 344 291 236 347 415 425 6.27 291 3.58
0.8 484 316 219 9.17v 1033 16.59 17.98 845 7.58

3 0.0 21.92 23.63 21.27 35.77 44.37 47.20 54.61 15.17 18.02
05 3.26 274 239 3.65 443 499 648 3.27 3.92
0.8 9.13 6.61 4.10 20.13 22.90 31.95 35.14 21.18 16.12

4 0.0 33.38 27.13 24.15 50.40 59.39 62.18 69.12 23.88 29.88
0.5 341 247 238 4.09 47 680 7.61 432 4.67
0.8 17.48 14.65 9.09 38.10 43.37 53.13 57.56 46.00 33.97

T =500

A ~ ~ A A /\+ /\+ ~ ~
T p Cr Wsr Wer |Ysrp| |Yer| Ysr Yer @sr Qer

0 00 7462 422 366 4.81 478 457 5.06 3.00 3.63
05 450 399 340 426 458 427 443 297 3.82
08 427 356 309 390 385 463 363 333 3.77

1 00 693 703 629 935 11.62 14.63 17.54 4.37 5.13
0.5 458 442 4.08 485 535 583 7.43 3.02 3.93
0.8 474 413 347 572 590 961 9.83 4.12 4.64

2 00 14922 1551 14.23 23.43 29.37 33.47 39.37 10.03 11.60
0.5 469 472 467 483 649 6.37 10.18 3.08 4.21
08 736 6.13 4.73 11.57 12.08 19.11 19.81 7.27 7.38

3 0.0 926.86 31.03 29.55 44.70 53.35 56.44 63.59 21.28 24.91
05 465 504 548 471 7.4 544 11.31 3.30 4.60
0.8 1356 11.62 8.18 23.46 24.65 34.56 35.78 15.23 13.51

4 0.0 4362 51.19 49.81 66.34 7428 75.93 81.84 37.13 43.93
0.5 465 5.18 6.35 505 7.03 509 10.80 3.81 5.09
0.8 92444 23.10 16.17 42.07 44.05 54.86 56.23 31.28 25.74

denotes two sided tests, whereas @ZJIT are one sided (right hand side) tests.

d]n,T
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Table 4.

Empirical size and power under local alternatives at 5% of significance

Hy: AR(1). Hy: ARMA(1,1), ¢ = 7/T"/2.

T =200

P

Cr

War

We.r

s p

e

T
Y3

T
(I

QS,T

QG,T

0 0.0
0.5
0.8

1 0.0
0.5
0.8

2 0.0
0.5
0.8

3 0.0
0.5
0.8

4 0.0
0.5
0.8

4.13
3.62
3.06

4.22
5.52
7.81

5.01
8.53
18.07

7.79
10.64
32.10
14.60

10.67
45.29

3.09
2.80
2.38

3.10
4.08
5.63

3.50
6.10
13.73

5.04
7.80
27.17
9.51
8.16
42.62

3.58
2.22
1.86

2.58
2.90
3.66

2.79
4.02
8.53

3.76
5.16
17.65
6.65
5.42
29.55

3.98
3.68
3.00

3.88
5.51
7.7

3.77
8.58
20.63

4.62
10.84
37.68
10.86

10.65
52.48

4.39
4.04
3.21

4.23
5.76
7.98

4.06
9.06
21.26

4.92
11.25
38.18

11.01
11.01
52.79

4.18
3.93
3.45

3.74
8.86
13.13

3.36
14.33
30.93

6.00
17.39
50.25

16.70
17.11
64.96

4.39
4.14
3.64

3.93
9.20
13.62

3.46
14.61
31.41

6.06
17.87
50.49

16.78
17.57
64.97

2.65
2.67
2.93

2.76
3.08
0.47

3.45
4.51
12.52

5.60
5.76
23.84

11.03
9.93
36.18

3.36
3.31
3.46

3.40
3.61
5.05

3.82
4.56
10.66

9.32
5.41
20.09

8.99
5.56
31.63

T =500

T p

Cr

0 0.0
0.5
0.8

1 0.0
0.5
0.8

2 0.0
0.5
0.8

3 0.0
0.5
0.8

4 0.0
0.5
0.8

Wsr

We.r

s p

e

=
s p

=
Y1

QS,T

QG,T

4.70
4.50
4.39

4.74
6.68
9.56

5.00
11.06
23.21

6.31
16.44
42.78

9.48
21.08
62.44

d]n,T

4.43
4.23
3.94

4.37
5.72
8.06

4.47
8.94
19.66

5.17
13.17
38.92

6.98
17.22
60.69

3.86
3.70
3.40

3.83
4.73
6.00

3.90
6.81
13.89

4.38
9.58
28.30
5.57
12.42
47.41

4.66
4.53
4.22

4.70
6.71
10.03

4.76
11.48
26.87

4.95
17.26
50.11

5.09
22.10
70.99

5.68
4.55
4.26

4.75
6.61
10.08

4.87
11.43
26.88

5.03
17.24
49.91

5.16
21.95
70.86

4.52
4.50
4.37

4.31
10.25
16.20

3.61
18.23
38.01

3.19
26.26
62.36

4.09

32.15
80.69

4.62
4.52
4.38

4.35
10.36
16.28

3.62
18.17
37.99

3.18
26.03
62.42

4.07
31.99
80.67

2.99
2.99
3.34

3.02
3.75
6.26

3.34
6.06
15.66

4.25
9.45
32.23

6.40
12.84
52.01

3.64
3.80
3.78

3.70
4.32
5.82

3.90
5.88
13.35

4.55
8.39
27.37
5.98
10.89
46.42

denotes two sided tests, whereas @ZJIT are one sided (right hand side) tests.
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