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Abstract

We develop in this paper a generalization of the Indirect Inference (II) to semi-
parametric settings and termed Semi-parametric Indirect Inference (SII). We
introduce a new notion of Partial Encompassing which lays the emphasis on
Pseudo True Values of Interest. The main difference with the older notion of
encompassing is that some components of the pseudo-true value of interest
associated with the structural parameters do correspond to true unknown
values. This enables us to produce a theory of robust estimation despite mis-
specifications in the structural model being used as a simulator. We also
provide the asymptotic probability distributions of our SII estimators as well as
Wald Encompassing Tests (WET) and advocate the use of Hausman type
tests on the required assumptions for the consistency of the SII estimators.
We illustrate our theory with examples based on semi-parametric stochastic
volatility models.
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1 Introduction

The so-called Indirect Inference methodology was recently introduced in the literature by Smith

(1993), Gouri�eroux, Monfort and Renault (1993), Gallant and Tauchen (1996), for a simulation-

based inference on generally intractable structural models through an instrumental model, con-

ceived as easier to handle. This methodology allows the use of somewhat mis-speci�ed instrumental

models, since the simulation process in the well-speci�ed structural model and the calibration of

the simulated paths against the observed one through the same instrumental model will provide

an automatic mis-speci�cation bias correction.

However this theory crucially depends on the correct speci�cation assumption concerning the

structural model. And as stressed by Bergstrom (1985) among others, \one of the main di�er-

ences between econometrics and the application of statistical methods in the physical sciences is

that the functional forms in the structural equations of an econometric model are seldom given

by the theory". This fact has been explicitly recognized in several important recent advances in

the econometrics of mis-speci�ed models (see Monfort (1996) for a recent appraisal of this issue).

In this respect, we consider in this paper a semi-parametric framework which speci�es only some

parameters of interest �1 (say) raised out by the economic theory and corresponding to a true

unknown value �Æ1. This may be de�ned through a set of identifying moment conditions. In such

a semi-parametric setting, not only the Maximum Likelihood Estimator is no longer available in

general, but even more robust M-estimators or Minimum Distance estimators may be unpalatable

due to a complicated dynamic structure of the Data Generating Process (DGP) (unobservable

state variables, non markovianity...). Consequently the econometrician is led to perform a semi-

parametric indirect inference associated with a given pair of structural model and instrumental

model.

In order to get a simulator useful for indirect inference about �1, the econometrician has to plug

this semi-parametric setting into a structural model that is fully parametric and mis-speci�ed

in general since it introduces additional assumptions on the law of motion of the DGP. These

additional assumptions may require a vector �2 of additional parameters so that the vector � of

\structural parameters" is given by � = (�1
0; �2

0)
0
.

In this framework, we are naturally led to de�ne the notion of Pseudo True Value of Interest

�� =
�
�Æ

0

1 ; �
0

2

�0
, where �Æ1 corresponds to the true unknown value of the parameters �1 and �2

belongs to �2 a subset of IRp2. In order to answer the issue on consistently estimating the true

unknown value �Æ1 through a semi-parametric indirect inference, we introduce the notion of Partial

Encompassing. The main di�erence with the older notion of encompassing as proposed by Mizon

and Richard (1986), or for a simulated version �a la Gouri�eroux and Monfort (1995) and Dhaene,

Gouri�eroux and Scaillet (1998) is that the emphasis is led on a pseudo-true value of interest de-

�ned by the true value �Æ1 for any given �2. Moreover, in this framework and when required by

the partial encompassing property, some of the nuisance parameters �22 (say) are not estimated

in the �rst step SII but in a second step introducing some general simulation-based loss function.

The basic idea of partial encompassing is something like a \ceteris paribus" condition which en-

sures that consistency is maintained for the estimation of �Æ1 while �2 might have to be �xed from
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some other extra information. In the same line as Bierens and Swanson (2000) who have recently

called upon a ceteris paribus condition to formalize some ideas stemming from the so-called Cali-

bration methodology of the new classical macro-economics, we do think that SII provides a useful

framework to understand what calibrato2s exactly do. We develop this thesis in a companion

paper (Broze, Dridi and Renault (1999)).

Actually, we consider that our SII methodology starts from the same issues as the Calibration

one but complements it by some inference tools that are needed for a comprehensive statistical

strategy.

By analogy with the Quasi Maximum Likelihood methodology (White (1982), Gouri�eroux, Mon-

fort and Trognon (1984)), we show that standard GMM or Indirect Inference results cannot

be directly applied in the calibration context but need a preliminary \robusti�cation" against

the likely mis-speci�cation of the structural model. The formalization of this mis-speci�cation,

through our new notion of partial encompassing enables us to derive the asymptotic probability

distribution of the SII estimators and associated Wald Encompassing Tests (WET). Moreover, we

lay out a general speci�cation strategy involving Hausman type tests.

The paper is organized as follows. We �rst recall in section 2 a brief overview of the available

results on Indirect Inference when the structural model is correctly speci�ed. Then we provide

an extended semi-parametric framework for indirect inference. We address, in section 3 the is-

sue on robustness of Indirect Inference with respect to mis-speci�cations in the structural model.

We propose a formalization of a general setting, termed Semi-parametric Indirect Inference (SII),

where the consistency of the estimators of the structural parameters of interest is maintained. In

section 4 we deduce the asymptotic probability distribution of the SII estimators. We also provide

a diagnostic procedure of tests about the null hypothesis that ensures the consistency of the SII

estimators; this procedure is based on Wald Encompassing Tests. In order to increase the power

of the testing procedure against spurious �t, as stressed by Tauchen (1997), we advocate the use

of simulated Hausman type tests. We discuss in section 5 the issue on estimating the nuisance

parameters �22 in a second step estimation by using a general loss function and the consequences

on the asymptotic results. We give in section 6 an example based on semi-parametric stochastic

volatility modeling where our SII and procedures of tests ensures the desired consistency property.

Finally section 7 states some concluding remarks.
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2 An Extended Framework for Semi-parametric Indirect

Inference

2.1 Indirect Inference principle

Extending Gouri�eroux, Monfort and Renault (1993), we consider the parametric nonlinear simul-

taneous equations model de�ned by:

r(yt; yt�1; xt; ut; �) = 0; (2.1)

'(ut; ut�1; "t; �) = 0; (2.2)

� 2 � a compact subset of IRp;

where the process fyt; t 2 ZZg corresponds to the dependent variables and fxt; t 2 ZZg is the vector
of strongly exogenous observable variables. The variables fut; t 2 ZZg and f"t; t 2 ZZg are not

observed.

We assume that fxt; t 2 ZZg is independent of f"t; t 2 ZZg (and fut; t 2 ZZg) ; the process

f"t; t 2 ZZg is a white noise whose distribution GÆ is known and the process f(yt; xt); t 2 ZZg is

stationary1. For each given value of the parameters �, it is possible to simulate values

fey1(�; zÆ); : : : ; eyT (�; zÆ)g conditionally on the observed path of the exogenous variables fx1; : : : ; xTg
and for given initial conditions zÆ = (yÆ; uÆ). This is done by simulating values fe"1; : : : ; e"Tg from
GÆ. Then by repeatedly solving equation (2:2) in the unknown variables eut(�; uÆ):(

'(eut(�; uÆ); eut�1(�; uÆ); e"t; �) = 0; t = 1; : : : ; T;

uÆ;

we get eu1(�; uÆ); : : : ; euT (�; uÆ). Finally by solving equation (2:1) in the unknown variables eyt(�; zÆ):(
r(eyt(�; zÆ); eyt�1(�; zÆ); xt; eut(�; uÆ); �) = 0; t = 1; : : : ; T;

yÆ;

we obtain a simulated path fey1(�; zÆ); : : : ; eyT (�; zÆ)g. This implicitly assumes that, for each value

of the parameters �, for the observed exogenous variables fx1; : : : ; xTg and for the initial condi-

tions zÆ, equations (2:1)� (2:2) uniquely de�ne the process f(yt; ut); t 2 ZZg.
Let �Æ be the true unknown value of � assuming that the structural model (2:1) � (2:2) is well-

speci�ed. A direct estimation of �Æ is often cumbersome since the conditional probability den-

sity function (p.d.f. hereafter) of fy1; : : : ; yTg given fzÆ; x1; : : : ; xTg may be computationally

intractable. The idea is then to replace the intractable log-likelihood function of the structural

model:

LT (�) =
TX
t=1

logf(yt=y
t�1
; xt; �); (2.3)

by an instrumental criterion which involves a vector � of q instrumental parameters:

QT (y
T
; xT ; �) =

TX
t=1

qt(yt=y
t�1
; xt; �);

� 2 B a compact subset of IRq�
(2.4)

1This assumption may be relaxed.
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On the one hand, we associate with QT the M-estimator b�T of � de�ned by:

b�T = Argmin
�2B

QT (y
T
; xT ; �); (2.5)

on the other hand, from simulated values eys
t
(�; zs

Æ
); t = 1; : : : ; T; s = 1; : : : ; S of the endogenous

variables, we can compute for s = 1; : : : ; S:

e�s
T
(�) = Argmin

�2B

QT

�eys
T
(�; zs

Æ
); xt; �

�
;

e�TS(�) = 1

S

SX
s=1

e�s
T
(�)�

(2.6)

Under usual regularity conditions, this de�nes the so-called binding function:

e�(�) = PÆ lim
T!+1

e�TS(�);
e�(�Æ) = �Æ = PÆ lim

T!+1

b�T �
2 (2.7)

The class of indirect estimators is indexed by a choice of a positive weighting matrix 
 of size

q � q. For a given 
, the indirect inference (II hereafter) estimator is de�ned by:

b�TS(
) = Argmin
�2�

h b�T � e�TS(�)i0
 h b�T � e�TS(�)i � (2.8)

As usual, the indirect inference estimator b�TS(
) will be computed in practice by replacing 
 by

a consistent estimator b
T of 
 but the asymptotic normal probability distribution of b�TS(
) will
not depend on the choice of this estimator. This justi�es the notation (2:8). But, in order to

minimize the asymptotic covariance matrix of b�TS(
), an optimal choice of 
:


� = JÆ (IÆ �KÆ)
�1
JÆ; (2.9)

JÆ = E
Æ

"
@2qt

@�@� 0
(yt=y

t�1
; xt; �

Æ)

#
;

IÆ = V ar
Æ as

"
1p
T

TX
t=1

@qt

@�
(yt=y

t�1
; xt; �

Æ)

#
;

KÆ = V ar
Æ as

(
1p
T

TX
t=1

E
Æ

"
@qt

@�
(yt=y

t�1
; xt; �

Æ)=xt

#)
�

The corresponding asymptotic covariance matrix of the eÆcient II estimator b�TS(
�) = b��
TS

is

then:

WS = V ar
Æ as

hp
T (b��

TS
� �Æ)

i
=

�
1 +

1

S

� "
@ e� 0
@�

(�Æ)JÆ (IÆ �KÆ)
�1
JÆ
@ e�
@�0

(�Æ)

#�1
� (2.10)

2We denote by PÆ lim
T!+1

the limit in probability (with respect to PÆ) when T goes to in�nity.
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Gouri�eroux and Monfort (1996) has shown that, under convenient regularity conditions, these

results are still valid for a general instrumental criterion QT

�
y
T
; xT ; �

�
. In particular, we have

now to consider matrices IÆ �KÆ and JÆ according to the following general de�nitions:

IÆ �KÆ = V ar
Æ as

"p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
� E

Æ

"p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
=xT

##
;

JÆ = PÆ lim
T!+1

@2QT

@�@� 0

�
y
T
; xT ; �

Æ
�
�

2.2 Indirect Inference in a semi-parametric setting

As previously announced, the main goal of this subsection is to extend the Indirect Inference

principle to semi-parametric settings. The semi-parametric modeling widely adapted in modern

econometrics does correspond indeed to an alternative to the \quest for the Holy Grail" (see Mon-

fort (1996)), that is the hopeless search for a well-speci�ed parametric model that is more often

than not impossible to deduce from the Economic Theory and speci�es only some parameters of

interest �1 (say) raised out by the underlying Economic Theory. Therefore, we have �rst in this

subsection to extend the semi-parametric point of view to an II framework before revisiting the

issues on consistency (section 3) and asymptotic probability distributions of II estimators and

tests in this setting (section 4).

As in the previous subsection, the data consist in the observations of a stochastic process

f(yt; xt); t 2 ZZg at dates t = 1; : : : ; T . The range of xt and yt are respectively X � IRp(x)

and Y � IRp(y). We denote by PÆ the true unknown probability distribution (as characterized by

Kolmogorov's theorem) of f(yt; xt); t 2 ZZg3.
Assumption (A1):

(i) PÆ belongs to a family P of probability distributions on (X � Y)ZZ.
(ii) f�1 is an application from P onto a compact set �1 =

f�1 (P) of IRp1.

(iii) f�1 (PÆ) = �Æ1, the true unknown value of the parameters of interest, belongs to the interior
Æ

�1

of �1.f�1 (P ) = �1 is the vector of unknown parameters of interest. Several illustrations of the relevance

of this framework are indeed envisioned and developed in two companion papers (Dridi (2000) and

Broze, Dridi and Renault (1999)). Actually, we stress that there are nowadays various occasions in

Economics as well as in Statistics, where a semi-parametric set-up is available for the de�nition

of the parameters of interest �1 according to (A1); but because of unobservable components (as

in state variables models), because of non availability of relevant aggregate economic variables at

the proper frequency, the standard semi-parametric methods (QML, GMM, PMLE) do no longer

apply.

Typically, in the case of a stationary process f(yt; xt); t 2 ZZg, the parameters of interest may be

de�ned through a set g of identifying moment restrictions:

E
P

g (yt; xt; ut; yt�1; xt�1; ut�1; : : : ; yt�K; xt�K ; ut�K; �1) = 0 =) �1 =
f�1 (P ) � (2.11)

3It is essential to keep in mind that the disentangling (y; x) by no way and in accordance with the forthcoming

assumption (A1) means that fxt; t 2 ZZg is exogenous.
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Conditional moment restrictions may also be considered. The explicit occurrence of latent pro-

cesses fut; t 2 ZZg in this moment restrictions (think for instance about a stochastic volatility pro-
cess) prevents one from using GMM. Thus one may always imagine to perform semi-parametric

indirect inference associated with a given pair of \structural" model (used as simulator) and

\auxiliary" (or \instrumental") criterion.

In order to get a simulator useful for indirect inference on �1, we have to plug the semi-parametric

model de�ned by (A1) into a structural model that is fully parametric (at least with respect

to the conditional probability distribution of y given x) and mis-speci�ed in general since it in-

troduces additional assumptions on the law of motion of (y; x) which are not suggested by any

Economic Theory. These additional assumptions may require a vector �2 of additional parameters

in such a way that the vector � of \structural parameters" is given by � = (�1
0; �2

0)
0
. We then

formulate a nominal assumption (B1) to specify a structural model conformable to the previous

section, even though we know that (B1) is likely to be inconsistent with the true DGP. 4

Nominal assumptions (B1):

f(yt; xt); t 2 ZZg is a stationary process conformable to the following nonlinear simultaneous equa-
tions model:

� (
r(yt; yt�1; xt; ut; �) = 0;

'(ut; ut�1; "t; �) = 0;
(2.12)

� = (�1
0; �2

0)
0 2 (�1 � �2) = � a compact subset of IRp1+p2,

� the exogenous process fxt; t 2 ZZg is independent of f"t; t 2 ZZg,

� f"t; t 2 ZZg is a white noise with a known distribution G�.

We denote �� the p.d.f. of the process fxt; "t; t 2 ZZg de�ned as the product of the true unknown

p.d.f. of fxt; t 2 ZZg (marginalization of PÆ) and G�. Note that the space of unknown parameters

� is de�ned as a product space �1 ��2 for sake of notations simplicity.

As a joint hypothesis, the structural model (B1) is mis-speci�ed in general for at least two reasons:

- Economic Theory provides little guidance about the functional forms r and ' including the

number of lags, of unobserved state variables u (and ") and nuisance (or technology) parameters

�2.

- Even if the structural equations (2:12) are valid, because the underlying Economic Theory is

itself correct, the purely statistical assumptions (exogeneity property for fxt; t 2 ZZg, known
distribution G� for "t) may not be ful�lled by the DGP. 5

We focus here on indirect inference about the true value �Æ1 of the parameters of interest �1.

This indirect inference is termed semi-parametric since we do not trust the nominal assumptions

(B1). However the Indirect Inference principle is still de�ned from the two basic components: a

4We denote by B the nominal assumptions, i.e. assumptions that are used for a quasi-indirect inference even

though they are known to be mis-speci�ed. This mis-speci�cation will be taken into account in our results that we

prove thanks to the maintained assumptions, denoted by A.
5For instance, the exogeneity assumption concerning the process fxt; t 2 ZZg is maintained within the nominal

assumptions (B1) whereas it is generally not within the semi-parametric model (A1). Consequently and as already

pointed out, the disentangling (y; x) just corresponds to modeling (and therefore may be mis-speci�ed) and not to

a genuine ful�lled property.
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\structural" model (B1) and a general instrumental criterion:

QT

�
y
T
; xT ; �

�
;

� 2 B a compact subset of IRq�
(2.13)

Assumption (A2):

(A2)

PÆ lim
T!+1

Sup
�2B

���QT

�
y
T
; xT ; �

�
� qÆ(�)

��� = 0;

8� 2 �; �� lim
T!+1

Sup
�2B

���QT

�eys
T
(�; zs

Æ
); xT ; �

�
� qM(�; �)

��� = 0�
6

feys1(�; zsÆ); : : : ; eysT (�; zsÆ)g correspond to simulated paths of the dependent variable according to the
model (B1) conditionally on fx1; : : : ; xTg and zsÆ for s = 1; : : : ; S.

qÆ(�) and qM(�; �) are assumed to be non stochastic twice di�erentiable functions not depending

on the initial conditions zs
Æ
and with a unique minimum with respect to �. Let �Æ and e�(�1; �2)

be respectively the minimum of qÆ(�) and qM(�; �).

Assumption (A3):

(A3)

�Æ = �(PÆ) = Argmin
�2B

qÆ(�);

e�(�1; �2) = Argmin
�2B

qM (�1; �2; �)�

Assumption (A4):e�(�; �) is one-to-one.
According to Gouri�eroux and Monfort (1995) de�nitions, �Æ is the pseudo true value for the

instrumental model (2:13) and e�(�; �) is the binding function from the structural model (2:12) to

the instrumental one (2:13).7 In their terminology, assumption (A4) is referred to as the indirect

identi�cation of � from �. This is related to the indirect inference procedure described below. Let

us introduce the following estimators:

b�T = Argmin
�2B

QT

�
y
T
; xT ; �

�
;

e�s
T
(�1; �2) = Argmin

�2B

QT

�eys
T
(�1; �2; z

s

Æ
); xT ; �

�
;

e�TS(�1; �2) = 1

S

SX
s=1

e�s
T
(�1; �2)�

(2.14)

Under assumptions (A2)� (A3), these estimators converge to:

PÆ lim
T!+1

b�T = � (PÆ) ;

�� lim
T!+1

e�s
T
(�1; �2) = �� lim

T!+1

e�TS(�1; �2) = e�(�1; �2)�
6We denote by �� lim

T!+1

the limit in probability (with respect to ��) when T goes to in�nity.

7The instrumental criterion is generally speaking suggested by an instrumental model. We refer to (2:13) as an

instrumental model to be conformable to Gouri�eroux and Monfort (1995) terminology.
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Assumption (A5):

We assume in addition that the latter convergence is uniform in �, that is for s = 1; : : : ; S:

(A5) �� lim
T!+1

Sup
(�0
1
;�0
2
)02�




 e�s
T
(�1; �2)� e�(�1; �2)




q
= 0�

An indirect inference estimator b�TS is then de�ned as follows:

b�TS = �b�01;TS; b�02;TS�0 = Argmin
(�1;�2)2�1��2

h b�T � e�TS(�1; �2)i0 b
TS h b�T � e�TS(�1; �2)i ; (2.15)

where b
TS is a positive matrix which may depend on both simulated e"t and observed (yt; xt).

Thus, in order to extend the standard minimum distance setting of indirect inference, we have to

assume now that: P� lim
T!+1

b
TS = 
 a positive matrix on IRq, where P� denotes the joint p.d.f. of

(y; x; ") de�ned with obvious notations by:

P� = �� 
 P Y=X

Æ
� (2.16)

Endowed with such a notation, all the probability limits considered in this paper can be viewed

w.r.t. P�.

However, several important di�erences with respect to the standard setting of indirect inference

(as reminded in subsection 2:1 above) have to be emphasized:

� First, due to the mis-speci�cation of the structural model (B1), there is in general no reason to

hope that the limit problem:

Min
�1;�22�1��2




� (PÆ)� e� (�1; �2)





; (2.17)

(where k�k2
 = � 0
�) has a null value. A fortiori, for a given choice of the weighting matrix


, there will be in general a set of minimizers which, �rst, is not reduced to a singleton and second

does depend on this choice of 
. This is indeed a standard issue on GMM estimation applied

to mis-speci�ed moment conditions. There does not exist in general a unique pseudo-true value

which allows one to properly de�ne a consistency concept. We will maintain in our theoretical

developments below the assumption that (2:17) has a null value and therefore admits a unique

minimizer by virtue of the one-to-one mapping assumption (A4) on e� (�; �)8.
� Second, besides the aforementioned pitfall resulting from some mis-speci�cation in the set of

\moments to match", there is a second pitfall, more speci�c to simulation-based inference, where

data simulated from a wrong DGP may give the fallacious feeling of a perfect �t. Namely, it may

exist a pseudo-true value ��1 di�erent from the true value �Æ1 such that e� (��1; ��2) = � (PÆ) for some

��2 2 �2.

To summarize, a consistent semi-parametric indirect inference estimator b�1;TS for a family P of

possible DGP has to be de�ned in light of the two previous pitfalls:

? First, (2:17) should de�ne a unique pseudo-true value �� =
�
��

0

1 ; �
�
0

2

�0
of the structural parameters

8We will stress in subsection 3:2 below about the encompassing that an assumption of uniqueness of the min-

imizer which would not correspond to a null value of the criterion is not releva.t, since this minimizer would be

unique only up to the arbitrary choice of 
. Moreover, it would be always possible to relax the assumption of

uniqueness by introducing correspondences of minimizers but this is beyond the scope of this paper.
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for any allowed (w.r.t. (A1) and (B1)) probability distribution P�. Let us denote by �
�

1 = ��1 (P�)

the corresponding pseudo-true value of the structural parameters of interest.

? Second, this pseudo-true value ��1 (P�) should coincide with the true unknown value e�1 (P )
(where P� corresponds to the product of �� and P

Y=X as in (2:16)). Of course, this coincidence

issue makes sense only if the nominal parametric model (B1) is compatible with the maintained

semi-parametric model (A1). In other words, we have:

Assumption (A6):

For any � = (�01; �
0

2)
0 2 �1 ��2;

e�1 (P�) = �1; where P� denotes the actual probability distribu-

tion of (ey(�); x) from the simulator9 (B1).

In the general semi-parametric framework delineated by assumptions (A1)� (A6), we provide in

the next section the consistency criteria which are required to deal with the two previous pitfalls.

9Of course, as already explained, the path of the process x associated with the simulated path ey(�) is the

observed one and is not simulated. Indeed, P� is fully characterized by the endowment of �� and � plugged into

(2:12).

9
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3 Semi-parametric Indirect Estimation

We �rst provide in subsection 3:1 an necessary and suÆcient condition for the consistency of

the Semi-parametric Indirect Inference (SII) estimator b�1;TS de�ned by (2:15), while we focus in

subsection 3:2 on suÆcient and testable conditions.

3.1 Consistency of the semi-parametric indirect inference estimator

In order to derive a necessary and suÆcient condition for the consistency of b�1;TS to �Æ1, let us

de�ne the so-called \generalized inverse" e�� of e� by:

e��(�) = Argmin
(�1;�2)2�1��2




� � e�(�1; �2)





� (3.1)

e�� is a correspondence from IRq onto �1 � �2 whose restriction to e� (�) is a genuine inverse

of the function e�, which is one-to-one by virtue of the identi�cation assumption (A4). In the

case of standard indirect inference with a well-speci�ed structural model, the consistency of the

indirect inference estimator is guaranteed thanks to the fact that e�� [�(P )] coincides with the

parameterizations of the structural model. More precisely, while a function P �! �(P ) is always

de�ned by extension of de�nition (A3) to any possible DGP (P ) in the model (A1), a functione� (P ) = �f�1 (P )0;f�2 (P )0�0 is only de�ned in the particular case where the structural model (A1)

is fully parametric ; in this case (A1) coincides with (B1) seen as well-speci�ed by a one-to-one

parameterization:

(�1
0; �2

0)
0 �! P(�10;�20)0;

e� �P(�10;�20)0� = (�1
0; �2

0)
0�

In our semi-parametric setting, we are only interested in the projection of e�� [�(P )] on the set �1

of the parameters of interest. Let us denote by Q1 the projection operator:

Q1 : IRp1 � IRp2 �! IRp1;

(�1
0; �2

0)
0 �! �1�

We are then led to the following consistency criterion:

Proposition 3.1 : Under assumptions (A1)� (A6), b�1;TS is a consistent estimator of the param-

eters of interest �Æ1 if and only if, for any P in the family P of probability distributions delineated

by the semi-parametric model (A1):

Q1

h e�� Æ � (P )i = f�1 (P ) �

11



Proof : Under assumptions (A1)� (A6), b�1;TS(P ) is consistent to e�1(P ) if and only if:

8P 2 P; P� lim
T!+1

b�1;TS(P ) = ��1(P ) =
e�1(P );

= Q1

"
Argmin

�2�




�(P )� e� (�1; �2)






#
;

= Q1

h e�� Æ �(P )i �
This ends the proof of proposition 3:1.

In order to illustrate to what extent the criterion of proposition 3:1 imposes constraints on both

the semi-parametric model, the nominal structural model and the instrumental model, it may be

helpful to have the following setting in mind. Let us imagine that the nominal structural model

is mis-speci�ed because it imposes some invalid constraints on some nuisance parameters �3. In

other words, we start from a \parametric" representation of the set P of probability distributions

of interest:

P =
n
P�; � = (�1

0; �2
0; �3

0)
0 2 �1 � �2 � �3

o
�

The term \parametric" is used here with a very general meaning: the nuisance \parameters"

�3 may be functional that is �3 may be of in�nite dimension. The only important assumption

consists in the correct speci�cation of this \parametric" model:

PÆ = P�Æ for �
Æ =

�
�Æ

0

1 ; �
Æ0

2 ; �
Æ0

3

�0 2 �1 � �2 � �3� (3.2)

Therefore, a slight change of notation allows us to rewrite: � (P ) = �(�1; �2; �3) when P = P�

with � = (�1
0; �2

0; �3
0)
0
. Furthermore, the nominal structural model (B1) is mis-speci�ed whenever

it imposes some invalid constraint on the nuisance parameters �3: �3 = 0; while �Æ3 6= 0 (say). In

other words: e�(�1; �2) = �(�1; �2; 0)� In such a setting:

e��(�) = Argmin
(�1;�2)2�1��2




� � e�(�1; �2; 0)





;

and therefore: e�� [� (P�)] = Argmin
(�1;�2)2�1��2




�(�1; �2; �3)� �(�1; �2; 0)






� (3.3)

The program (3:3) highlights with a new perspective the two already announced pitfalls, which

may prevent from getting semi-parametric consistency:

� First, when the nominal structural model does not contain the DGP (�Æ3 6= 0) there does not

exist in general �2 such that:

�(�Æ1; �2; 0) = �(�Æ1; �
Æ

2; �
Æ

3)�
� Second, a perfect �t may occur with wrong values

�
��

0

1 ; �
�0

2

�0
of the parameters:

�(��1; �
�

2; 0) = �(�Æ1; �
Æ

2; �
Æ

3); while �
�

1 6= �Æ1�

These pitfalls illustrate the well-known \joint hypothesis" issue in Econometrics:

� Either, one wants to perform inference without any a priori restriction, that is estimating

12



(�1; �2; �3) without constraint. But such a fully unrestricted approach is generally infeasible due

to the curse of dimensionality: inference on a reasonable number of instrumental parameters �

does not provide a suÆcient indirect information to identify all the relevant features of the DGP

described by (�1; �2; �3).

� Or, due to this lack of identi�cation, the econometrician is led to add to the knowledge which

often comes from the Economic Theory and is never brought into question some arbitrary and

a priori restrictions �3 = 0 in order to identify the parameters of interest �1 and some nuisance

parameters �2 thanks to an identi�cation assumption extending (A4): �(�; �; �3) is a one-to-one

function of (�1; �2) 2 �1��2 for any �xed value �3 2 �3. In such a setting, the lack of consistency

stressed above is precisely due the wrong \joint hypothesis" about �3: �(�
�

1; �
�

2; 0) = �(�Æ1; �
Æ

2; �
Æ

3)

may occur with ��1 6= �Æ1 because �
Æ

3 6= 0.

Last but not least, in case of mis-speci�cation, the minimum (3:3) is generally not reached at a null

value. This means that the discrepancy between �Æ1 and the limit (in probability) Q1

h e�� (� (P�Æ))i
of the semi-parametric II estimator b�1;TS will generally depend on the choice 
 of the weighting

matrix. Consequently, the following subsection 3:2 focuses on a case where, whatever the mis-

speci�cation, the minimum (3:3) is reached at a null value. This is the only case where general

statements, that is, statements that are independent of the arbitrary choice of a metric on

instrumental parameters may make sense.

3.2 An encompassing suÆcient condition for consistency

Following Mizon and Richard (1986), Gouri�eroux and Monfort (1995) have used the concept of

binding function to set up a formal de�nition of the encompassing principle. This principle involves

notions of pseudo-true values and binding function which are underpinned by the Kullback Leibler

Information Criterion (KLIC) as a proximity criterion. But it is clear that other proximity criteria

may be used to capture some structural a-statistical ideas, which lead to loss functions di�erent

from the log-likelihood ratio as explained by Dhaene, Gouri�eroux and Scaillet (1998). Besides

this, the speci�c feature of our setting is that we consider a parametric model (B1) which is

mis-speci�ed but introduces a vector of unknown parameters (�01; �
0

2)
0
whose �rst p1 components

do correspond to some structural well-speci�ed ideas (according to (A1)). As a consequence, we

propose here to focus on pseudo-true values of (B1) of the form
�
�Æ

0

1 ; �
0

2

�0
where �Æ1 = f�1 (PÆ)

is the true unknown value of the parameters of interest. On the other hand, the instrumental

criterion (2:13) de�nes a pseudo-true value �Æ of the \instrumental model" (N�). Typically, the

instrumental criterion (2:13) may be the log-likelihood of an instrumental model which is a proxy

of some structural model ; in such a case �Æ is a pseudo-true value conformable to Gouri�eroux

and Monfort (1995) terminology. By extension to Gouri�eroux and Monfort (1995) de�nition we

are allowed to interpret the function e�(�; �) de�ned by (A3) as a link function from (B1) to (N�).

Then, we say that:

13



De�nition 3.1 : (B1) endowed with the true unknown value �Æ1 fully encompasses (N�) if there

exists �2 2 �2 such that:

�Æ = e�(�Æ1; �2)� (3.4)

In this framework, we are able to prove the following suÆcient condition for the consistency of

the semi-parametric II estimator b�1;TS:
Proposition 3.2 : Under assumptions (A1) � (A6) and if (B1) endowed with the true value �Æ1
fully encompasses (N�), then

b�1;TS is a consistent estimator of the parameters of interest �Æ1.

Proof : Proposition 3:2 is a direct corollary of proposition 3:1 since:

�Æ = e�(�Æ1; �2);
=)

�
�Æ

0

1 ; �
0

2

�0
= Argmin

(�1;�2)2�1��2




�Æ � e�(�1; �2)





;

= e��(�Æ);
=) �Æ1 = Q1

h e��(�Æ)i ;
which corresponds to the criterion of proposition 3:1.

Moreover, let us notice that the above minimization program is reached at a null value, as already

announced.

When the structural mis-speci�ed model (B1) endowed with the true value �Æ1 does not fully

encompass the instrumental model (N�), and when the minimum program (2:17) is reached at

a null value, we know thanks to the identi�cation assumption (A4), that the semi-parametric

indirect inference estimator b�1;TS is not consistent to the true unknown value �Æ1 of the parameters

of interest. Facing this inconsistency, one may imagine two alternative strategies:

� First, one may believe that the encompassing property is violated only because some particular

moments or more generally a subset �2 of instrumental parameters cannot be \matched" while

some proper subset �1 (� = (� 01; �
0

2)
0
) does ful�ll the encompassing property:

9�2= �Æ1 =
e�1 ��Æ1; �2� � (3.5)

In this case, the required asymptotic theory is almost unchanged when one replaces � by �1, to the

extent that �1 is also one-to-one. Of course, nothing is changed when the instrumental criterion

QT

�
y
T
; xT ; �

�
is de�ned by separable just-identifying moment conditions:

QT

�
y
T
; xT �

�
=






 1T
TX
t=1

h
�
y
t
; xt; �1

�





2

q1

+






 1T
TX
t=1

g
�
y
t
; xt; �2

�





2

q2

;

where dimh = dim�1 = q1 and dimg = dim�2 = q2. But in the general case of indirect estimators

built on instrumental estimators b�1;T that cannot be disentangled in the criterion QT

�
y
T
; xT ; �

�
14



from b�2;T , there is a need for a well suited asymptotic theory dealing with North-West blocks

of IÆ; JÆ;and KÆ matrices. This asymptotic theory will be developed in section 4 below in a

more general setting10 where e�1(�) depends on � only through a sub-vector (�01; �
0

21)
0
where �2 =

(�021; �
0

22)
0
.

� Second, it may make sense to think about a reduction of the set �2 of nuisance parameters which
are really identi�ed from the subset �1 of selected instrumental parameters. This latter remark

should be referred back to a proposal by Gouri�eroux and Monfort (1995). They indeed suggest to

extend the indirect identi�cation concept to a sub-vector (�01; �
0

21)
0
by relaxing (A4) as follows:

�2 = �21 � �22; 8 (�22; ��22) 2 �22 ��22;e� (�1; �21; �22) = e� (��1; ��21; ��22) =) (�1; �21) = (��1; �
�

21) �
(3.6)

In light of this, we propose to revisit Gouri�eroux and Monfort (1995) de�nition in three respects:

? First, since one is only interested in identifying a sub-vector (�01; �
0

21)
0
, it may be relevant to

select only a subset e�1(�) of moments to match: e�(�) = � e� 01(�); e� 02(�)�0, as long as it also ful�lls

the required indirect identi�cation condition (3:6).

? Second, since this identi�cation condition means that the knowledge of e�1 (�1; �2) provides the
knowledge of (�1; �21), it implies that there exists a function g such that:

(�01; �
0

21)
0
= g

� e�1(�1; �2)� ;
for any (�1; �2) 2 �1 � �2. Therefore, up to a reduction by the transformation g of the set of

moments to match (or more generally of instrumental parameters), one may consider that e�1(�)
depends upon � only through (�1; �21). Therefore, we will often refer in the sequel to the following

extension of assumption (A4):

Assumption (A7): e� (�1; �21; �22) = � e� 01(�1; �21); e� 02(�1; �21; �22)�0 ;
where e�1(�; �) is one-to-one.
? Third, one may imagine to relax the quite restrictive indirect assumption (3:6) by assuming only

that:
9�22 2 �22;e�1(�1; �21; �22) = e�1(��1; ��21; �22) =) (�1; �21) = (��1; �

�

21)�
(3.7)

This general setting is genuinely a new one whenever �22 is unknown. The problem in this

case is, that, on the one hand the use of the encompassing property for consistent estimation of

�1 requires a preliminary consistent estimation of �22. But on the other hand, the asymptotic

properties of the indirect inference estimator of �1 will depend upon the ones of the estimator

of �22. The intuitive reason for that is, that the considered estimators for �22 and �1 are not

asymptotically independent, since the binding function e�1(�) has a non zero derivative with respect
to �22. We will address this issue in details in section 5. For sake of clarity, we �rst develop our

semi-parametric indirect inference methodology within either assumption (A4) joint with the

encompassing property (3:4) or, alternatively, assumption (A7) joint with a weakened partial

encompassing property introduced as follows:

10Indeed, a particular case of this general framework is the one where �21 = �2.
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De�nition 3.2 : (B1) endowed with the true unknown value �Æ1 partially encompasses (N�) for

a sub-vector �1 conformable to assumption (A7) if there exists �21 2 �21 such that:

�Æ1 =
e�1 ��Æ1; �21� �

From now on, we will refer to full encompassing as the encompassing property of de�nition 3:1

in order to distinguish it from partial encompassing (de�nition 3:2).

Note that as far as one is mainly concerned with the estimation of the structural parameters, the

crucial issue on partial encompassing is the existence of a sub-vector �1 conformable to de�nition

3:2, whichever resulting partition of �. For sake of simplicity, this convenient sub-vector �1 will be

considered hereafter as given even though the trade o� consistency versus eÆciency should lead to

look for the largest set �1 of components of � which still maintains consistency thanks to partial

encompassing. The practical implementation of such a strategy will be discussed in more details

in section 4.

Moreover, since in the case p21 < p2, �22 is not involved in the sub-vector function e�1(�; �), �2 is
not unique and the condition of de�nition 3:2 is ful�lled independently of the value �22 2 �22. Of

course, this property is not maintained in general for �nite sample binding functions. Therefore,

we introduce the following estimators b�1;T , e�s1;T (�1; �2) and e�1;TS(�1; �2) respectively de�ned as the

sub-vectors of size q1 of the estimators b�T , e�sT (�1; �2) and e�TS(�1; �2) de�ned by (2:14). Under

assumptions (A1)� (A3), and (A7), these estimators converge to:

PÆ lim
T!+1

b�1;T = �Æ1 ;

P� lim
T!+1

e�s1;T (�1; �2) = P� lim
T!+1

e�1;TS(�1; �2) = e�1(�1; �21)�
Since the partial-encompassing property, seen as a weakened version of the full-encompassing

property that is not ful�lled in this context, does not in general ensure the consistency condition

delineated by proposition (3:1), we propose to focus on another class of semi-parametric indirect

estimators b�11;TS(�22) based on the sub-vector �1 of the instrumental parameters and de�ned by:

b�1
TS
(�22) =

�b�101;TS(�22); b�1021;TS(�22)�0
= Argmin

(�1;�21)2�1��21

h b�1;T � e�1;TS(�1; �21; �22)i0 b
1;T

h b�1;T � e�1;TS(�1; �21; �22)i ; (3.8)

where P� lim
T!+1

b
1;T = 
1 is a positive matrix on IRq1 and �22 corresponds to the given value of the

nuisance parameters �22.

It is worthwhile noting that in the case where p21 < p2, the nuisance parameters �22 are not

estimated within this procedure. The issue on the estimation or the calibration of these nuisance

parameters are developed in section 5. We denote �22 the value assigned to the nuisance parameters

�22, that is used for performing the simulations.

In this framework, we are able to prove the following suÆcient condition for the consistency of

the semi-parametric II estimator b�11;TS(�22):
Proposition 3.3 : Under assumptions (A1) � (A7) and if (B1) endowed with the true value �Æ1
partially encompasses (N�), then for any �22 2 �22,

b�11;TS(�22) is a consistent estimator of the

parameters of interest �Æ1.
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Proof : The proof of proposition 3:3 is straightforward since under assumptions (A1)� (A7):

P� lim
T!+1

�b�101;TS(�22); b�1021;TS(�22)�0 = Argmin
(�1;�21)2�1��21




�Æ1 � e�1(�1; �21; �22)




1

;

where k�1k2
1
= � 01
1�1. We have thanks to the partial-encompassing property:

e�1(�1; �2) = e�1(�1; �21);
and �Æ1 = e�1(�Æ1; �21);
=)

�
�Æ

0

1 ; �21
0
�0

= Argmin
(�1;�21)2�1��21




�Æ1 � e�1(�1; �21)




1

;

= P� lim
T!+1

�b�101;TS(�22); b�1021;TS(�22)�0�
For sake of simplicity, we have chosen to give a direct proof of proposition 3:3. But it is still pos3ible

to see it as a corollary of a general necessary and suÆcient condition for the consistency of the

semi-parametric indirect inference estimator b�11;TS(�22) as in proposition 3:1. This generalization

concerns the case where one is interested in indirect estimation based on a sub-vector �1 of the

instrumental parameters. More precisely, we de�ne on the one hand the \generalized inverse" e��1
of e�1 by: e��1 (�1) = Argmin

(�1;�21)2�1��21




�1 � e�1(�1; �21)




1

�

e��1 is a function from IRq1 onto �1��21. On the other hand, we de�ne �1 (P ) the sub-vector of size

q1 associated with � (P ) de�ned in subsection 3:2 for any probability distributions P delineated

by the semi-parametric model (A1) ; and let us denote Q1
1 the projection operator:

Q1
1 : IRp1 � IRp21 �! IRp1;

(�1
0; �21

0)
0 �! �1�

Then proposition 3:3 appears as a direct corollary of the following consistency criterion:

Proposition 3.4 : Under assumptions (A1) � (A7), b�11;TS(�22) is a consistent estimator of the

parameters of interest �Æ1 if and only if for any P in the family P of probability distributions

delineated by the semi-parametric model (A1):

Q1
1

h e��1 Æ �1 (P )i = f�1 (P ) �
Proof : The proof of proposition 3:4 is a simple extension of the proof of proposition 3:1 and

therefore is omitted here.

As already mentioned, under the partial-encompassing condition given in proposition 3:3, the

semi-parametric indirect inference estimator is consistent whichever value �22 is used for building

simulated paths.
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More generally speaking, let us stress the two following ideas:

� On the one hand, the encompassing interpretation of these consistency conditions: either full-

encompassing property or more generally partial-encompassing property, will be useful as far as

the associated Wald encompassing test (WET) �a la Mizon and Richard (1986) and its simulated

version �a la Gouri�eroux and Monfort (1995) will provide a test of consistency (see section 4 below).

� On the other hand, it is worth mentioning that the standard principles of encompassing and

WET have been slightly extended here to take into account our focus of interest, that is consistent

indirect estimation through a mis-speci�ed structural model used as a simulator. More precisely,

while the standard encompassing principle was introduced by Mizon and Richard (1986) to stress

that a given model, even mis-speci�ed, produces relevant estimators as soon as it encompasses

its non nested competitor, our generalized encompassing principle explains that a mis-speci�ed

structural model may produce a relevant calibration as soon as when endowed with the true value

of interest �Æ1, it \encompasses" either fully or partially the moments to match.

Moreover, it is important keeping in mind that, in our general setting, the pseudo-true value of

interest
�
�Æ

0

1 ; �21
0
�0
does not admit an intrinsic characterization but is itself estimated (under the

null of the WET) through an indirect inference. In other words, our encompassing de�nition

focuses:

either on Min
(�1;�2)2�1��2




�Æ � e�(�1; �2)





for the full-encompassing property,

or on Min
(�1;�21)2�1��21




�Æ1 � e�1(�1; �21)




1

for the partial-encompassing property,

rather than on �Æ � e�(��1; ��2), for an a priori de�nition
�
��

0

1 ; �
�0

2

�0
.
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4 Mis-speci�ed Structural Models and Indirect Inference

In this section we deduce the main asymptotic results, whose proofs are given in appendices 2 and

3 for both full-encompassing and partial-encompassing properties taken as null hypothesis.

4.1 Asymptotic probability distribution of semi-parametric indirect

inference estimators

4.1.1 Full-encompassing semi-parametric indirect inference estimator

We focus here on the asymptotic properties of the indirect inference estimator b�TS under the

full-encompassing hypothesis HÆ according to de�nition 3:1. Moreover, we assume that both the

true unknown value �Æ1, the pseudo-true value �2 used for the encompassing property and the true

unknown value �Æ belong to the interior of the corresponding sets:
�
�Æ

0

1 ; �2
0
�0 2 Æ

�; �
Æ 2 Æ

B. We

assume in addition that:

Assumption (A8):

(a)
p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
;

is asymptotically normally distributed with mean zero and with an asymptotic covariance matrix

IÆ.

(b) JÆ = PÆ lim
T!+1

@2QT

@�@� 0

�
y
T
; xT ; �

Æ
�
:

(c) lim
T!+1

Cov
�

(p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
;
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ; �

Æ
�)

= KÆ;

independent of the initial values zs
Æ
; s = 1; : : : ; S.

(d)
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ; �

Æ
�
;

is asymptotically normally distributed11 with mean zero and with an asymptotic covariance ma-

trix I�
Æ
and independent of the initial values zs

Æ
; s = 1; : : : ; S.

(e) J�
Æ
= P� lim

T!+1

@2QT

@�@� 0

�eys
T
(�Æ1; �2; z

s

Æ
); xT ; �

Æ
�
;

11Actually, we assume that the joint probability distribution of the two score vectors considered in assumptions

(A8a) and (A8d) is asymptotically normal. Strictly speaking, this is ensured by the conjunction of (A8a) and

(A8d) only when there is no x variable. In the general case, it might be a slightly more restrictive assumption than

the conjunction of (A8a) and (A8d).
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independent of the initial values zs
Æ
; s = 1; : : : ; S.

(f) lim
T!+1

Cov
�

(p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ; �

Æ
�
;
p
T
@QT

@�

�ey`
T
(�Æ1; �2; z

`

Æ
); xT ; �

Æ
�)

= K�

Æ
;

independent of the initial values zs
Æ
and z`

Æ
, for s 6= `:

(g) P� lim
T!+1

@ e�s
T

@�0

�
�Æ1; �2

�
=
@ e�
@�0

(�Æ1; �2);

is of full-column rank (p).

Note that in general, IÆ 6= I�
Æ
, JÆ 6= J�

Æ
and KÆ 6= K�

Æ
since the structural model (B1) is mis-

speci�ed. Nonetheless these equalities are ful�lled in the well-speci�ed case. We are then able to

prove the following result:

Proposition 4.1 : Under assumptions (A1)� (A6)=(A8) and the null hypothesis HÆ, the indirect

inference estimator b�TS is asymptotically normal, when S is �xed and T goes to in�nity:

p
T

 b�1;TS � �Æ1b�2;TS � �2

!
D�����!

T!+1
N (0;W (S;
)) ;

where:

W (S;
) =

(
@ e� 0
@�

(�Æ1; �2)

@ e�
@�0

(�Æ1; �2)

)�1
@ e� 0
@�

(�Æ1; �2)
�
�

Æ
(S)


@ e�
@�0

(�Æ1; �2)

(
@ e� 0
@�

(�Æ1; �2)

@ e�
@�0

(�Æ1; �2)

)�1
;

and with:

��
Æ
(S) = J�1

Æ
IÆJ

�1
Æ

+
1

S
J�
Æ

�1I�
Æ
J�
Æ

�1 +

�
1� 1

S

�
J�
Æ

�1K�

Æ
J�
Æ

�1 � J�1
Æ
KÆJ

�

Æ

�1 � J�
Æ

�1K 0

Æ
J�1
Æ
� (4.1)

Proof : see appendix A:2:

Note that in the case where the structural model (B1) is well-speci�ed, ��
Æ
(S) reduces to the

expression

�
1 +

1

S

�
J�1
Æ

(IÆ �KÆ) J
�1
Æ

since K 0

Æ
= KÆ.

The asymptotic covariance matrix depends on the metric 
 and as usual, there exists an optimal

choice of the weighting matrix 
�(S) which minimizes W (S;
).

Proposition 4.2 : Under assumptions (A1)� (A6)=(A8) and the null hypothesis HÆ, the optimal

choice 
�(S) of 
 for the indirect inference estimator b�TS is given by 
�(S) = ��
Æ
(S)

�1
(assuming

that ��
Æ
(S) is non singular). The asymptotic covariance matrix is then given by:

W �

S
= W (S;
�(S)) =

(
@ e� 0
@�

(�Æ1; �2)(�
�

Æ
(S))�1

@ e�
@�0

(�Æ1; �2)

)�1
� (4.2)

Proof : see appendix A:2:
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4.1.2 Partial-encompassing semi-parametric indirect inference estimator

We now focus on the asymptotic properties of the indirect inference estimator b�1
TS
(�22) under the

partial encompassing hypothesis H1
Æ
according to de�nition 3:2 for a pseudo-true value

�
�Æ

0

1 ; �
0

21

�0
.

We �rst maintain assumption (A1)� (A8b) and we denote e�Æ(�22) = e�(�Æ1; �2) for the given value

�22 of the nuisance parameters. We assume that
�
�Æ

0

1 ; �
0

2

�0 2 Æ

�; �
Æ 2 Æ

B; e�Æ ��22� 2 Æ

B and in

addition that:

Assumption (A9):

(a) lim
T!+1

Cov
�

(p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
;
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ;

e�Æ(�22)�
)
= KÆ(�22);

independent of the initial values zs
Æ
; s = 1; : : : ; S and for the given value �22.

(b)
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ;

e�Æ(�22)� ;
is asymptotically normally distributed12 with mean zero and with an asymptotic covariance ma-

trix I�
Æ
(�22) and independent of the initial values zs

Æ
; s = 1; : : : ; S and for the given value �22.

(c) J�
Æ
(�22) = P� lim

T!+1

@2QT

@�@� 0

�eys
T
(�Æ1; �2; z

s

Æ
); xT ;

e�Æ(�22)� ;
independent of the initial values zs

Æ
; s = 1; : : : ; S and for the given value �22.

(d)

lim
T!+1

Cov
�

(p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ;

e�Æ(�22)� ; pT @QT

@�

�ey`
T
(�Æ1; �2; z

`

Æ
); xT ;

e�Æ(�22)�
)
= K�

Æ
(�22);

independent of the initial values zs
Æ
and z`

Æ
, for s 6= ` and for the given value �22.

(e) P� lim
T!+1

@ e�s1;T
@

 
�1
�21

!0 ��Æ1; �2� = @ e�1
@

 
�1
�21

!0 (�Æ1; �21);

is of full-column rank (p1 + p21). We are then able to prove the following result:

Proposition 4.3 : Under assumptions (A1)�(A8b)=(A9) and the null hypothesis H1
Æ
, the indirect

inference estimator b�1
TS
(�22) is asymptotically normal, when S is �xed and T goes to in�nity:

p
T

 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!
D�����!

T!+1
N
�
0;W1(S;
1; �22)

�
;

12As already pointed out in the previous footnote, there is a need of joint normal asymptotic distribution for the

two score vectors respectively introduced by (A8a) and (A9b).
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where:

W1(S;
1; �22) =

8>>>>><>>>>>:
@ e� 01

@

 
�1
�21

!(�Æ1; �21)
1

@ e�1
@

 
�1
�21

!0 (�Æ1; �21)
9>>>>>=>>>>>;

�1

@ e� 01
@

 
�1
�21

!(�Æ1; �21)
1�
�

Æ;1(S; �22)


1

@ e�1
@

 
�1
�21

!0 (�Æ1; �21)
8>>>>><>>>>>:

@ e� 01
@

 
�1
�21

!(�Æ1; �21)
1

@ e�1
@

 
�1
�21

!0 (�Æ1; �21)
9>>>>>=>>>>>;

�1

;

and ��
Æ;1(S; �22) is the (q1 � q1) left-upper bloc diagonal sub-matrix of the (q � q) matrix ��

Æ
(S; �22)

de�ned by:

��
Æ
(S; �22) = J�1

Æ
IÆJ

�1
Æ

+
1

S
J�
Æ

�1(�22)I
�

Æ
(�22)J

�

Æ

�1(�22) +

�
1� 1

S

�
J�
Æ

�1(�22)K
�

Æ
(�22)J

�

Æ

�1(�22)

�J�1
Æ
KÆ(�22)J

�

Æ

�1(�22)� J�
Æ

�1(�22)K
0

Æ
(�22)J

�1
Æ
�

(4.3)

Proof : see appendix A:3:

The asymptotic covariance matrix depends on the metric 
1 and as usual, there exists an optimal

choice of the weighting matrix 
�1(S; �22) which minimizes W1(S;
1; �22).

Proposition 4.4 : Under assumptions (A1)�(A8b)=(A9) and the null hypothesis H1
Æ
, the optimal

choice 
�1(S; �22) of 
1 for the indirect inference estimator b�1
TS

�
�22
�
is given by 
�1(S; �22) =

��
Æ;1(S; �22)

�1
(assuming that ��

Æ;1(S; �22) is non singular). The asymptotic covariance matrix is

then given by:

W �

1;S(�22) =W1(S;

�

1(S; �22); �22) =

8>>>>><>>>>>:
@ e� 01

@

 
�1
�21

!(�Æ1; �21) ���Æ;1(S; �22)��1 @ e�1
@

 
�1
�21

!0 (�Æ1; �21)
9>>>>>=>>>>>;

�1

�

(4.4)

Proof : see appendix A:3:

It is worthwhile to notice that propositions 4:3 and 4:4 above are not simple applications of

propositions 4:1 and 4:2 to the case where the vector of structural parameters is reduced to

(�01; �
0

21)
0
(for a given �22) and the vector of instrumental parameters is reduced to �1. Indeed,

the full set of instrumental parameters � = (� 01; �
0

2)
0
enters the instrumental criterion in such a

way that the direct estimation of �1 and the corresponding indirect estimation of (�01; �
0

21)
0
cannot

be easily disentangled with the evaluation of � and the corresponding �. Of course, there are

several particular circumstances where such a disentangling is straightforward ; this is the case

for instance if � de�nes a list of just-identi�ed and separable moment conditions.
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4.2 A Wald Encompassing Test

Gouri�eroux, Monfort and Renault (1993) and Gallant and Tauchen (1996) have proposed a global

speci�cation test about the structural model based on the optimal value of the objective func-

tion used in the second step of the indirect estimation method. But, similarly to the direct

Pseudo Maximum Likelihood inference �a la Gouri�eroux, Monfort and Trognon (1984), there is a

need of robusti�ed test statistics to deal with the case where estimators are consistent despite

mis-speci�cation. Basically, one should take into account the potential discrepancy between the

matrices (IÆ; JÆ; KÆ) and (I�
Æ
; J�

Æ
; K�

Æ
) stressed in the previous subsection. Our robusti�ed global

speci�cation test is then de�ned as follows:

Proposition 4.5 : Under assumptions (A1) � (A6)=(A8) and the null-hypothesis HÆ of full-

encompassing of (N�) by (B1) according to de�nition 3:1, the statistic �T;S:

�T;S = T min
(�1;�2)2�1��2

" b�T � 1

S

SX
s=1

e�s
T
(�1; �2)

#0 b
�
T
(S)

" b�T � 1

S

SX
s=1

e�s
T
(�1; �2)

#
; (4.5)

where b
�
T
(S) is a consistent estimator of the optimal metric 
�(S) = ��

Æ
(S)

�1
de�ned by (4:1),

is asymptotically distributed as a chi-square with (q � p) degrees of freedom where q = dim� and

p = dim�.

Proof : see appendix A:2:

Therefore, a natural speci�cation test of asymptotic level � is associated with the critical region:

W� = f�T;S > �21�� (q � p)g�

One may recognize the expression of the so-called Simulated GET test (Generalized Encompass-

ing Test) proposed by Gouri�eroux and Monfort (1995). However the di�erences between the two

approaches are two-fold:

? On the one hand, while Gouri�eroux and Monfort (1995) focuses on the comparison between two

parametric models which may be both mis-speci�ed, we do refer to a true unknown DGP and

associated true unknown parameters of interest �Æ1.

? On the other hand, we consider this testing procedure solely as the �rst step of a speci�ca-

tion strategy which involves several additional testing procedures about partial encompassing and

Hausman type speci�cation tests.

More precisely, while the test procedure provided by proposition 4:5 robusti�es the Gouri�eroux,

Monfort and Renault (1993) speci�cation test by controlling the level in case of mis-speci�cation

which does not prevent the SII estimator from being consistent, of course our robusti�ed metric

does not produce a consistent test when the Gouri�eroux, Monfort and Renault (1993) one does

not. This is the reason why we propose the following diagnostic methodology in the two cases

where the above test respectively leads one to the rejection or to the acceptance of HÆ (full en-

compassing).
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First case: rejection of HÆ.

The rejection of HÆ means that the set of moments which are matched through the instrumental

vector of parameters � is too large and captures the mis-speci�cation of the structural model.

Facing the evidence of mis-speci�cation of her structural model, the econometrician usually looks

for a larger model, through a battery of now standard speci�cation tools (relaxing restrictions with

diagnostics, using model choice criteria, encompassing theory, semi-non-parametric expansion...).

But the main point we want to stress here is that our Semi-parametric Indirect Inference (SII) ap-

proach provides an alternative solution by keeping the mis-speci�ed structural model and looking

for a �ne tuning of the instrumental model. The basic idea is that \given that the (structural)

model is false" the instrumental model QT

�
y
T
; xT ; �

�
should be examined only in the \dimension"

�1. In this case, the estimation of the structural parameters of interest will not be contaminated

by the mis-speci�cation because, while the value of (3:1) is not zero, the partial encompassing

condition �Æ1 =
e�1(�Æ1; �21) (see de�nition 3:2) is ful�lled for a convenient �21. In other words, �ne

tuning means looking for a reduction of � through partial encompassing tests, in an ascending

procedure. Of course, ascending means here reducing the set of instrumental parameters which

reduces the number of calibrated features in a general sense: either � de�nes a list of moments

to match and �1 is a well-suited sub-list or more generally, the occurrence of the characteristics

�2 of observed and simulated paths in QT

�
y
T
; xT ; �

�
are neutralized in the sense of subsection

3:2. Therefore we de�ne a partial encompassing test, viewed as a robusti�ed speci�cation test as

follows:

Proposition 4.6 : Under assumptions (A1)� (A8b)=(A9) and the null-hypothesis H1
Æ
of partial

encompassing of (N�) by (B1) according to de�nition 3:2, the statistic �1
T;S

(�22):

�1
T;S

(�22) = T min
(�1;�21)2�1��21

" b�1;T � 1

S

SX
s=1

e�s1;T (�1; �21; �22)
#0 b
�1;T (S)

" b�1;T � 1

S

SX
s=1

e�s1;T (�1; �21; �22)
#
;

(4.6)

where b
�1;T (S) is a consistent estimator of the optimal metric 
�1(S; �22) = ��
Æ;1(S; �22)

�1
de�ned

by (4:3), is asymptotically distributed as a chi-square with (q1 � p1 � p21) degrees of freedom where

q1 = dim�1; p1 = dim�1; p21 = dim�21.

Proof : see appendix A:3:

Therefore, the associated speci�cation test of asymptotic level � is de�ned by the following critical

region:

W1
�
= f�1

T;S
(�22) > �21�� (q1 � p1 � p21)g�

Roughly speaking, the goal of our ascending approach is to look for the largest possible sub-vector

�1 of � leading to an acceptance of H1
Æ
(partial encompassing). In the latter case, one is led to

deal with a similar issue as discussed below (second case: acceptance of HÆ). The only unsolved

case would correspond to the one where any trial run of particular partial encompassing would

lead to reject. In such a case the pair (structural model, instrumental model) is inadequate to

produce consistent estimators of the structural parameters of interest. Therefore, this pair has
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to be modi�ed. Typically, this should imply the speci�cation of a new structural model (either a

larger one or a non-nested one) which in turn will suggest in general some modi�cations on the

instrumental model. Indeed, the main message of our semi-parametric encompassing concept is

precisely the duality of the two model choices: since consistency is ensured when the structural

model encompasses the instrumental one, the two choices should be coordinated to get consistent

estimators. In other words, the instrumental model should remain true to the right structural

ideas and not be a large set of moments prompted by an automatic statistical process, like for

instance semi-non-parametric expansion.

Second case: acceptance of HÆ.

As already pointed out, our robusti�ed speci�cation testing strategy is not consistent when the

Gouri�eroux, Monfort and Renault (1993) global speci�cation test is not. More precisely, a falla-

cious acceptance of HÆ might be produced by the already mentioned pitfall which is speci�c to

simulation-based inference, when data simulated from a wrong DGP give a spurious perfect �t:

�� = (��
0

1 ; �
�0

2 )
0

solution to �(PÆ) =
e�(��1; ��2) although ��1 6= �Æ1. Indeed, Tauchen (1997) was the

�rst to emphasize on the fact that the speci�cation test of the Indirect Inference (or equivalently

eÆcient moment matching �a la Gallant and Tauchen (1996)) has no power against some alterna-

tives. He actually concludes that \without very strong a priori knowledge, the only way to avoid

this situation is to take a 
exible, more non-parametric approach to the speci�cation of the score

generator".

Our version of this point of view consists here in enlarging the vector � of instrumental param-

eters to check that acceptance of the encompassing hypothesis HÆ is maintained. Typically, a

semi-parametric score generator produces a vector � whose size grows in�nitely with the sample

size. However, we would like to mitigate this point of view in three respects.

First, the point we take in this paper is that any structural model is mis-speci�ed and therefore

\does miserably" in various dimensions, particularly because it is necessary a joint hypothesis

about a hopefully well-founded Economic Theory but also an unfortunately ad hoc statistical

speci�cation. Thus a suÆciently \
exible more non-parametric approach" will always succeed in

rejecting the structural model. But one should keep in mind that the focus of interest is not

really the speci�cation error of our structural model but the consistency of the estimation of the

structural parameters. Therefore, the quest for a larger instrumental model able to prove that the

structural model is mis-speci�ed is in some circumstances irrelevant. These circumstances are de-

lineated as the set of possible DGP which produce consistent SII (for a given instrumental model)

despite mis-speci�cation. These DGP are in the implicit null hypothesis of the test (namely the

encompassing assumption HÆ) while they are in the alternative with a Tauchen (1997) point of

view.

Our second point is that the choice of the instrumental model should help the econometrician to

answer the fundamental question \How to live with mis-speci�cation if you must?" (Maasoumi

(1990)). The problem is that, even though one acknowledges only some stylized facts as pointed

out for instance by Bansal, Gallant, Hussey and Tauchen (1995): \an equilibrium model is too

smooth to produce realistic nonlinearity at the weekly frequency", nobody suggests to abandon

the equilibrium models. By the way, the same authors conclude their article by noticing that \the
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�ndings about an equilibrium model being too smooth left the reader alone in front of the central

question of the usefulness of the structural model, if one excludes the possibility of isolating a few

selected dimensions along which it does well and along which it could be used". In order to isolate

such dimensions, one should precisely think about the structural interpretation of the instrumen-

tal parameters. This may enter in con
ict with the objective of using a suÆciently \
exible more

non-parametric approach" by automatic expansion of the instrumental model.

Third if one is afraid of accepting HÆ within the second pitfall, that is a fallacious perfect �t and

��1 6= �Æ1, it is always possible to question this value of ��1 by the following trial run. Let us imagine

that we have at our disposal several candidates of pair (structural model, instrumental model).

One may perform SII and the corresponding encompassing test for these various pairs. Even if all

these tests lead to accept the null hypothesis of consistency of the SII estimator, it is very likely

that in case of spurious �t, some di�erent values of ��1 will appear. This is a well-adapted warning

about the possibly zero power drawback of the encompassing test. Indeed, one may even build

Hausman type tests about this issue.
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5 Semi-parametric Indirect Inference with Nuisance Pa-

rameters

We address in this section the issue on the choice of the value �22 of the nuisance parameters �22

and its estimation. We �rst wish to emphasize on the fact that this question has to be addressed

with two very di�erent perspectives, namely:

� Either the encompassing property as de�ned by de�nition 3:2 allows for an arbitrary choice of

�22. In this case, thanks to this additional degree of freedom, one has to assess a value according

to some extra-speci�ed loss function.

� Or, the crucial indirect identi�cation assumption requires, according to (3:7), the use of a precise
value �22 of �22. Moreover, as already explained, this value is unknown and has to be consistently

estimated in a �rst step. We will address respectively in the two subsections below these two

di�erent issues.

5.1 Case of innocuous nuisance parameters

Under the partial encompassing property as introduced in de�nition 3:2, our SII methodology pro-

vides a consistent estimator b�1
TS
(�22) to the pseudo-true value of interest

�
�Æ

0

1 ; �21
0
�0
and is asymp-

totically
p
T -normal as shown in propositions 3:3; 4:3; 4:4. Moreover, the statistics �1

T;S
(�22) is

asymptotically distributed as a chi-square distribution with q1 � p1 � p21 degrees of freedom as

laid out in proposition 4:6. We want to stress here that, in case of innocuous nuisance param-

eters, these results remain unchanged whenever �22 is replaced by a consistent estimator b�22;TS
such that

p
T
�b�22;TS � �22

�
= OP�(1)

13 (see appendices A:1 and A:3 for the proofs). Hence the

question about the evaluation of the nuisance parameters �22 remains, especially, when the full-

encompassing property is not ful�lled so that the joint indirect estimation of (�01; �
0

21)
0
with that

of the nuisance parameters �22 leads to an inconsistent indirect inference estimator b�1;TS.
In this respect, as long as, under the partial encompassing assumption (de�nition 3:2), the con-

sistency of the SII estimator b�11;TS(�22) does not depend on the value �22 (or more generally on

the estimator b�22;TS), we are able to say that, with respect to the consistency of the SII estimatorb�11;TS(�22), one can set, a priori, whichever value �22 he wishes to impose on the nuisance parame-

ters �22. But it is clear that other features generated by the structural model (B1) do depend on

the value �22, for instance the asymptotic probability distribution of the SII estimator b�11;TS(�22)
(for statistical considerations), or the dimensions �2 of the instrumental model (for more structural

considerations). In this respect, one always has in mind to assign a value �22 that minimizes some

desired general loss function Æ(PÆ; �22) that is:

�22 = Argmin
�222�22

Æ(PÆ; �22); (5.1)

13Actually in case of innocuous nuisance parameters, the consistency of the SII estimator b�1;TS requires the weak

consistency of the nuisance parameters: P� lim
T!+1

b�22;TS = �22 and the asymptotic normal distribution of the SII

estimator b�1;TS requires that
p
T
�b�22;TS � �22

�
= OP�(1).
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where PÆ corresponds to the true unknown probability distribution of f(yt; xt); t 2 ZZg according
to (A1). In practice, the nuisance parameters �22 will be consistently estimated by the estimatorb�22;TS de�ned as follows: b�22;TS = Argmin

�222�22

ÆTS(y
T
; xT ; �22); (5.2)

where P� lim
T!+1

Sup
�222�22

���ÆTS(y
T
; xT ; �22)� Æ(PÆ; �22)

��� = 0. b�22;TS is therefore consistent to the value �22
of the nuisance parameters �22 and is assumed to be such that

p
T
�b�22;TS � �22

�
= OP� (1). The

subscript S means here, that when necessary, one can build simulated paths of the endogenous vari-

ables, thanks to the structural model (B1), to compute the estimated loss function ÆTS(y
T
; xT ; �22).

For instance, as can be seen in the sequel, we may consider the following estimated loss function:

ÆTS(y
T
; xT ; �22) =






 T (yT ; xT )� 1

S

SX
s=1

 T (eys
T
(b�1
TS
(��22); �22); xT )







p(	)

; (5.3)

where:
PÆ lim
T!+1

h
 T (y

T
; xT )�  1(PÆ)

i
= 0;

P� lim
T!+1

Sup
�2�




 T (eys
T
(�); xT )�  1(P�)





p(	)

= 0�

 1 is an operator de�ned from the set P of probability distributions on (X � Y)ZZ onto IRp( ).

��22 is some initial values assigned to the nuisance parameters �22 in order to produce in a �rst

step estimation a consistent SII estimator b�1
TS
(��22) of the pseudo-true value

�
�Æ

0

1 ; �21
0
�0
. k�k

p(	) is

some norm on IRp( ).

In this case the loss function Æ(PÆ; �22) is simply de�ned by:

Æ(PÆ; �22) =





 1(PÆ)�  1(P(�Æ0
1
;�21

0

;�22
0)
0)






p(	)

�

As an illustration, we suggest to use the following natural loss function. We consider �Æ2 ande�2(�1; �2) respectively the pseudo-true value and the binding function associated with the param-

eters �2 de�ned by the instrumental model (2:13). As already mentioned in section 3, �Æ2 ande�2(�1; �2) are consistently estimated by b�2;T and e�2;TS(�1; �2).
We de�ne the value �22 of the nuisance parameters as the solution to the following minimization

program:

�22 = Argmin
�222�22

�
�Æ2 � e�2(�Æ1; �21; �22)�0
2

�
�Æ2 � e�2(�Æ1; �21; �22)� ; 14 (5.4)

where 
2 is a positive matrix on IRq2 and q2 = dim�2. In order to estimate the parameters �22,

we de�ne the estimator b�22;TS as follows:

b�22;TS = Argmin
�222�22

� b�2;T � e�2;TS(b�1TS(��22); �22)�0
2

� b�2;T � e�2;TS(b�1TS(��22); �22)� ; 15 (5.5)

14Note that in the case where �22 is not unique, one can always use a more restrictive loss function so that �22
is unique.

15Under usual regularity conditions this estimator is consistent to the value �22 of the nuisance parameters �22

and such that
p
T
�b�22;TS � �22

�
= OP� (1).
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for a given initial value ��22.

This loss function illustrate the wish of reproducing the dimensions of interest associated with �2

under the constraint that the SII estimator b�1
TS
(�22) is consistent to the pseudo-true unknown value

(�Æ
0

1 ; �
0

21)
0

of the structural parameters of interest. In other words, since the nuisance parameters

have no genuine meaning, one possible way of selecting their value �22, is to perform simulation

exercises where �1 =
b�11;TS(��22); �21 = b�121;TS(��22). �22 is then calibrated in order to minimize the

discrepancy criterion between the empirical moments and the simulated ones associated with �2

as de�ned by (5:5).

5.2 Case of harmful nuisance parameters

We state in this subsection the general SII results in the case of harmful nuisance parameters. We

�rst maintain assumptions (A1)� (A6) and assume in addition H1
Æ
:16

� (B1) endowed with the true value �Æ1 partially encompasses (N�), i.e.: there exists: �21; �22 2
�21 � �22 such that:

�Æ1 =
e�1 ��Æ1; �21; �22� (5.6)

� and for the previous value �22, (3:7) is ful�lled, namely:
e�1 ��1; �21; �22� = e�1 ���1; ��21; �22� =)

(�1; �21) = (��1; �
�

21) �

Assumption (A10):

We have at our disposal a �rst step consistent estimator b�22;TS of �22 such that:

(a) P� lim
T!+1

b�22;TS = �22,

(b)
p
T
�b�22;TS � �22

� D�����!
T!+1

N
�
0;�22

�
�17

Assumption (A11):

Sup
�1;�212�1��21




 e�1;TS ��1; �21; b�22;TS�� e�1 ��1; �21; �22�




1

P������!
T!+1

0�

We recall that the indirect inference estimator based on the sub-vector �1 of the instrumental

parameters is de�ned by:

b�1
TS
(�22) =

�b�01;TS ��22� ; b�021;TS ��22��0 ;
= Argmin

�1;�212�1��21

h b�1;T � e�1;TS ��1; �21; b�22;TS�i0 b
1;T

h b�1;T � e�1;TS ��1; �21; b�22;TS�i ;
(5.7)

16We still refer here to H1
Æ
as the partial encompassing property although the setting is, as already explained,

di�erent.
17Note that (A10b) implies (A10a).
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where P� lim
T!+1

b
1;T = 
1 is a positive matrix on IRq1 . Note that with a slight abuse of notations, we

will refer to the indirect estimator b�1
TS

�
�22
�
rather than b�1

TS

�b�22;TS�. We are now able to prove

the following generalized consistency property.18

Proposition 5.1 : Under assumptions (A1)� (A6); (A10a); (A11) and H1
Æ
: (B1) endowed with

the true value �Æ1 partially encompasses (N�) according to (3:7) and (5:6) in case of harmful nui-

sance parameters, the indirect estimator b�11;TS ��22� is consistent to �Æ1.

Proof : See appendix A:1:

In order to derive the asymptotic distribution of the SII estimator in case of harmful nuisance

parameters, we �rst maintain assumptions (A1)� (A6)=(A8a)� (A8b)=(A9a)� (A9d)=(A10b) and

modify (A9e) to (A9e)0:

(A9e)0

� P� lim
T!+1

@ e�s1;T
@

 
�1
�2

!0 ��Æ1; �2� = @ e�1
@

 
�1
�2

!0 (�Æ1; �2);
is of full-column rank (p1 + p2).

� lim
T!+1

Cov

"p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
;
p
T
�b�22;TS � �22

�#
= LÆ(�22);

� lim
T!+1

Cov

"p
T
@QT

@�

�eys
T
(�Æ1; �22; z

s

Æ
); xT ;

e�Æ(�22)� ;pT �b�22;TS � �22
�#

= L�
Æ
(�22)�

We are now able to prove the following result19:

Proposition 5.2 : Under assumptions (A1) � (A6)=(A8a) � (A8b)=(A9)0=(A10b) and the null

hypothesis H1
Æ
, the indirect inference estimator b�1

TS
(�22) is asymptotically normal, when S is �xed

and T goes to in�nity:

p
T

 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!
D�����!

T!+1
N
�
0;W1(S;
1; �22;�22)

�
;

where:

W1(S;
1; �22;�22) =

8>>>>><>>>>>:
@ e� 01

@

 
�1
�21

!(�Æ1; �2)
1

@ e�1
@

 
�1
�21

!0 (�Æ1; �2)
9>>>>>=>>>>>;

�1

@ e� 01
@

 
�1
�21

!(�Æ1; �2)
1�
�

Æ;1(S; �22;�22)


1

@ e�1
@

 
�1
�21

!0 (�Æ1; �2)
8>>>>><>>>>>:

@ e� 01
@

 
�1
�21

!(�Æ1; �2)
1

@ e�1
@

 
�1
�21

!0 (�Æ1; �2)
9>>>>>=>>>>>;

�1

;

18We will focus here on suÆcient (partial encompassing) conditions for consistency. However the necessary and

suÆcient conditions framework developed in section 3 can also be extended in case of harmful nuisance parameters.
19We will refer to (A9)0 as the set of assumptions (A9a)� (A9d)=(A9e)0.
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��
Æ;1(S; �22;�22) = ��

Æ;1(S; �22) + 	�

Æ;1(S; �22) + 	�
0

Æ;1(S; �22) + ��
Æ;1(S; �22) + ��

0

Æ;1(S; �22) +

@ e�1
@�022

(�Æ1; �2)�22

@ e� 01
@�22

(�Æ1; �2).

� ��
Æ;1(S; �22) is the (q1 � q1) left-upper bloc diagonal sub-matrix of the (q � q) matrix ��

Æ
(S; �22)

de�ned by:

��
Æ
(S; �22) = J�1

Æ
IÆJ

�1
Æ

+
1

S
J�
Æ

�1(�22)I
�

Æ
(�22)J

�

Æ

�1(�22) +

�
1� 1

S

�
J�
Æ

�1(�22)K
�

Æ
(�22)J

�

Æ

�1(�22)

�J�1
Æ
KÆ(�22)J

�

Æ

�1(�22)� J�
Æ

�1(�22)K
0

Æ
(�22)J

�1
Æ
�

� 	�

Æ;1(S; �22) is the (q1 � q1) upper bloc sub-matrix of the (q � q1) matrix 	�

Æ
(S; �22) de�ned by:

	�

Æ
(S; �22) = J�1

Æ
LÆ(�22)

@ e� 01
@�22

(�Æ1; �2);

� ��
Æ;1(S; �22) is the (q1 � q1) upper bloc sub-matrix of the (q � q1) matrix ��

Æ
(S; �22) de�ned by:

��
Æ
(S; �22) = �J��1

Æ
(�22)L

�

Æ
(�22)

@ e� 01
@�22

(�Æ1; �2)�

Proof : see appendix A:4:

The asymptotic covariance matrix depends on the metric 
1 and as usual, there exists an optimal

choice of the weighting matrix 
�1(S; �22; �6�22) which minimizes W1(S;
1; �22;�22).

Proposition 5.3 : Under assumptions (A1)�(A6)=(A8a)�(A8b)=(A9)0=(A10b) and the null hy-

pothesis H1
Æ
, the optimal choice 
�1(S; �22;�22) of 
1 for the indirect inference estimator b�1

TS

�
�22
�

is given by 
�1(S; �22;�22) = ��
Æ;1(S; �22;�22)

�1
(assuming that ��

Æ;1(S; �22;�22) is non singular).

The asymptotic covariance matrix is then given by:

W �

1;S(�22;�22) =

8>>>>><>>>>>:
@ e� 01

@

 
�1
�21

!(�Æ1; �2) ���Æ;1(S; �22;�22)
��1 @ e�1

@

 
�1
�21

!0 (�Æ1; �2)
9>>>>>=>>>>>;

�1

� (5.8)

Proof : see appendix A:4:

We now focus on the modi�ed test statistics �1
T;S

(�22;�22) used in the second step of our ascending

procedure of tests described in subsection 4:2.

Proposition 5.4 : Under assumptions (A1) � (A6)=(A8a) � (A8b)=(A9)0=(A10b) and the null-

hypothesis H1
Æ
of partial encompassing of (N�) by (B1) according to de�nition 3:6, the statistic

�1
T;S

(�22;�22):

�1
T;S

(�22;�22) = T min
(�1;�21)2�1��21

" b�1;T � 1

S

SX
s=1

e�s1;T (�1; �21; b�22;TS)
#0 b
�1;T (S)" b�1;T � 1

S

SX
s=1

e�s1;T (�1; �21; b�22;TS)
#
;

(5.9)
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where b
�1;T (S) is a consistent estimator of the optimal metric 
�1(S; �22;�22) = ��
Æ;1(S; �22;�22)

�1

de�ned in proposition 5:3, is asymptotically distributed as a chi-square with (q1 � p1 � p21) degrees

of freedom where q1 = dim�1; p1 = dim�1; p21 = dim�21.

Proof : see appendix A:4:

Therefore, the associated speci�cation test of asymptotic level � is de�ned by the following critical

region:

W1
�
= f�1

T;S
(�22;�22) > �21�� (q1 � p1 � p21)g�

It is worth mentioning that the proofs of propositions 5:2 � 5:4 are given directly in appendix

A:4. However, one can also derived these results by applying the general theory proposed by Dridi

(2000), while noticing that the SII estimator corresponds to the SALS estimator deduced from

the estimating equations:

e�1(�1; �21; �22)� �Æ1 = 0 =) (�01; �
0

21)
0
=
�
�Æ

0

1 ; �21
0
�0
;

and �22 has been replaced by b�22;TS. We have decided here to give rather a direct proof in order

to take into account the mis-speci�cation issues on the simulator. Besides this illustrates the

usefulness of the SALS approach as a complementary approach to the SII method which seeks to

identify the relevant estimating equations to be used through the ascending procedure of tests.

In the next section, we illustrate our SII methodology through examples based on the popular

Stochastic Volatility models.
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6 Stochastic Volatility and Asymmetries

Empirical �nancial studies have found de�nite evidence that the stock market returns present

strong conditional heteroskedasticity patterns at high frequency data level. And while the Eco-

nomic Theory provides little guidance on the selection of an appropriate model and estimation

strategy for the conditional variance, it has now become essential to answer such issues, especially

when one is interested in valuing �nancial equities through general asset pricing models.

In order to answer the previous challenge, the stochastic volatility model (SV hereafter) has been

proposed by Clark (1973), Tauchen and Pitts (1983), Taylor (1986-1994), Ghysels, Harvey and

Renault (1995) among many authors. These models appear as an alternative speci�cation to

the famous Auto-regressive Conditionally Heteroskedastic (ARCH) model as introduced by Engle

(1982) and Bollerslev (1986). The main di�erence between the two models relies on whether the

volatility of the process is observable or not. More precisely, the SV model introduces unobservable

latent factors, which account for broad general features of the �nancial market data (persistent

volatility, volatility clustering e�ect, leverage e�ect, asymmetries, leptokurtosis...). Even though

ARCH models are more tractable in the uni-variate case, the SV model proposes several improve-

ments with respect to the ARCH speci�cation.

First as pointed out by Andersen and Sorensen (1995), \multi-variate ARCH models induce a pro-

liferation of parameters that must be handled in an arguably ad hoc manner", whereas SV models

introduce low dimensional unobservable factors. Second SV models as proposed by Meddahi and

Renault (1997) are closed under temporal aggregation whereas standard ARCH models are not.

These are the reasons why we focus in this subsection on SV models fyt; t 2 ZZg de�ned as follows:8><>:
yt = �t�1"t;

�2
t

= ! + 
�2
t�1 + �t;

(6.1)

where we take for stationarity and positivity considerations on the volatility process the following

assumptions: 0 < 
 < 1 and 0 < !. The range of yt is Y � IR.

In order to complete the previous semi-parametric speci�cation (6:1), the innovation processes

f"t; t 2 ZZg and f�t; t 2 ZZg are assumed to share the following properties:

E ["t= It�1] = 0; E ["2
t
= It�1] = 1; E ["3

t
= It�1] = �3;

E ["4
t
= It�1] = �4; E [�t= It�1] = 0; E [�2

t
= It�1] = �2;

E ["t�t= It�1] = ��;

20 (6.2)

where the information set It = � ("t; "� ; �� ; � < t) is the �-�eld generated by ("t; "� ; �� ; � < t).

Moreover, the empirical �nancial studies have found strong evidence that the stock market returns

have an important asymmetric behavior. Within the framework delineated by the speci�cation

(6:1) � (6:2), this stylized fact can be explained by the skewness of the standardized innovation

20This semi-parametric SV model is due to Meddahi and Renault (1997). Of course, we could have focused on

log-stochastic volatility models speci�cations �a la Andersen (1994), Taylor (1994) and Harvey, Ruiz and Shephard

(1994) but as can be seen in the sequel, there are several reasons why we do not use the latter speci�cation.
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process f"t; t 2 ZZg (�3 6= 0) and by the so-called leverage e�ect (� < 0), which corresponds

according to Black (1976), to the negative correlation between innovations to volatility process

f�t; t 2 ZZg and innovations to return process f"t; t 2 ZZg (see appendix A:5: for an in depth

discussion of this issue).

These two sources of asymmetries may lead the econometrician to build mis-speci�ed structural

model, especially when according to the common practice, she wrongly predisposes one speci�ca-

tion rather than the other. That is, either neglecting the leverage e�ect and imposing � = 0 or

neglecting the skewness of the standardized innovation process f"t; t 2 ZZg and imposing �3 = 0,

while these restrictions are respectively not ful�lled.

Of course, one can always argue, that it is possible to avoid this kind of mis-speci�cations by

relaxing the fallacious constraint � = 0 or �3 = 0. But in our opinion, this objection is irrele-

vant since until further developments in the econometric modeling, one never knows, in practice,

how to improve a priori the model speci�cation. A good illustration of this point is precisely

the aforementioned confusion between the leverage e�ect and the skewness of the standardized

innovation process f"t; t 2 ZZg. In this case, we are able to give a new insight on the sources of the

asymmetric behavior of the stock markets returns. Indeed, it is always easy to claim a posteriori

that one can avoid the mis-speci�cation by relaxing the fallacious constraint � = 0 or �3 = 0. In

this respect, the examples given below should be regarded as illustrations and applications of our

SII methodology and which examine the e�ects of mis-speci�cations in the asymmetries.

Furthermore within the semi-parametric SV speci�cation (6:1) � (6:2) and without further as-

sumptions on the p.d.f. of the innovation process f�t; t 2 ZZg, one cannot identify the asymmetry
parameters (�; �3). This may lead to another type of deeper mis-speci�cations, which are scarcely

avoidable. Indeed, within this semi-parametric setting, the theory provides no insight on what

the p.d.f. of the joint process f("t; �t); t 2 ZZg could be. This is even more upsetting since when

one is also interested in the estimation of the asymmetry parameters (�; �3), no direct estimation,

such as for instance the Generalized Method of Moments, is available.

In this framework one has, �rst, to choose in a rather arbitrarily ad hoc manner a speci�cation

for the p.d.f. of the joint process f("t; �t); t 2 ZZg and , second, to perform a SII generally with a

mis-speci�ed structural model being used as a simulator. This corresponds to our basic outlook,

that is, consistent indirect estimation of some parameters of interest despite a mis-speci�ed sim-

ulator.

Note that in our examples there are two types of mis-speci�cations, that is, mis-speci�cations in

the asymmetries and mis-speci�cations in the p.d.f. of the joint process f("t; �t); t 2 ZZg.
We denote Æ = (!; 
; �2; �3; �; �4)

0
the structural unknown parameters associated with (6:1)�(6:2).

We de�ne the family P of probability distributions compatible with the semi-parametric SV model

34



(6:1)� (6:2). That is, there exists an application eÆ (�) from P onto a part � = eÆ (P) such that:

eÆ : P �! �;

P �! eÆ = (e!; e
; e�2; e�3; e�; e�4)0;
8P 2 P; 8 fyt; t 2 ZZg 2 L4 (IR;B(IR); �)ZZ ; P;

) 9 f(�t; �t); t 2 ZZg such that:

yt = �t�1"t;

�2
t

= e!(P ) + e
(P )�2
t�1 + �t;

21 (6.3)

with:
E
P

["t= It�1] = 0; E
P

["2
t
= It�1] = 1; E

P

["3
t
= It�1] = e�3(P );

E
P

["4
t
= It�1] = e�4(P ); E

P

[�t= It�1] = 0; E
P

[�2
t
= It�1] = e�2(P );

E
P

["t�t= It�1] = e�(P )e�(P );
(6.4)

where the information set It = � ("t; "� ; �� ; � < t) is the �-�eld generated by ("t; "� ; �� ; � < t),

0 < e!(P ) and 0 < e
(P ) < 1. That is for each P 2 P and each stochastic process fyt; t 2 ZZg such
that its p.d.f. is P , there exists eÆ(P ) 2 � such that the stochastic process fyt; t 2 ZZg belongs

to the class of SV models as delineated by (6:1) � (6:2) for the value Æ = eÆ(P ) of the unknown
structural parameters.

We focus now on the e�ects of neglecting the skewness parameter �3. The data consist in the

observations of a stochastic process fyt; t 2 ZZg, t = 1; :::; T . We denote PÆ the true unknown

p.d.f. of fyt; t 2 ZZg.
Assumption (A11): 22

(i) PÆ belongs to the family P of probability distributions.

(ii) We de�ne ÆÆ = eÆ (PÆ) and we assume that ÆÆ =
�
!Æ; 
Æ; �Æ2; �Æ3; 0; �

Æ

4

�0 2 Æ

� and E
Æ
["2
t
�t= It�1] =

0.23

In other words according to (A11), the data are generated by a conditionally skewed and leptokur-

tic SV model.

As previously seen, there are two sources of asymmetric responses of the stock market returns:

the skewness of the innovations to returns (�3 6= 0) and the leverage e�ect (� < 0). In this

context, a common but nonetheless wrong practice consists in predisposing the leverage e�ect �

while neglecting the skewness of the innovations to returns (�3 6= 0). The econometrician focuses

in this case on SV models de�ned as follows.

21Note that � = eÆ (P) = IR
�

+�]0; 1[�IR�+ � IR � IR � IR
�

+ and that L4 (IR;B(IR); �) is the set of measurable

variables with �nite fourth order moments. � corresponds to the Lebesgues measure and fyt; t 2 ZZg ; P means

that the p.d.f. of fyt; t 2 ZZg is P .
22Note that assumption (A11) does correspond to the condition delineated by assumption (A1).
23Note that this symmetry assumption could be implied by the following independence assumption f"t; t 2 ZZg

?? f�t; t 2 ZZg. In that case, we have trivially �Æ = 0 since E
Æ

["t�t= It�1] = �Æ�Æ = E
Æ

["t= It�1]E
Æ

[�t= It�1] = 0.
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Nominal assumption (B2):

(i) 8><>:
yt = �t�1"t;

�2
t

= ! + 
�2
t�1 + �t;

(6.5)

where 0 < 
 < 1 and 0 < ! and the following assumptions on the innovation processes f"t; �t; t 2
ZZg are made:

E ["t= It�1] = 0; E ["2
t
= It�1] = 1; E ["3

t
= It�1] = 0;

E ["4
t
= It�1] = �4; E [�t= It�1] = 0; E [�2

t
= It�1] = �2;

E ["t�t= It�1] = ��; E ["2
t
�t= It�1] = 0;

24 (6.6)

where the information set It = � ("t; "� ; �� ; � < t) is the �-�eld generated by ("t; "� ; �� ; � < t). The

parameters of interest �1 is de�ned by �1 = (!; 
; �2; �; �4)
0
. We de�ne the function e�1(�) from the

set P onto �1 =
e�1 (P) by:
e�1 : P �! �1;

P �! e�1 (P ) = (e! (P ) ; e
 (P ) ; e�2 (P ) ; e� (P ) ; e�4 (P ))0�
25

With a slight abuse of notations we can write eÆ (P ) = �e�1 (P )0; e�3 (P )�0.
(ii) As already pointed out, in order to identify and estimate the parameters of interest

�Æ1 =
�
!Æ; 
Æ; �Æ2; �Æ; �Æ4

�0
(�Æ = 0), the econometrician makes further assumptions on the law

of motion of the joint process f("t; �t); t 2 ZZg. This may require additional nuisance parameters

�2 2 �2 � IRp2. 26 We denote � = (�1
0; �2

0)
0
the structural unknown parameters, � 2 � = �1��2.

The structural model delineated by assumption (B2) is mis-speci�ed, �rst, with respect to the

skewness of the standardized innovations (�Æ3 6= 0) and second, in general, with respect to the joint

p.d.f. of f("t; �t); t 2 ZZg (�2 say).
In order to perform a SII of the true unknown value �Æ1 of the structural parameters of interest

�1, one has to specify a convenient instrumental model according to proposition (5:1). A possible

choice of the instrumental model can be built on an ARCH(q1) speci�cation since it provides a

natural framework to capture the aforementioned features of the data (volatility clusters, asym-

24The symmetry assumption E
�
"2t�t= It�1

�
= 0 is made for sake of computational simplicity and can easily be

ful�lled by setting:

�t = ��"t + �t;

where the process f�t; t 2 ZZg is such that E [�t= It�1] = 0 and f�t; t 2 ZZg ?? f"t; t 2 ZZg .
25The de�nition of this function follows immediately from the speci�cation (6:1)� (6:2) and the de�nition of P .

Moreover e�1 (P ) can be characterized through the condition (2:11), that is:

E
P
g (yt; yt�1; : : : ; yt�K ; �1) = 0 =) �1 = e�1 (P ) ;

where g is obviously de�ned by the speci�cation (6:1)� (6:2).
26Note that this does not prevent the p.d.f. as well as the support of the joint process f("t; �t); t 2 ZZg from

depending on the structural parameters of interest �1.
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metries, leptokurtosis): 8>>>><>>>>:
yt =

p
htzt;

ht = �Æ +
q1X
i=1

�iy
2
t�i
;

(6.7)

with q1 � 1, E [zt= Jt�1] = 0, V ar [zt= Jt�1] = 1 and where the information set Jt = � (y� ; � < t)

is the �-�eld generated by (y� ; � < t).

We de�ne the instrumental model (N�1
) through the following moment conditions (6:8) associated

with the ARCH(q1) speci�cation (6:7):

E

"
y2
t
� �1;Æ �

q1X
i=1

�1;iy
2
t�i

#
= 0;

E

" 
y2
t
� �1;Æ �

q1X
i=1

�1;iy
2
t�i

!
y2
t�j

#
= 0; j = 1; : : : ; q1;

E [y2
t
] = �1;q1+1;

E
h
y2
t
y2
t�1

i
= �1;q1+2;

E
h
y2
t
y2
t�2

i
= �1;q1+3;

E [y2
t
yt�1] = �1;q1+4;

E [y4
t
] = �1;q1+5�

(6.8)

This choice of moments is performed with respect to structural ideas, in particular, leverage

e�ect and kurtosis (�1;q1+4; �1;q1+5).
27 The number of moment conditions (q1 + 6), is exactly

the number of instrumental parameters �1 = (�1;Æ; : : : ; �1;q1+5)
0 2 B1 � IRq1+6. So that we are

in a just-identi�ed framework concerning the instrumental model (N�1
). Moreover, we are able

to prove that the moment conditions (6:8) uniquely de�ne the instrumental parameters �1 (see

appendix A:5:).

We associate with the instrumental model (N�1
) the following instrumental criterion:

Q1
T

�
y
T
; �1

�
=

8<: 1

T

TX
t=q1+1

g1 (yt; : : : ; yt�q1; �1)

9=;
0
8<: 1

T

TX
t=q1+1

g1 (yt; : : : ; yt�q1; �1)

9=; � 28 (6.9)

27The moment conditions associated respectively with (�1;q1+1; �1;q1+2; �1;q1+3) have been added here just in

order to ensure the indirect identi�cation of the structural parameters of interest �1 (see appendix A:5: and lemma

6:1 in the sequel).
28In this just-identi�ed setting, there is no need to introduce a weighting matrix for the instrumental GMM

criterion (see appendix A:5: for more details).
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g1 (yt; : : : ; yt�q1; �1) is the function from IR2q1+7 onto IRq1+6 de�ned as follows:

g1 (yt; : : : ; yt�q1; �1) =

2666666666666666666666666666666666666664

y2
t
� �1;Æ �

q1X
i=1

�1;iy
2
t�i 

y2
t
� �1;Æ �

q1X
i=1

�1;iy
2
t�i

!
y2
t�1

�
�
� 

y2
t
� �1;Æ �

q1X
i=1

�1;iy
2
t�i

!
y2
t�q1

y2
t
� �1;q1+1

y2
t
y2
t�1 � �1;q1+2

y2
t
y2
t�2 � �1;q1+3

y2
t
yt�1 � �1;q1+4

y4
t
� �1;q1+5

3777777777777777777777777777777777777775

� (6.10)

We assume the following law of large numbers and uniform law of large numbers:

Assumption (A12):

(A12)

PÆ lim
T!+1

"
Q1
T

�
y
T
; �1

�
�




E
Æ

g1 (yt; : : : ; yt�q1; �1)





2
2

#
= 0;

8� 2 �; P� lim
T!+1

Sup
�12B1

�����Q1
T

�eys
T
(�; zs

Æ
); �1

�
�




E
�

g1
�eys

t
(�; zs

Æ
); : : : ; eys

t�q1
(�; zs

Æ
); �1

�



2
2

����� = 0;

where feys
Æ
(�; zs

Æ
); : : : ; eys

T
(�; zs

Æ
)g correspond to simulated paths conditionally on zs

Æ
for s = 1; : : : ; S

and for any values � of the structural parameters.

In this context, we �rst prove the two following lemmas useful for establishing the desired consis-

tency property.

Lemma 6.1 :

� The functions:
B1 ! IR+

�1 !




E
Æ

g1 (yt; : : : ; yt�q1; �1)





2
2

;

�1 !




E
�

g1
�eys

t
(�; zs

Æ
); : : : ; eys

t�q1
(�; zs

Æ
); �1

�



2
2

;

are non stochastic twice di�erentiable functions not depending on the initial conditions zs
Æ
and with

a unique minimum with respect to �1: �
Æ

1 and e�1(�) de�ned by:



E
Æ

g1 (yt; : : : ; yt�q1; �
Æ

1)





2
2

= 0;





E
�

g1
�eys

t
(�; zs

Æ
); : : : ; eys

t�q1
(�; zs

Æ
); e�1(�)�



2

2

= 0�
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� Moreover the function e�1(�) is partially locally identi�ed with respect to �1 at the point �Æ1, that

is:

8�1 2 �1; 8�2 2 �2;
e�1(�1; �2) = e�1(�Æ1; �2) =) �1 = �Æ1�

Proof : see appendix A:5:

In order to indirectly identify the additional nuisance parameters �2, the econometrician is gener-

ally led to introduce the following additional instrumental criterion:

Q2
T

�
y
T
; �2

�
where �2 2 B2 a compact subset of IRq2 ; 29 (6.11)

and such that:

Assumption (A13):

(A13)

PÆ lim
T!+1

h
Q2
T

�
y
T
; �2

�
� q2

Æ
(�2)

i
= 0;

P� lim
T!+1

Sup
�2�

���Q2
T

�eys
T
(�; zs

Æ
); �2

�
� q2

M
(�; �2)

��� = 0;

q2
Æ
(�2) and q

2
M
(�; �2) are assumed to be non stochastic twice di�erentiable functions not depending

on the initial conditions zs
Æ
and with a unique minimum with respect to �2. Let �

Æ

2 and
e�2(�1; �2)

be respectively the minimum of q2
Æ
(�2) and q

2
M
(�; �2), that is:

Assumption (A14):

(A14)

�Æ2 = �(PÆ) = Argmin
�22B2

q2
Æ
(�2);

e�2(�1; �2) = Argmin
�22B2

qM (�1; �2; �2)�

We denote q = q1 + q2 + 6, and we de�ne the instrumental criterion QT

�
y
T
; �
�
by:

QT

�
y
T
; �
�
= Q1

T

�
y
T
; �1

�
+Q2

T

�
y
T
; �2

�
; (6.12)

where � = (� 01; �
0

2)
0 2 B = B1 � B2 � IRq.

We make the following identi�cation assumption:

Assumption (A15):

the function e�(�) is one to one. We already know that under assumptions (A12)� (A14):

PÆ lim
T!+1

b�T = �Æ;

P� lim
T!+1

e�s
T
(�) = P� lim

T!+1

e�TS(�) = e�(�)�
29A possible choice for the instrumental criterion (6:11) can be set through a GMM type instrumental criterion

de�ning �2.
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We assume in addition that the latter convergence is uniform in �, that is for s = 1; : : : ; S:

Assumption (A16):

(A16) P� lim
T!+1

Sup
(�0
1
;�0
2
)02�




 e�s
T
(�1; �2)� e�(�1; �2)




q
= 0�

Lemma 6.2 : Under assumptions (A12)�(A16), the conditions delineated by assumptions (A2)�
(A5) are ful�lled.

Proof : this is immediately deduced from the de�nitions of assumptions (A12) � (A16) and

(A2)� (A5).

We are now able to prove one of the main results of this section.

Proposition 6.1 : Under assumptions (A11)� (A16) and for each �2 2 �2, the structural model

(B2) endowed with the true value �Æ1 partially encompasses (N�) (with respect to �1) that is:

�Æ1 =
e�1(�Æ1; �2)�

Proof : see appendix A:5:

Proposition 6.2 : Under assumptions (A11)� (A16), the SII estimator b�11;TS(�22) as de�ned by

(5:7) is consistent to the true unknown value �Æ1 =
�
!Æ; 
Æ; �Æ2; 0; �Æ4

�0
.

Proof : By conjunction of proposition (3:3) with proposition (6:1), the result of proposition (6:2)

is straightforward.

Actually it is worth noticing that the addition of the directions �2 has be done solely in order to

ensure the identi�cation and thus the two-steps estimation of the nuisance parameters �22 while

still maintaining a consistent estimation of �Æ1. If one is only interested in the consistent estimation

of �Æ1, one can �x any value to the nuisance parameters �22, this enables to get rid of the additional

�2 and associated instrumental criterion. However and as already mentioned one may desire to

minimize some given loss function inv/lving �2 while choosing �22.

Propositions (6:1) and (6:2) are, in our opinion good examples illustrating our SII methodology:

the econometrician has basically to focus on the dimensions of almost correct speci�cation as delin-

eated by our partial encompassing de�nition (5:6). Moreover, the joint estimation of the structural

parameters of interest �1 with that of the nuisance parameters �2 generally leads to an inconsistent

SII estimator b�1;TS of the true unknown value �Æ1, since one has to introduce additional moments or
more generally additional instrumental parameters, as delineated by assumptions (A12)� (A14),

which no longer satisfy the desired encompassing property for consistency. Indeed under assump-

tions (A11)� (A16) and (B2), and when one focuses on indirect estimation simultaneously about
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�Æ1 and �2, one has to use the additional instrumental characteristics associated with �2. Therefore

the objective minimum (2:15) applied to the SV model is in general not reached at zero, so that

the indirect estimator is in general inconsistent for the true unknown value �Æ1. More precisely,

there always exists a weighting matrix 
 such that the consistency property is violated. It is also

possible to build an example where the indirect estimator based on the whole instrumental crite-

rion (� say) is always inconsistent. This is achieved as soon as one uses as instrumental criterion

N�1
and adds one of the following instrumental moment conditions:

�
j

q1+6 = E

" 
y2
t
� �1;Æ �

q1X
i=1

�1;iy
2
t�i

!
yt�j

#
; j = 1; : : : ; q1�

And while Andersen and Sorensen (1995) advocates: \As the sample expands one should exploit

additional moment restrictions. However, in small samples... the use of additional information

can be harmful", we stress here that the use of additional information, as for instance by means

of SNP score generator �a la Bansal, Gallant, Hussey and Tauchen (1995), is always harmful when

one acknowledges the potential mis-speci�cation in the structural model and seeks to consistently

estimate some components of the structural parameters.

Furthermore, we could have proposed an example based on log-stochastic volatility model speci-

�cation but there are, at least, two reasons why we do not.

First, in this \control experiment" framework and apart from the lognormal case, no closed form

expression for the moments of interest can be derived. So that one has to rely on Monte Carlo

experiments to assess the consistency property. This does not mean that in our case, the simu-

lations are not performed. They are indeed but the ease in the computations o�ered by the SV

model �a la Meddahi and Renault enables us to prove our consistency results without using such

Monte Carlo experiments.

Second, even though in the lognormal case, closed form expression can be derived (see Jacquier,

Polson and Rossi (1994)), we would have lost the semi-parametric property of our results. That

is, in the case of lognormal SV model, the only sources of mis-speci�cations would have to come

from the asymmetries.

Of course an analogous example can be build where the previous speci�cation of the structural

model (B2) corresponds to the DGP and vice versa. The same kind of consistency results are

established and deduced from partial encompassing property.

Finally, we have focused on cases where the actual leverage e�ect is null (�Æ = 0) and there are

asymmetries in the innovation process (�Æ3 6= 0), however the previous partial encompassing and

therefore consistency results extend whenever �Æ 6= 0. In the latter case, the only requirement is

that there exits �2 such that E
�Æ
1
;�2

(�t) = E
Æ

(�t).
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7 Concluding Remarks

In this paper, we have proposed an extension to the Indirect Inference methodology to semi-

parametric settings and shown how the Semi-parametric Indirect Inference works on basic exam-

ples using SV models. Besides the introduction of a new notion of Partial Encompassing that

focuses on Pseudo True Values of Interest, robusti�es the usual Indirect Inference and enables

WET as well as Hausman tests procedures, the main messages of this paper are two-fold:

� First, in order to build consistent SII estimators of the parameters of interest, one has to focus

on a parsimonious instrumental model which basically does not capture in some sense the mis-

speci�ed part of the simulated paths.

� Second, as long as one acknowledges the likely mis-speci�cations in the structural model but

wishes to consistently estimate some parameters of interest, one should avoid the use of SNP

score generator �a la Gallant and Tauchen (1996), which in this case would vainly lead to reject

the structural model, as well as inconsistent estimators. Finally, let us stress that the building of

this Semi-parametric Indirect Inference theory has been suggested by the now increasing literature

referring to the so-called Calibration methodology. Despite its lack of statistical formalization,

we think that this methodology shares the concepts of our SII and should precisely be formalized

through our SII methodology (see Broze, Dridi and Renault (1999)).
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Appendices

A.1. Proof of proposition 3:3 when �22 is replaced by a
p
T-consistent estimatorb�22;TS: b�1

TS

�b�22;TS� = Argmin
�1;�212�1��21




 b�1;T � e�1;TS ��1; �21; b�22;TS�


b
1;T

�

Under assumption (A5) we have:

P� lim
T!+1

Sup
�2�




 e�1;TS(�)� e�1(�)



q1

= 0;

() 8" > 0; � > 0; 9T";� = 8T � T";�; 8� 2 � : P�

�


 e�1;TS(�)� e�1(�)



q1

> �

�
< ";

since with probability approaching one b�22;TS belongs to �22 (for consistent to �22 2 �22),

=) 8" > 0; � > 0; 9T";�= 8T � T";�; 8�1; �21 2 �1 � �21 :

P�

�


 e�1;TS(�1; �21; b�22;TS)� e�1(�1; �21; b�22;TS)



q1

> �

�
< ";

=) Sup
�1;�212�1��21




 e�1;TS(�1; �21; b�22;TS)� e�1(�1; �21; b�22;TS)



q1

P������!
T!+1

0�

Case of innocuous nuisance parameters

Under the assumption of partial encompassing and (A7), e�1 ��1; �21; b�22;TS� = e�1 (�1; �21). There-
fore we obtain: Sup

�1;�212�1��21




 e�1;TS(�1; �21; b�22;TS)� e�1(�1; �21)



q1

P������!
T!+1

0. Thus, by virtue of

the uniform convergence in probability of the associated criterion, we have P� lim
T!+1

b�1
TS

�b�22;TS� =
�1

�

= Argmin
�1;�212�1��21




�Æ1 � e�1 (�1; �21)




1

.

We already know that under the partial encompassing property �1
�

=
�
�Æ1
0; �21

0
�0

(see proof of

proposition 3:3 in the text), therefore P� lim
T!+1

b�1;TS �b�22;TS� = �Æ1.

Case of harmful nuisance parameters

Under assumptions (A5) and (A11), we have:

P� lim
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�2�
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q1
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q1
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() 8" > 0; � > 0; 9T";�=8T � T";�; 8� 2 �;
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>
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2

�
<
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2
;

P�

�


 e�1 ��1; �21; b�22;TS�� e�1 ��1; �21; �22�



q1

>
�

2

�
<
"

2
;
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=) 8" > 0; � > 0; 9T";�=8T � T";�; 8�1; �21 2 �1 � �21;

P�

�


 e�1;TS ��1; �21; b�22;TS�� e�1 ��1; �21; b�22;TS�



q1

>
�

2

�
<
"

2
;

P�

�


 e�1 ��1; �21; b�22;TS�� e�1 ��1; �21; �22�



q1

>
�

2

�
<
"

2
;

Using the triangular inequality, we obtain:

8" > 0; � > 0; 9T";�=8T � T";�; 8�1; �21 2 �1 � �21;

P�

�


 e�1;TS ��1; �21; b�22;TS�� e�1 ��1; �21; �22�



q1

> �

�
< ";

=) Sup
�1;�212�1��21




 e�1;TS ��1; �21; b�22;TS�� e�1 ��1; �21; �22�



q1

P������!
T!+1

0�

Thus, by virtue of the uniform convergence in probability of the associated criterion, we have

P� lim
T!+1

b�1
TS

�b�22;TS� = �1
�

= Argmin
�1;�212�1��21




�Æ1 � e�1 ��1; �21; �22�




1

. Under the partial encompassing

property (5:6), �1
�

= Argmin
�1;�212�1��21




 e�1 ��Æ1; �21; �22�� e�1 ��1; �21; �22�




1

. And under the partial in-

direct identi�cation (3:7), we obtain e�1 ��Æ1; �21; �22� = e�1 ���1; ��21; �22� =) �1
�

=
�
�Æ

0

1 ; �
0

21

�0
. This

proves the consistency of the SII estimator in case of harmful nuisance parameters.

A.2. Proofs of Propositions 4:1, 4:2, 4:5:

First order conditions for the indirect estimator b�TS:
The �rst order conditions corresponding to the optimization problem:

Min
(�1;�2)2�1��2

" b�T � 1

S

SX
s=1

e�s
T
(�1; �2)

#0 b
T
" b�T � 1

S

SX
s=1

e�s
T
(�1; �2)

#
are:

1

S

SX
s=1

@ e�s0
T

@�
(b�1;TS; b�2;TS)b
TpT

" b�T � 1

S

SX
s=1

e�s
T
(b�1;TS; b�2;TS)

#
= 0�

The expansion of the �rst order conditions around the limit value
�
�Æ

0

1 ; �21
0
�0
gives:

1

S

SX
s=1

@ e�s0
T

@�
(�Æ1; �2)


p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)�

1

S

SX
s=1

@ e�s
T

@�0
(�Æ1; �2)

 b�1;TS � �Æ1b�2;TS � �2

!#
= oP�(1);

which leads to:

p
T

 b�1;TS � �Æ1b�2;TS � �2

!
=

(
@ e� 0
@�

(�Æ1; �2)

@ e�
@�0

(�Æ1; �2)

)�1
�@

e� 0
@�

(�Æ1; �2)

p
T

(b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

)
+oP� (1) ;

since under assumption (A8g) we have:

P� lim
T!+1

1

S

SX
s=1

@ e�s0
T

@�
(�Æ1; �2) =

@ e� 0
@�

(�Æ1; �2);

@ e�
@�0

(�Æ1; �2) is of full-column rank (p)�
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Expansions of b�T and e�s
T
(�Æ
1
; �2):

We begin with the �rst-order conditions on the instrumental criterion:

@QT

@�

�
y
T
; xT ;

b�T� = 0�

The expansion of the latter equation around the limit value �Æ gives:

p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
+
@2QT

@�@� 0

�
y
T
; xT ; �

Æ
�p

T
h b�T � �Æ

i
= oPÆ(1);

which leads to: p
T
h b�T � �Æ

i
= �J�1

Æ

p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
+ oPÆ(1)�

We have by using the same arguments:

p
T
h e�s

T
(�Æ1; �2)� e�(�Æ1; �2)i = �J�

Æ

�1
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ;

e�(�Æ1; �2)�+ oP� (1) ;

and thanks to the full-encompassing hypothesis HÆ: �
Æ = e�(�Æ1; �2) we are led to:

p
T
h e�s

T
(�Æ1; �2)� �Æ

i
= �J�

Æ

�1
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ; �

Æ
�
+ oP� (1) �

Asymptotic distribution of
p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ
1
; �2)

#
:

p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
= �J�1

Æ

p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
+

J�
Æ

�1
p
T
1

S

SX
s=1

@QT

@�

�eys
T

�
�Æ1; �2; z

s

Æ

�
; xT ; �

Æ
�
+ oP� (1) �

Under assumptions (A1)�(A8),
p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
is asymptotically normally distributed

with mean zero and a covariance matrix given by ��
Æ
(S):

��
Æ
(S) = J�1

Æ
IÆJ

�1
Æ

+
1

S
J�
Æ

�1I�
Æ
J�
Æ

�1 +

�
1� 1

S

�
J�
Æ

�1K�

Æ
J�
Æ

�1 � J�1
Æ
KÆJ

�

Æ

�1 � J�
Æ

�1K 0

Æ
J�1
Æ
;

and the result of Proposition 4:1 follows. As usual the optimal choice of the matrix 
 which

minimizes the asymptotic variance of the indirect inference estimator is 
� = ��
Æ
(S)

�1
and the

result of Proposition 4:2 follows.

Proof of Proposition 4.5:

The optimal value of the objective function is:

�T;S = T

" b�T � 1

S

SX
s=1

e�s
T
(b�1;TS; b�2;TS)

#0 b
�
T

" b�T � 1

S

SX
s=1

e�s
T
(b�1;TS; b�2;TS)

#
;

where
�b�01;TS; b�02;TS�0 corresponds to the optimal indirect inference estimator. The �rst order

expansion of �T;S around the limit value
�
�Æ

0

1 ; �2
0
�0
gives:

�T;S = T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)�

@ e�
@�0

(�Æ1; �2)

 b�1;TS � �Æ1b�2;TS � �2

!#0

�
" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)�

@ e�
@�0

(�Æ1; �2)

 b�1;TS � �Æ1b�2;TS � �2

!#
+ oP� (1) �
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By using the asymptotic expansion of
p
T

 b�1;TS � �Æ1b�2;TS � �2

!
around the limit value

�
�Æ

0

1 ; �2
0
�0
previ-

ously given, we get:

@ e�
@�0

(�Æ1; �2)
p
T

 b�1;TS � �Æ1b�2;TS � �2

!
=
@ e�
@�0

(�Æ1; �2)

8<:@ e�
0

@�
(�Æ1; �2)�


�
@ e�
@�0

(�Æ1; �2)

)�1
@ e� 0
@�

(�Æ1; �2)

�
p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
+ oP� (1) ;

and thus:

p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)�

@ e�
@�0

(�Æ1; �2)

 b�1;TS � �Æ1b�2;TS � �2

!#
= [Idq �M ]

p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
+oP� (1) ;

where M is the orthogonal projector on the space spanned by the columns of
@ e�
@�0

(�Æ1; �2) for the

inner product 
� that is:

M =
@ e�
@�0

(�Æ1; �2)

8<:@ e�
0

@�
(�Æ1; �2)


�
@ e�
@�0

(�Æ1; �2)

9=;
�1

@ e� 0
@�

(�Æ1; �2)

��

With these notations, the statistic �T;S is equal to:

�T;S = T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#0
(Idq �M)

0

� (Idq �M)

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
+ oP� (1) �

As previously seen
p
T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
D�����!

T!+1
N
h
0; 
��1

i
and

@ e�
@�0

(�Æ1; �2) is of full-

column rank (p) which implies that:

T

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#0
(Idq �M)

0

� (Idq �M)

" b�T � 1

S

SX
s=1

e�s
T
(�Æ1; �2)

#
D�����!

T!+1
�2(q � p);

and the result of Proposition 4:5 follows.

A.3. Proofs of Propositions 4:3, 4:4, 4:6:

First order conditions for the indirect estimator b�1
1;TS

(�22):

The �rst order conditions corresponding to the optimization problem:

Min
(�1;�21)2�1��21

" b�1;T � 1

S

SX
s=1

e�s1;T (�1; �21; b�22;TS)
#0 b
1;T

" b�1;T � 1

S

SX
s=1

e�s1;T (�1; �21; b�22;TS)
#
;

where b�22;TS is a consistent estimator of the value �22 of the nuisance parameters �22 and such

that
p
T
�b�22;TS � �22

�
= OP� (1), are:

1

S

SX
s=1

@ e�s1;T 0
@

 
�1
�21

!(b�11;TS(�22); b�121;TS(�22); b�22;TS)b
1;T

p
T

" b�1;T � 1

S

SX
s=1

e�s1;T (b�11;TS(�22); b�121;TS(�22); b�22;TS)
#

= 0�
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The expansion of the �rst order conditions around the limit value
�
�Æ

0

1 ; �
0

2

�0
gives:

1

S

SX
s=1

@ e�s1;T 0
@

 
�1
�21

!(�Æ1; �2)
1

p
T

2666664 b�1;T �
1

S

SX
s=1

e�s1;T (�Æ1; �2)� 1

S

SX
s=1

@ e�s1;T
@

 
�1
�21

!0 (�Æ1; �2)
 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!#
= oP� (1) ;

since under H1
Æ
,
@ e�1
@�022

(�1; �2) = 0. This leads to:

p
T

" b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

#
=

2666664
@ e� 01

@

"
�1
�21

#(�Æ1; �21)
1

@ e�1
@

"
�1
�21

#0 (�Æ1; �21)
3777775
�1

@ e� 01
@

"
�1
�21

#(�Æ1; �21)
1

p
T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#
+ oP� (1) ;

since under assumption (A9e), we have:

P� lim
T!+1

1

S

SX
s=1

@ e�s1;T 0
@

 
�1
�21

!(�Æ1; �2) = @ e� 01
@

 
�1
�21

!(�Æ1; �2);

and under H1
Æ
:

@ e�1
@

 
�1
�21

!0 (�Æ1; �2) = @ e�1
@

 
�1
�21

!0 (�Æ1; �21);
is of full-column rank (p1 + p21) thanks to (A9e).

Expansions of b�1;T and e�s
1;T

(�Æ
1
; �2):

We begin with the expansion of the �rst-order conditions on the instrumental model around the

limit value �Æ:
@QT

@�

�
y
T
; xT ;

b�T� = 0�

The expansion of the latter equation around the limit value �Æ gives:

p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
+
@2QT

@�@� 0

�
y
T
; xT ; �

Æ
�p

T
h b�T � �Æ

i
= oPÆ(1);

which leads to: p
T
h b�T � �Æ

i
= �J�1

Æ

p
T
@QT

@�

�
y
T
; xT ; �

Æ
�
+ oPÆ(1)�

We have by using the same argument:

p
T
h e�s

T
(�Æ1; �2)� e�Æ(�22)i = �J�

Æ

�1(�22)
p
T
@QT

@�

�eys
T
(�Æ1; �2; z

s

Æ
); xT ;

e�Æ(�22)�+ oP� (1) �
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Asymptotic distribution of
p
T

" b�1;T � 1

S

SX
s=1

e�s
1;T

(�Æ
1
; �2)

#
:

We have:

p
T

" b�T � �Æ � 1

S

SX
s=1

e�s
T
(�Æ1; �2) +

e�Æ(�22)
#
= �J�1

Æ

p
T
@QT

@�

�
y
T
; xT ; �

Æ
�

+J�
Æ

�1(�22)
p
T
1

S

SX
s=1

@QT

@�

�eys
T

�
�Æ1; �2; z

s

Æ

�
; xT ;

e�Æ(�22)�+ oP� (1) �

The statistic
p
T

" b�T � �Æ � 1

S

SX
s=1

e�s
T
(�Æ1; �2) +

e�Æ(�22)
#
is, under assumptions (A1)� (A8b)=(A9),

asymptotically normally distributed with mean zero and a covariance matrix given by ��
Æ
(S; �22):

��
Æ
(S; �22) = J�1

Æ
IÆJ

�1
Æ

+
1

S
J�
Æ

�1(�22)I
�

Æ
(�22)J

�

Æ

�1(�22) +

�
1� 1

S

�
J�
Æ

�1(�22)K
�

Æ
(�22)J

�

Æ

�1(�22)

�J�1
Æ
KÆ(�22)J

�

Æ

�1(�22)� J�
Æ

�1(�22)K
0

Æ
(�22)J

�1
Æ
�

Let ��
Æ;1(S; �22) be the (q1 � q1) left-upper bloc diagonal sub-matrix of the (q � q) matrix

��
Æ
(S; �22). We have thanks to the partial-encompassing hypothesis H1

Æ
:

�Æ1 =
e�1(�Æ1; �21) which leads to:

p
T

" b�1;T � �Æ1 �
1

S

SX
s=1

e�s1;T (�Æ1; �21) + e�1(�Æ1; �21)
#
=
p
T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �21)
#
�

The statistic
p
T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �21)
#
is asymptotically normally distributed with mean zero

and a covariance matrix given by ��
Æ;1(S; �22) and the result of Proposition 4:3 follows. As usual

the optimal choice of the matrix 
1 which minimizes the asymptotic covariance of the indirect

inference estimator based on the sub-vector binding function is 
�1(�22) = ��
Æ;1(S; �22)

�1
and the

result of Proposition 4:4 follows.

Proof of Proposition 4:6:

The optimal value of the objective function is:

�1
T;S

(�22) = T

" b�1;T � 1

S

SX
s=1

e�s1;T (b�11;TS(�22); b�121;TS(�22); b�22;TS)
#0 b
�1;T" b�1;T � 1

S

SX
s=1

e�s1;T (b�11;TS(�22); b�121;TS(�22); b�22;TS)
#
;

where
�b�101;TS(�22); b�1021;TS(�22)�0 corresponds to the optimal indirect inference estimator and b�22;TS to

a consistent estimator of �22 and such that
p
T
�b�22;TS � �22

�
= OP� (1). The �rst order expansion
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of �1
T;S

(�22) around the limit value
�
�Æ

0

1 ; �
0

2

�0
gives:

�1
T;S

(�22) = T

2666664b�1;T �
1

S

SX
s=1

e�s1;T (�Æ1; �2)� @ e�1
@

 
�1
�21

!0 (�Æ1; �21)
 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!3777775
0

�


�1(�22)

2666664 b�1;T �
1

S

SX
s=1

e�s1;T (�Æ1; �2)� @ e�1
@

 
�1
�21

!0 (�Æ1; �21)
 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!3777775+ oP� (1) ;

since under H1
Æ
,
@ e�1
@�022

(�1; �2) = 0. By using the asymptotic expansion of
p
T

 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!
around the limit value

�
�Æ

0

1 ; �
0

21

�0
previously given, we get:

@ e�1
@

 
�1
�21

!0 (�Æ1; �21)pT
 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!
=

@ e�1
@

 
�1
�21

!0 (�Æ1; �21)
266664 @ e� 01
@

 
�1
�21

!(�Æ1; �21)
�1(�22)

@ e�1
@

 
�1
�21

!0 (�Æ1; �21)
3777775
�1

@ e� 01
@

 
�1
�21

!(�Æ1; �21)
�1(�22)�pT
" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �21)
#
+ oP� (1) ;

and thus:

p
T

2666664 b�1;T �
1

S

SX
s=1

e�s1;T (�Æ1; �2)� @ e�1
@

 
�1
�21

!0 (�Æ1; �21)
 b�11;TS(�22)� �Æ1b�121;TS(�22)� �21

!3777775 = [Idq1 �M1]�

p
T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#
+ oP� (1) ;

where M1 is the orthogonal projector on the space spanned by the columns of
@ e�1

@

 
�1
�21

!0 (�Æ1; �21)
for the inner product 
�1(�22) that is:

M1 =
@ e�1

@

 
�1
�21

!0 (�Æ1; �21)
8>>>>><>>>>>:

@ e� 01
@

 
�1
�21

!(�Æ1; �21)
�1(�22) @ e�1
@

 
�1
�21

!0 (�Æ1; �21)
9>>>>>=>>>>>;

�1

@ e� 01
@

 
�1
�21

!(�Æ1; �21)
�1(�22)�

With these notations the statistic �1
T;S

(�22) is equal to:

�1
T;S

(�22) = T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#0
(Idq1 �M1)

0

�1(�22) (Idq1 �M1)

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#

+oP� (1) �
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As previously seen we have
p
T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#

D�����!
T!+1

N
�
0; 
�1(�22)

�1
�

and

@ e�1
@

 
�1
�21

!0 (�Æ1; �21) is of full-column rank (p1 + p21) which implies that:

T

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#0
(Idq1 �M1)

0

�1(�22) (Idq1 �M1)

" b�1;T � 1

S

SX
s=1

e�s1;T (�Æ1; �2)
#

D�����!
T!+1

�2(q1 � p1 � p21);

and the result of Proposition 4:6 follows.

A.4. Proofs of proposition 6:1 and lemma 6:1:

Asymmetries: leverage e�ect versus skewness of the standardized innovations:

For sake of simplicity, we focus on SV models of the following form:

yt = �yt�1 + �t�1"t; j�j < 1;

�2
t
= ! + 
�2

t�1 + �t; 0 < !; 0 < 
 < 1;

and we assume in addition that:

E ["t=It�1] = 0; E
h
"2
t
=It�1

i
= 1; E

h
"3
t
=It�1

i
= �3;

E
h
"4
t
=It�1

i
= �4; E [�t=It�1] = 0; E

h
�2
t
=It�1

i
= �2;

E ["t�t=It�1] = ��;

that is an AR (1) process with SV innovations. However, the analysis can be extended to any

ARMA (p; q). In this context, we have:

E
�

[yt] = 0;

E
�

h
y3
t

i
=

�3

1� �3
E
�

h
�3
t

i
+

3���

(1� �3) (1� �
)
E
�

[�t] �

Therefore there are two ways to capture the asymmetries: on the one hand the skewness of the
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standardized innovations (�3 6= 0) and on the other hand the leverage e�ect (� 6= 0).

E
�

h
y3
t

i
= E

�

h
�3y3

t�1 + 3�2y2
t�1�t�1"t + 3�yt�1�

2
t�1"

2
t
+ �3

t�1"
3
t

i
;

(1� �3)E
�

h
y3
t

i
= 3�2E

�

h
y2
t�1�t�1"t

i
+ 3�E

�

h
yt�1�

2
t�1"

2
t

i
+ E

�

h
�3
t�1"

3
t

i
;

E
�

h
y3
t

i
=

1

1� �3

�
3�2E

�

�
y2
t�1�t�1 E

�

("t=It�1)

�
+ 3�E

�

�
yt�1�

2
t�1 E

�

�
"2
t
=It�1

��
+

E
�

�
�3
t�1 E

�

�
"3
t
=It�1

���
;

E
�

h
y3
t

i
=

1

1� �3

�
3�E

�

h
yt�1�

2
t�1

i
+ �3E

�

h
�3
t�1

i�
�

E
�

h
yt�1�

2
t�1

i
= E

�

h
(�yt�2 + �t�2"t�1)

�
! + 
�2

t�2 + �t�1
�i
;

E
�

h
yt�1�

2
t�1

i
= �
 E

�

h
yt�2�

2
t�2

i
+ E

�

[�t�2"t�1�t�1] ;

E
�

h
yt�1�

2
t�1

i
=

��

1� �

E
�

[�t�2] ;

therefore, we have: E
�

h
y3
t

i
=

1

1� �3

(
3���

1� �

E
�

[�t] + �3E
�

h
�3
t

i)
�

Identi�cation of �1:

In order to show that �1 is identi�ed and in light of (6:8), we just need to prove that �11 =

(�1;Æ; : : : ; �1;q1)
0
is identi�ed.

We �rst compute the moment of interest both under the DGP and the structural mis-speci�ed
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model.

DGP Structural Misspecified SV Model

E
h
�2
i
=

!Æ

1� 
Æ
;

!

1� 

;

E
h
�4
i
=

!Æ
2

(1� 
Æ)
2 +

�Æ
2

1� 
Æ
2
;

!2

(1� 
)
2 +

�2

1� 
2
;

E
h
y2
i
=

!Æ

1� 
Æ
;

!

1� 

;

E
h
y4
i
= �Æ4

"
!Æ

2

(1� 
Æ)
2 +

�Æ
2

1� 
Æ
2

#
; �4

"
!2

(1� 
)
2 +

�2

1� 
2

#
;

E
h
y2
t
y2
t�K

i
=

!Æ
2

(1� 
Æ)
2 + 
Æ

K �Æ
2

1� 
Æ
2
;

!2

(1� 
)
2 + 
K

�2

1� 
2
;

E
h
y2
t
yt�1

i
= 0; �� E

�

[�t] ;

E
h
y3
t

i
= �Æ3E

Æ

h
�3
t

i
; 0�

We now introduce the (q1 + 1)� (q1 + 1) matrix �q1 (�1) as follows:

�q1 (�1) =

26666666666664

1 x x : : : x : : : x

x �4 (u+ v) u+ 
v : : : u+ 
k�1v : : : u+ 
q1�1v

x u+ 
v �4 (u+ v) : : : u+ 
k�2v : : : u+ 
q1�2v
...

...
...

. . .
...

...
...

x u+ 
k�1v u+ 
k�2v : : : �4 (u+ v) : : : u+ 
q1�kv
...

...
...

...
...

. . .
...

x u+ 
q1�1v u+ 
q1�2v : : : u+ 
q1�kv : : : �4 (u+ v)

37777777777775
;

where x =
!

1� 

, u = x2, v =

�2

1� 
2
. Then for each �1 2 �1, where �1 is the space domain of the

parameters of interest �1, �q1 (�1) is non singular for q1 � 2. (The proof is obtained by induction
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reasoning on the size of �q1 (�1), see Dridi (1999) for more details.) aq1 (�1) by:

aq1 (�1) =

2666666666666666666666666664

!

1� 


!2

(1� 
)
2 + 


�2

1� 
2

...

!2

(1� 
)
2 + 
k

�2

1� 
2

...

!2

(1� 
)
2 + 
q1

�2

1� 
2

3777777777777777777777777775

�

Then the �rst q1+1 components e�11 (�1) of the binding function e� (�) are given under assumptions
(A18)� (A19) and (B2) by:

�q1 (�1)
e�11 (�) = aq1 (�1) ;

() 8�1 2 �1;
e�11 (�) = e�11 (�1) = ��1

q1
(�1) aq1 (�1) �

We, thus, have e�1 (�) = � e� 011 (�1) ; e� 012 (�)�0 with:
e�11 (�1) = ��1

q1
(�1) aq1 (�1) ;

e�12 (�) =

266666666666666664

!

1� 

!2

(1� 
)
2 + 


�2

1� 
2

!2

(1� 
)
2 + 
2

�2

1� 
2

�� E
�

�t

�4

 
!2

(1� 
)
2 +

�2

1� 
2

!

377777777777777775
�

Using exactly the same types of argument, we also have that the �rst q1 + 1 components �Æ11 of

the instrumental pseudo-true value �Æ are given under assumptions (A18)� (A19) by:

�q1 (�
Æ

1) �
Æ

11 = aq1 (�
Æ

1) ;

() �Æ11 =
e�11 (�Æ1) = ��1

q1
(�Æ1) aq1 (�

Æ

1) �
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We, thus, have �Æ1 =
�
�Æ

0

11; �
Æ0

12

�0
with:

�Æ11 = ��1
q1

(�Æ1) aq1 (�
Æ

1) ;

�Æ12 =

266666666666666664

!Æ

1� 
Æ

!Æ
2

(1� 
Æ)
2 + 
Æ

�Æ
2

1� 
Æ
2

!Æ
2

(1� 
Æ)
2 + 
Æ

2 �Æ
2

1� 
Æ
2

0

�Æ4

 
!Æ

2

(1� 
Æ)
2 +

�Æ
2

1� 
Æ
2

!

377777777777777775
�

This proves both identi�cation of the instrumental pseudo true value �Æ1 and of the binding func-

tion e�1 (�). The di�erentiability of the binding functions is obvious.
Proof of lemma 6:1:

Under assumptions (A19) and (B2), we have that the functions:

B1 ! IR+

�1 !




E
Æ

g1 (yt; : : : ; yt�q1; �1)





2
2

;

�1 !




E
�

g1
�eys

t
(�; zs

Æ
); : : : ; eys

t�q1
(�; zs

Æ
); �1

�



2
2

;

are non stochastic di�erentiable functions not depending on the initial conditions zs
Æ
. The unique-

ness of each minimum with respect to �1 follows from the fact that for �Æ1 =
� e� 011 (�Æ1) ; �Æ012�0 ande�1 (�) = �e� 011 (�1) ; e� 012 (�)�0, each objective function has a zero value (thus is minimal) and that

the previous values �Æ1 and
e�1 (�) are uniquely identi�ed (see previous proof).

Partial Indirect Identi�cation:

The moment conditions de�ning e�1 (�) are:
e�1;Æ (�1) + x

q1X
i=1

e�1;i (�1) = x; e�1;Æ (�1) + q1X
i=1

�
x2 + 
ji�jjv

� e�1;i (�1) = x2 + 
jv; j = 1; : : : ; q1;

e�1;q1+1 (�1) = x; e�1;q1+2 (�1) = x2 + 
v;

e�1;q1+3 (�1) = x2 + 
2v; e�1;q1+4 (�) = �� E
�

�t;

e�1;q1+5 (�1) = �4 (x
2 + v) ;

where x =
!

1� 

and v =

�2

1� 
2
.
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Let �1 2 �1 and �2 2 �2, we are now able to show that e�1 ��1; �2� = e�1 ��Æ1; �2� =) �1 = �Æ1.

e�1 ��1; �2� = e�1 ��Æ1; �2� ;

=)

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

e�1;q1+1 (�1) = e�1;q1+1 (�Æ1) ;
e�1;q1+2 (�1) = e�1;q1+2 (�Æ1) ;
e�1;q1+3 (�1) = e�1;q1+3 (�Æ1) ;
e�1;q1+4 ��1; �2� = e�1;q1+4 ��Æ1; �2� ;
e�1;q1+5 (�1) = e�1;q1+5 (�Æ1) �

The previous system can be written as follows:

x = xÆ;

x2 + 
v = xÆ
2

+ 
ÆvÆ;

x2 + 
2v = xÆ
2

+ 
Æ
2

vÆ;

��	
�
�1; �2

�
= 0;

�4 (x
2 + v) = �Æ4

�
xÆ

2

+ vÆ
�
;

where 	
�
�1; �2

�
= E

�1;�2

�t > 0. Since 
; 
Æ; v; vÆ are strictly positive numbers, this implies that:

x = xÆ;


v = 
ÆvÆ;


2v = 
Æ
2

vÆ;

� = 0;

�4 (x
2 + v) = �Æ4

�
xÆ

2

+ vÆ
�
;

therefore we obtain:
! = !Æ;


 = 
Æ;

�2 = �Æ
2

;

� = �Æ = 0;

�4 = �Æ4�
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Consistency of the SII estimator:

As previously seen, we know that �Æ1 =
�
�Æ

0

11; �
Æ0

12

�0
with:

�Æ11 = ��1
q1

(�Æ1) aq1 (�
Æ

1) =
e�Æ11 (�Æ1) ;

�Æ12 =

2666666666666666666666666664

!Æ

1� 
Æ

!Æ
2

(1� 
Æ)
2 + 
Æ

�Æ
2

1� 
Æ
2

!Æ
2

(1� 
Æ)
2 + 
Æ
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2

1� 
Æ2

0

�Æ4

 
!Æ

2

(1� 
Æ)
2 +

�Æ
2

1� 
Æ2

!

3777777777777777777777777775

= e�12 ��Æ1; �2� ;

for all �2 2 �2. Therefore 8�2 2 �2; �
Æ

1 =
e�12 ��Æ1; �2� which implies both the partial encompassing

property and the desired consistency property.
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