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Abstract 
How much does US-based R&D benefit other countries and through what mechanisms? We test the "technology 
sourcing" hypothesis that foreign research labs located on US soil tap into US R&D spillovers and improve 
home country productivity. Using panels of UK and US firms matched to patent data we show that UK firms 
who had established a high proportion of US-based inventors by 1990 benefited disproportionately from the 
growth of the US R&D stock over the next 10 years. We estimate that UK firms’ Total Factor Productivity 
would have been at least 5% lower in 2000 (about $14bn) in the absence of the US R&D growth in the 1990s. 
We also find that technology sourcing is more important for countries and industries who have "most to learn". 
Within the UK, the benefits of technology sourcing were larger in industries whose TFP gap with the US was 
greater. Between countries, the growth of the UK R&D stock did not appear to have a major benefit for US 
firms who located R&D labs in the UK. The "special relationship" between the UK and the US appears 
distinctly asymmetric. 
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1. Introduction

There is a consensus among economists and policy makers that an important part

of global economic growth arises from the transfer of ideas from the leading edge

countries to those behind the frontier. However, the mechanisms underlying this

technology transfer are poorly understood, and micro-econometric evidence on the

quantitative importance of the international spillover process remains thin.1 In

addition, the firm level evidence on spillovers that does exist tends to be from

single countries and the bulk of these single country studies are from the United

States, which, as technological leader in most industries, probably has least to gain

from other countries’ innovative efforts.

Case studies and the business press have long emphasized the importance of

"technology sourcing" as a method of gaining access to foreign knowledge.2 Under

this view, firms can tap into leading edge knowledge by setting up R&D labs

abroad to "listen in" on new ideas and use these to improve productivity. The main

contribution of our paper is to provide rigorous evidence for technology sourcing

by exploiting firm level panel data from the UK and the US. UK firms offer a

particularly good testing ground for this hypothesis because Britain is both less

technologically advanced than the US3 and has historically close linkages to US

based inventors.4 We examine whether the US R&D stock (conditional on UK

1See Wolfgang Keller (2004) for a recent survey.
2See for example von Zedtwitz and Gassman (2002) or Serapio and Dalton (1999) and the

references therein.
3In the "market sector" (i.e. excluding health, education and public administration) labour

productivity was about 40% higher in the US than in the UK in 1999 (US TFP was about 20%
higher).

4Of all foreign countries, British expenditure on R&D in the US was second in the world only
to Switzerland in 1993. In 1997, of the largest 7 foreign research centres in the US, five were
owned by UK companies (Serapio and Dalton, 1999). In our data more than one-third of the
patents granted to UK firms and registered at the US Patent Office were produced by inventors
located in the US.
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R&D) had a stronger impact on the TFP of UK firms who had more of their

inventors located in the US than on other UK firms. We use the pre-1990 location

patterns of UK firms, as revealed in individual firms’ patent statistics, to mitigate

the endogeneity problem arising from the fact that UK firms may choose to locate

R&D in the US in response to the 1990s technology boom.

We illustrate our identification strategy in Figure 1. The horizontal axis shows

the average annual growth of the US R&D stock by industry between 1990 and

2000. On the vertical axis we plot the "productivity premium" for UK firms who

had a substantial proportion of inventors located in the US (i.e. the difference

in productivity growth between UK firms with a high proportion of their inven-

tors located in the US prior to 1990 and UK firms with zero or low US inventor

presence). It is clear that the productivity premium is larger in those industries

where the US had faster R&D growth. Furthermore, the shaded industries are

those where the US already had a substantial technological lead over the UK in

1990 and where, presumably, UK firms had the most to learn. For these "high

gap" sectors, the upward sloping relationship is particularly striking.

[Figure 1 around here]

The graph does not control for many other confounding influences and the paper

uses a variety of econometric methods to deal with input endogeneity, unobserved

heterogeneity and selectivity. Even after controlling for these, we find that UK

firms which had more of their inventive activity located in the US prior to 1990,

benefited disproportionately from the growth in US R&D in the 1990s. According

to our estimates, TFP in British manufacturing in 2000 would have been 5% lower

(representing around $14bn)5 in the absence of the growth in US R&D stock that

5Value added in UK manufacturing was £154bn in 2000, about $275bn at current exchange
rates
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occurred over the 1990s. Needless to say, this is a lower bound on the full benefits of

US R&D to the rest of the world. It is also a salutary warning to policy makers who

seek to boost sluggish European growth through incentivising multinationals to

repatriate US R&D back towards Europe.6 This could be self defeating if overseas

R&D helps channel international spillovers to European countries.

Theory suggests that technology sourcing effects should be largest in industries

where the home country has "most to learn". We look across UK industries and

find the benefits of technology sourcing to be largest in those industries that lie

furthest behind the US in technological terms (see Figure 1). As well as this within-

country evidence we also look across countries. We contrast our UK production

functions with identical specifications based on US firm level panel data. Although

it is possible that US firms source technology from the UK, it is likely to be

much less important, as firms in the UK are generally not at the technological

frontier. This is indeed what we find: spillovers associated with technology sourcing

from the UK to the US are small in economic and statistical terms. The "special

relationship" between the UK and the US is asymmetric: the UK benefits more

when it comes to knowledge flows.

Our research has links to several strands in the literature. First, there is much

work suggesting that knowledge spillovers are partly localised and that being geo-

graphically close to innovators matters.7 We build on this work by focusing on the

location of inventors within firms across geographic boundaries. Second, except for

6The European Union has set itself the target of increasing R&D expenditure located in
member countries to 3% of GDP by 2010 (this is part of the "Lisbon Agenda").

7For example, Adam Jaffe et al (1993, 2000), Wolfgang Keller (2002), David Audretsch and
Marion Feldman (1996). Adam Jaffe and Manuel Trajtenberg (1998) find that, even after con-
trolling for other factors, inventors residing in the same country are typically more likely to cite
each other than inventors from other countries, and that these citations tend to come sooner.
They also find that localisation fades over time, but only slowly.
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some aggregate studies,8 most of the work on multinationals focuses on the benefits

to the recipient country of inward FDI.9 In contrast, we examine whether outward

innovative FDI to specific industries in a leading edge country has beneficial affects

on home country productivity. Thirdly, although there is some recent research that

has examined the evidence for technology sourcing through patent citations,10 we

are aware of no studies that consider empirical evidence for technology sourcing in

terms of its effects on firm-level productivity.11 We also show that cross country

patent citations (at the firm level) are consistent with our results, but we believe

that the impact of US technology on foreign firm performance may not be fully

revealed in patent citations, as some of the knowledge created is tacit rather than

codified. This is captured in our TFP results, but would be missed if we focused

only on citations.

The structure of this paper is as follows. Section 2 sets out the empirical model

and Section 3 describes the data. Section 4 presents the empirical results, and a

final section concludes. The details of the data and models are in the Appendices.

8For example, Frank Lichtenberg and Bruno van Pottelsberghe de la Potterie (2001)
9For example, see Wolfgang Keller and Stephen Yeaple (2003) for recent US evidence, or

Beata Smarzynska (2004) for evidence from Lithuania.
10Lee Branstetter (2003) uses patent citations to measure the role of foreign direct investment

by Japanese firms in the US in mediating flows of knowledge between the two countries. He
finds that knowledge spillovers received by the investing Japanese firms tend to be strongest via
R&D and product development facilities which is consistent with our findings. Tomoko Iwasi and
Hiroyuki Odagiri (2002) claim that Japanese research facilities foster the innovative activity of
the investing parent firm, but they only have cross sectional evidence. Singh (2003) uses patent
citations to investigate the role of multinational subsidiaries in knowledge diffusion. He finds
that greater multinational subsidiary activity increases cross-border knowledge flows between the
host country and the multinational home base.
11Lee Bransetter (2001) enters the US R&D pool in a Japanese production function and finds

a positive, but insignificant coefficient. He does not allow the effect to differ with Japanese
inventor presence in the US, however (a test of technology sourcing). In addition, the author
is not confident in the quality of the Japanese R&D stock data, because of the short time span
(p.72).
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2. The empirical model

Our basic approach follows Zvi Griliches (1979) and many subsequent papers by

including measures of the external knowledge stock available to the firm in a firm-

level production function. In our main specification we consider a conventional

Cobb-Douglas production function for firms in the UK, augmented with industry-

level domestic and foreign external knowledge stocks12

Yit = AitL
αl
it K

αk
it R

β
itDOMESTIC

γi1
jt FOREIGN

γi2
jt (2.1)

where i indexes a firm, j indexes the firm’s industry, and t indexes the year. Yit is

real value added, Ait is a productivity shifter (discussed below), Lit is employment,

Kit is a measure of the firm’s capital stock, Rit is a measure of the firm’s own

R&D stock, and DOMESTICjt and FOREIGNjt are the R&D stocks in the

firm’s industry in the UK and the US respectively.13 Our main interest in this

paper is whether the effect of the foreign external knowledge stock on productivity

(captured by γi2) depends on the geographical location of the firm’s innovative

activity. We assume that the elasticities of value added with respect to the domestic

and external knowledge stocks are a linear function of firm-specific measures of the

location of innovative activity,14

γi1 = θ1 + θ2W
UK
i ; γi2 = φ1 + φ2W

US
i ; (2.2)

where WUS
i denotes the share of a firm’s innovative activity in the US and WUK

i

denotes the share of a firm’s innovative activity in the UK. We interpret a posi-
12We considered more flexible functional forms such as a translog, but we could not reject the

Cobb-Douglas specification, and none of the key results were affected.
13We investigated using other foreign countries as well as the US. The results are discussed in

the robustness section below.
14Again we investigated more flexible functional forms, but these did not change the main

qualitative results.
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tive estimate of φ2 as evidence of knowledge spillovers associated with technology

sourcing from the US. Using lower case letters to denote natural logarithms (i.e.

x = ln (X)) we obtain:

yit = αllit + αkkit + βrit + θ1domesticjt + φ1foreignjt + θ2(W
UK
i ∗ domesticjt)

+φ2(W
US
i ∗ foreignjt) + φ3W

US
i + θ3W

UK
i + ait. (2.3)

Our baseline specification is for UK firms, but we estimate a symmetric equation

for US firms to see if technology sourcing from the UKmatters for the US. As stated

above, we expect it to be much less important, as the UK is generally not at the

technological frontier in the vast majority of industries.

2.1. Econometric issues

There are a number of econometric issues involved in estimating firm level pro-

duction functions such as equation (2.3). The basic issue is how to deal with

the endogeneity of the firm’s input choices in the presence of unobserved hetero-

geneity. Our basic approach follows the "System" General Method of Moments

(SYS-GMM) approach of Richard Blundell and Stephen Bond (2000). We compare

these results to those from an extension to the Olley-Pakes (1996) method which

allows for endogenous R&D and to simple OLS. Econometric details are contained

in Appendix B, but we note some features here.

The generic problem of estimating a firm production function is that the firm’s

input choices are likely to be correlated with the productivity shock, ait. Under

SYS-GMMwe assume that the residual term can be broken down into ait = tt+ηi+

uit, where year dummies (tt) control for common macro effects, the firm fixed effect

(ηi) controls for unobserved heterogeneity and the residual productivity shock (uit)
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may be correlated with the regressors. Assumptions over the initial conditions yield

moment conditions for the levels equations which can be combined in a system with

the traditional moment conditions for the first differenced equations (generated

by assumptions over the serial correlation properties of the uit term). In both

equations we essentially use lagged values to construct instrumental variables for

current variables.

The Olley Pakes (OP) algorithm is based on a structural model which generates

a two step method. In the first step we obtain a consistent estimate of the labour

coefficient (αl) using a non-parametric approach to sweep out the correlation of

variable inputs with the error term. In the second step we obtain the capital para-

meter (αk) using non-linear least squares. The routine avoids using instrumental

variables, but does not extend so straightforwardly to endogenous R&D decisions.

We therefore consider an extension to Olley-Pakes which allows for endogenous

R&D, following Thomas Buettner (2004). This leaves stage one of the algorithm

intact, but alters the way we draw inferences on the capital coefficient at stage 2.

Whether we use OLS, GMM or OP we still have the intrinsic problem that

the coefficients on our R&D spillover terms may reflect other shocks correlated

with demand or supply.15 We attempt to control for such biases by including

firm (or industry) fixed effects and other industry variables (such as sector-level

demand terms and industry specific trends). We also try using lags of the spillover

terms, which should be less affected by contemporaneous shocks. Of course, the

key variable of interest for us is the coefficient on the interaction term between the

location weight and foreign R&D ( φ2, the coefficient on WUS
i ∗ foreignjt). There

15See Charles Manski (1991) for a general discussion of what is known as the reflection problem.
Note that this is more likely to be a problem for the coefficients on the domestic R&D spillover
terms (θ1, θ2) than the foreign R&D spillover terms since UK firms mainly produce domestically.

8



is no obvious reason why there would be an upwards bias to this interaction term,

even if there was upwards bias to the linear international spillover term (φ1,the

coefficient on foreignjt).

A related concern is that WUK
i and WUS

i are choice variables for the firm, and

may thus be correlated with firm or industry-level technological shocks in a way

that undermines our identification strategy. Since we have no convincing exoge-

nous instruments for the location of firms’ innovative activity we use pre-sample

information to construct WUK
i and WUS

i . This ensures that the locational vari-

ables are not affected by shocks that also directly affect firm-level outcomes during

the sample period.16 This strategy assumes that the firm did not locate R&D in

the US in anticipation of positive shocks to productivity. While we cannot rule

out such behaviour, the fact that the firm’s patents are the result of R&D deci-

sions taken many years prior to the period over which we estimate the production

functions means that such biases are likely to be small.

A final worry is that our empirical measure of WUS
i may be proxying for other

non-locational aspects of firm’s activities (e.g. "absorptive capacity" or unobserved

firm quality) or non-innovation related aspects of the firm (e.g. its US production

activities). We carefully test for these alternative explanations in the results section

by bringing other types of data to bear upon the problem, including citations

information and the location of production.

3. Data

Our main dataset is a panel of 188 manufacturing companies that were listed on

the London Stock Exchange in 1985. These firms account for a large proportion of

16This has the disadvantage that firms may have moved their inventive activity over time. This
should, however, bias aganist us finding evidence of technology sourcing.
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UK R&D activity: in 1996, near the middle of our sample period, their combined

R&D expenditure was £5.1bn, compared to total UK manufacturing business ex-

penditure on R&D of £7.3bn.17 To this panel we match information on all the

patents taken out by these firms at the USPTO since 1975 (using the NBER/Case

Western Patents dataset).18 Table 1 shows that firms in our sample had 38,160

patents. Of these patents 37% had their inventors located in the UK, compared to

only 3% in the USPTO population as a whole. This is unsurprising., since these

are all firms listed on the London Stock Exchange. A further 39% of the patents

taken out by our UK firms had inventors located in the US. This illustrates the

importance of the US as a location for the inventive activity of UK firms, but it also

reflects the fact that we are using USPTO patents rather than UK or European

Patent Office patents.19

We compare our main results on UK firms with symmetric results for US firms.

Our US firm data is based on the match between Compustat and the USPTO

conducted by Bronwyn Hall et al (2004). The distribution of inventors in these

firms is shown in the third column of Table 1, where we see that only 1% of inventors

were located in the UK compared to 92% in the US itself. This illustrates one of

the reasons why it would be hard to examine technology sourcing from US data

alone.

Table 2 gives some further descriptive statistics on our UK firm sample. Since

all these firms perform R&D and are listed on the Stock Exchange they are larger

17These totals are not exactly comparable since one is based on published accounts while the
other is taken from the official BERD data.
18The patents were matched to firms using the name of the assignee. This was done manually

using a register of the names of all subsidiaries of firms in our sample.
19A general bias towards US inventors should not be problem for our results. It would only be

a problem if the bias systematically varied with the growth in the US R&D stock. In addition,
almost all UK patents of significant value are registered with the USPTO.

10



than typical UK firms (the median employment is 1,750). Compared to the sample

of US firms, however, the UK firms are smaller (median US firm employment is

3,528). UK firms are also less R&D intensive that their US counterparts, which

mirrors the aggregate statistics. Full details of the data construction are in Ap-

pendix A.

The key variable of interest is inventive activity in the US, denoted WUS
i . Our

basic measure of this is constructed as the proportion of the firm’s total patents

applied for between 1975 and 1989 where the lead inventor is located in the USA.20

We construct the equivalent for the UK, denotedWUK
i , which represents the share

of patents where the lead inventor is located in the UK. They are both equal to

zero if the firm applied for no patents during that period. Our firm panel on

R&D and production data runs from 1990 to 2000, so the location measures are

based purely on pre-sample information. As discussed above, this ensures that the

location measures are not affected by shocks that affect firm-level outcomes during

the sample period. This measure of the geographical location of inventive activity

discards variation over time - it represents an average of the location of the firm’s

innovative activity over the period 1975-1989. Variation in patenting from year

to year would not be a good representation of the changing location of R&D.21

Furthermore, normalising by the firm’s total number of patents avoids conflating

our locational measure with different propensities to patent across industries22.

In order to show that our measure of inventor location is capturing what we

20Patents have been used as indicators of the location of inventive activity in a large number
of papers. For discussions of the advantages and disadvantages of patents statistics in general see
Zvi Griliches (1990). For discussions of the use of patents statistics as indicators of the location
of inventive activity see Bart Verspagen and Wilfred Schoenmakers (2004) and Zoltan Acs et al
(2000).
21We also tried a measure of Wi that used data only in the 1990s. This gave similar results.
22In the robustness section we investigate whether the absolute amount of inventive activity by

a firm helps in "abosrbing" international spillovers.
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want, we consider refining it in two ways. We focus on patents that can be seen

to be drawing on US-based R&D, and on patents that can be seen to be drawing

on very recent technological developments. A key theme in the literature is that

technology sourcing is not the only motivation for firms to locate innovative ac-

tivity abroad. In particular, firms may do R&D abroad in order to adapt existing

technologies to new markets. Our empirical approach to this issue is to use data on

citations to focus on patents that are most likely to represent technology sourcing

behaviour. Consider two extreme cases for a patent that is owned by a UK firm

but that was invented in the US. The first is where the patent only cites other

patents owned by the same parent firm and whose inventors were located in the

UK. This patent is more likely to represent activity associated with adapting an

existing technology to the US market. The other extreme is where the patent cites

many other patents that are not owned by the parent firm and whose inventors

were located in the US. This patent is more likely to represent technology sourcing

behaviour. We want to investigate whether there is evidence for technology sourc-

ing behaviour in productivity outcomes, so we want to focus on the latter, and not

use the first type of patent when constructing our location measures.

To implement this approach, our second measure of WUK
i and WUS

i looks only

at patents that cite other patents whose inventors were located in the same country

and were not owned within the same parent firm. This measure of WUS
i is thus

equal to the proportion of the firm’s patents where: (1) the inventor is located

in the USA and (2) the patent cites at least one other patent whose inventor was

both located in the US and which was not owned by the same parent firm.

Our third and most refined measure of WUK
i and WUS

i is the same as the

second measure, except that it also uses information on the time-lag between the
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citing and cited patent. Technology sourcing behaviour is likely to be associated

with gaining access to pools of "tacit" knowledge. Given that knowledge that

was created recently is more likely to have tacit characteristics, we include only

citations to patents whose application date is no more than three years prior to

that of the citing patent. The third measure ofWUS
i is thus equal to the proportion

of the firm’s total patents where: (1) the inventor is located in the USA and (2) the

patent cites at least one other patent that was applied for within the previous three

years (and whose inventor was both located in the US and did not work for the

same parent firm). If the technology sourcing hypothesis is correct the relationship

should be stronger as we move from the least refined to the most refined measures

of WUS
i .

4. Results

We start by presenting our main results, which use variation across UK firms to

identify technology sourcing from the US. We then investigate two further impli-

cations: we compare our main results for UK firms to those for US firms, where

we expect to see a smaller effect, and we look across UK industries, which vary

in their distance to the technological frontier. We expect to see a stronger effects

for the UK industries where there is "most to learn" from the US. Finally, we

carry out a number of robustness exercises to examine whether our interpretation

of Wi as representing the location of innovative activity is robust to a range of

measurement issues.

4.1. Production Function: Main Results

The main results from our R&D augmented production functions are presented

in Table 3. Columns (1) and (2) present the OLS results. Column (1) does not
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impose constant returns to scale in labour and capital, while column (2) does.23

Columns (3) through (5) present System-GMM results and column (6) presents the

Olley-Pakes results. Column (3) contains the basic measure of location (e.g. the

proportion of inventors based in the US) whereas the next two columns present the

closer refinements to technology sourcing based on citation patterns (as discussed

above). In all columns the coefficient on the labour-capital ratio is similar to

the OLS case (about 0.65, close to labour’s share in value added). The estimated

elasticity with respect to firm-specific R&D is positive and corresponds to a private

excess rate of return to R&D of about 16% for our average firm, which is similar

to that found in other studies.24 Diagnostic tests are presented (bottom of the

table) for first and second order serial correlation in the first-differenced residuals.

Neither test ever rejects the hypothesis of no serial correlation at the 5% level. This

justifies the use of twice lagged instruments in the difference equation and once

lagged instruments in the levels equation.25 A Sargan test of the overidentifying

restrictions is not significant at the 5% level, and neither is a Sargan difference test

of the extra moment conditions implied by the levels equation.

Turning to our main variables of interest, the key interaction term (φ2) be-

tween US inventor location and the US R&D stock is positive and significant at

conventional levels across all specifications in Table 3. This is consistent with a

technology sourcing interpretation: UK firms with a stronger inventor presence in

23The hypothesis of constant returns to scale is not rejected in the SYS-GMM results and is
marginally rejected for OLS.
24For example, Zvi Griliches (1992) reports estimates of private excess rates of return ranging

from 10% to over 50%. The private rate of return is calculated as bβ ∗ (YR ) which at the average
UK firm’s R&D stock intensity is 0.025*6.25 = 0.16
25In addition, none of the key results are sensitive to dropping twice-lagged differences and

replacing the once-lagged levels with twice lagged levels from the instrument set. For example,
in the context of column (5) the key interaction has a coefficient of 0.173 with a standard error
of 0.055.
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the US benefit disproportionately from US R&D spillovers. The linear UK R&D

stock is also positive and significant across all columns, suggesting the existence of

domestic spillovers, in addition to international spillovers from technology sourc-

ing. The linear US industry R&D stock and the interaction betweenWUK
i and UK

industry R&D are also positive in all the GMM specifications, although not sta-

tistically significant at conventional levels. The latter result suggests that locating

inventors in the UK is not important for domestic spillovers.

Column (4) of Table 3 uses the refined geographical location measureWUS
i that

uses only patents that cited at least one other patent whose inventor was located

in the US, as discussed in the previous section.26 Column (5) uses the most refined

measure, which includes only patents that cited at least one other patent whose

inventor was located in the US and which was applied for within the previous

three years. The two refinements bring the measure of inventor location closer to

the theoretical ideal of technology sourcing, although at the cost of using thinner

slices of the patents data. It is reassuring that the coefficient on our key interaction

(WUS
i ∗ ln(US R&Djt)) becomes increasingly strong as we move from column (3)

to (5). This is consistent with the notion that the measures are capturing what

we intend, rather than some other spurious relationship.27

Column (6) reports the Olley-Pakes estimates of the production function. The

coefficient on labour is slightly lower relative to OLS and the coefficient on capital

26The UK location measure WUK
i is refined in the same way.

27It is interesting that the linear US location measures WUS
i are usually negative suggesting

that there is some costs to locating inventors outside the home country (although note that this
term enters positively when the interactions are not included). The median marginal effect of
WUS

i on productivity remains positive (e.g. in column (3) the median marginal effect is 0.03,
and the median marginal effect is positive in 10 out of 15 industries). It is also worth noting that
the coefficient on the UK interaction term also becomes more positive as the weights become
more refined, but the standard errors also increase markedly. This is probably due to the low
propensity to cite UK patents, resulting in the most refined measure ofWUK

i being equal to zero
for most of the firms.
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is higher. The OLS bias is what one would expect from endogeneity of inputs

and selectivity.28 The qualitative findings are robust, however, and the interaction

between US R&D and US inventor location remains highly significant.29

Overall, there appears to be strong evidence that the productivity growth of

UK firms is significantly higher if they have an inventive presence in the US and

operate in an industry with strong US R&D growth. This is consistent with the

technology sourcing hypothesis. The estimates are economically as well as statis-

tically significant. Our main results suggest that the 33% increase in the US R&D

stock in manufacturing over 1990-2000 was associated with an average increase in

the level of TFP of 5% for the UK firms in our sample. This compares with an

average 6% higher level of TFP associated with the increase in their own R&D

stocks over the same period.30 For an individual UK firm, shifting 10 percentage

points of its innovative activity (as measured by patent applications) from the UK

to the US while keeping its overall level of R&D stock the same (e.g. changing

WUS
i from 0.20 to 0.30 and WUK

i from 0.80 to 0.70 while keeping Rit the same),

is associated with an increase in its TFP level of about 3%.
28Endogeneity of input choice generally leads to an upward bias on the labour coefficient

and a downward bias on the capital coefficient as there is generally a higher contemporaneous
correlation between labour and productivity than between capital and productivity (Marschak
and Andrews, 1944; James Levinsohn and Amil Petrin, 2003).
29The OP results are generated by a multi-stage procedure (see Appendix B for details). We

have included the own R&D stock as a control variable at stage 2 (like Zvi Griliches and Jacques
Mairesse, 1998) although, strictly speaking, this is unnecessary in the Thomas Buettner (2003)
approach. If we drop the own R&D stock the key interaction (between inventor location in the
US and US R&D) is 0.115 with a standard error of 0.045 - very similar to that reported in Table
3. A further implication of this approach is that the cummulative distribution of ∆ω should
stochastically dominate (in the first order sense) for high R&D intensity firms compared to low
R&D intensity firms. This implication is also accepted in our data.
30These numbers are calculated as the product of the estimated elasticities from Table 3 and

the percentage change in the US and own R&D stocks over the 1990-2000 period. All three
location weights gave similar estimates of the contribution of US R&D to the TFP growth of our
sample of firms.
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4.2. Production Function: Further Investigations

We now consider two additional implications of the hypothesis that these results

indicate technology sourcing. First, technology sourcing effects should be largest

in industries where the home country has "most to learn". We start by comparing

our results on UK firms with a symmetric specification estimated on a panel of US

firms. We expect these results to show less evidence of technology sourcing, as the

US is in general more technologically advanced than the UK. Second, we return to

the UK and look at how the impact of technology sourcing varies across industries.

We expect the benefits of technology sourcing to be largest in those UK industries

that lie furthest behind the US in technological terms.

Our interpretation of WUS
i is that it reflects the location of innovative activity

and not other firm-level characteristics. We investigate the robustness of this

interpretation to three main concerns: (i) firms that locate innovative activity

in the US may also locate production activity there, and our results may thus

be picking up the effect of R&D in the US on production activity in the US;

(ii) our measure of the location of innovative activity may actually be picking up

unobserved heterogeneity in firms’ "absorptive capacity"; (iii) UK firms that locate

innovative activity in the US may also be located closer to US firms in technology

space, and therefore our measure of geographical proximity may actually be picking

up technological proximity

We then discuss various other robustness tests such as including industry spe-

cific time trends. Finally, in section 4.3, we carry out one further test, which is

to take an entirely different approach to answering the same question. We look

at patent citation equations and show that these back up our technology sourcing

interpretation.
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4.2.1. Results for US firms

All the results presented so far are for UK firms. This is a natural place to look

for evidence of technology sourcing: given that the US is usually at the technology

frontier and UK firms are generally below the technology frontier, we might expect

that technology sourcing is a particularly important for UK firms investing in the

US.

It is interesting to investigate whether there is symmetry to this relationship,

or whether, as expected, the results are weaker for US firms investing in the UK. In

column (1) of table 4 we show estimates of the symmetric specification to column

(3) of Table 3. We now look at US firms rather than UK firms (see Appendix A

for details of the data). The coefficients on labour and capital are similar to the

GMM estimates for the UK firms. The domestic US R&D term is positive and

significant, suggesting domestic spillovers, but the interaction with the location

weight is insignificantly different from zero. Both these results mirror those for

the UK firms. The interaction between the share of US firms’ inventors located

in the UK and UK industry R&D is insignificantly different from zero, although

it is positive.31 Even if the interaction were statistically significant, however, the

economic magnitude of the impact is small. A US firm would have to have at least

half of its inventors in the UK before UK R&D achieved any positive productivity

impact (only 0.5% of the US sample are in this position). As with the UK firms,

the Olley-Pakes results are similar to GMM - the key interaction term between UK

inventor presence and UK R&D has a coefficient of 0.158 with a standard error of

31In the case of the US firms, using the increasingly refined location weights leads to increas-
ingly imprecise and insignificant coefficients on the key interaction term. This is in contrast to
the equivalent results for the UK firms presented in Table 3, where the coefficient on the key
interaction becomes larger and more significant as the weights become more refined.

18



0.175.32

4.2.2. Industry Heterogeneity

Returning to the sample of UK firms, we can also look at whether the technology

sourcing effect is larger for industries furthest behind the technological frontier.

We divided industries into those where the TFP gap with the US was large versus

those where the TFP gap was smaller (based on the median gap).33 We found

that the US interaction term was much stronger in the sectors where the UK firms

"had the most to learn" from the US. This is illustrated in columns (2) and (3)

of Table 4. Our main coefficient of interest is more than twice as large and only

statistically significant in the "high TFP gap industries". This between-industry,

within-country, evidence is consistent with the between-country evidence from the

comparison of results for UK and US firms in the previous section. Note also that

the own R&D coefficient is much stronger for the sectors with a higher TFP Gap.

This is consistent with industry-level evidence that R&D has a larger productivity

impact in sectors with a larger TFP gap than in those where the gap is lower (see

Rachel Griffith, Stephen Redding and John Van Reenen, 2004).

4.2.3. Location of Productive Activity

So far we have assumed that the production activity of UK firms is located entirely

in the UK. However, this is not completely true in practice. It is possible that the

location measure WUS
i is not only proxying for the location of innovative activity,

but also for the location of production. In other words, British firms with innovative

activity in the US may also have productive activity located there. If this is the

case, then we may be picking up not only international spillovers but also domestic

32The coefficient on labour is 0.567 and the coefficient on capital is 0.214.
33See Table A5 in the Appendix for the industry split.
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spillovers within the US. We attempt to control for this by estimating our model on

firms with no (or very low) US production activities (72% of our firms are in this

category) based on their reported number of domestic and overseas employees.34

In column (4) of table 4 we present results estimated on firms whose productive

activity is located almost entirely within the UK. The results are very similar - the

key interaction of inventor location with US R&D stock has a coefficient of 0.221

and standard error of 0.063, actually slightly stronger than in column (5) of Table

3. This suggests that our UK results are not primarily driven by the location of

firms’ production activities.

4.2.4. Absorptive Capacity

One interpretational difficulty arises if the inventor location term simply reflects

the firm’s total innovative efforts. For example, if UK firms with inventors located

in the US are more innovative, and if innovative firms absorb international knowl-

edge more easily, this could account for the positive interaction.35 To test this

we included further interactions of the spillover measures with indicators of the

firms overall inventiveness. Although these were generally positive they were less

informative than the location interactions. For example, we interacted the firm’s

own R&D stock with the U.S. industry R&D terms. This is to check that the re-

sults on the location interactions are not driven by high R&D firms having higher

"absorptive capacity" than low R&D firms. We performed a similar exercise with

patenting firms. Although these interactions were positive they were not signifi-

34117 out of 188 firms report domestic employment separately to total employment at least
once during 1990-2000. For those that do not report separately we assume that all employment
is domestic. Of those 117 firms, 53 report total employment greater than domestic employment
at least once. We drop these firms from the sample and re-estimate our model on the remaining
135 firms, which we expect to have little or no foreign production activity.
35Although the cross-firm correlation between the most refined US location weight and average

R&D intensity is only 0.08.
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cant at conventional levels.36 Furthermore, the interaction of US R&D with WUS
i

also remained positive and significant, suggesting that the results are not driven

by absorptive capacity.

The concern over absorptive capacity is similar to the concern thatWUS
i reflects

some other form of unobserved heterogeneity.37 To address this we calculated two

further measures of firm-level heterogeneity using pre-sample information. We used

the pre-sample mean wage as a measure of worker quality and pre-sample TFP

as a measure of firm quality. Both terms were insignificant when interacted with

US R&D.38 We conduct a further test of the role of unobserved firm heterogeneity

using a patents citation equation in sub-section 4.3.

4.2.5. Knowledge Spillovers or Technological Proximity?

Another concern with our interpretation is that the UK firms who have more

inventors in the US may also have closer "technological proximity" to the US.

Consequently our interaction may merely be picking up the fact that US R&D is

more likely to benefit these firms and has nothing to do with the fact that these

firms have inventors located in the US. To investigate this possibility we construct

a measure of technological proximity between our UK firms and US industries

following the Jaffe (1986) method. We used the Compustat firms described in sub-

section 4.2.1 to calculate an industry specific technological profile using the average

share of patents in each of the 623 technology classes in the USPTO. We then cal-

36The t-statistic on the interaction of the firms’ ln(R&D) with ln(US industry R&D) was 1.5
(coefficient 0.002). The interaction of ln(US R&D) with a dummy if the firm had patented had
a t-statistic of 1.2 (coefficient 0.033).
37It could also be that US R&D is intrinsically more productive so the interaction is merely

picking up "R&D quality" (e.g. if UK firms in the US hired the best scientists). To test this we
interacted own R&D with WUS

i . The coefficient was insignificant, whereas we would expect it
to be significantly positive if US R&D was of higher quality.
38The t-statistics were 0.03 and 0.01 respectively.
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culated the uncentered correlation coefficient between each of our UK firms and

their corresponding US industry (see the Appendix for more details). This prox-

imity measure was interacted with US R&D and included in the regression (along

with the linear proximity term). Although this proximity measure interaction was

consistently positive, it was statistically dominated by our inventor location in-

teraction. For example, including the technological proximity interaction in our

preferred column (5) of Table 3 gave a coefficient(standard error) of 0.108 (0.074)

compared to an inventor location interaction of 0.156 (0.048).39

4.2.6. Other Robustness Tests of the Production Function

We also conducted a large number of other robustness checks. First, we included

industry level value added (at both 2 and 3 digit levels) in the US and in the UK

to check that the results are not driven by industry level shocks correlated with

R&D. None of the value added terms is significant in the UK equations.40 We also

included interactions of industry level value added with WUS
i and WUK

i . None of

these interactions were significant, and the interaction of US R&D with WUS
i was

unaffected. Secondly, we included industry specific trends to account for different

rates of exogenous technological progress across industries. Again none of the key

results were affected.41 Thirdly, we lagged all the industry level R&D terms by one

period, so that they could be considered pre-determined. Again the main results

39Using the whole 1975-1999 period to construct this alternative proximity weight and including
it in this regression gave a similar result (0.111 (0.089)) as did using a proximity based on the
whole of the US instead of the industry-specific profile.
40US value added was significant in the US firms production function and we keep it in the

Table 4 column (1) results to control for domestic industry-level shocks.
41The industry trends were jointly significant. When we included industry trends the linear

US R&D term became significantly positive, suggesting some positive spillovers to firms with no
US inventors. However, this result was not robust to different specifications and time periods.
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were not affected.42 We also considered whether the key results were driven by firms

in particular industries. For example, if we drop the chemicals/pharmaceuticals

industry, which is the most innovative UK industry in our sample, our results

still hold, with a coefficient (standard error) on the key interaction term of 0.215

(0.068).43

4.3. Patent Citations Results

Our interpretation of our main results is that having inventors located in the US

allows UK firms to access geographically localised spillovers. However, it is possible

that the firm-level location weights are correlated with some unobserved firm-level

characteristic that allows firms to absorb the information contained in spillovers

from the US. As discussed above in section 4.2, we attempted to test for this us-

ing measures of absorptive capacity, firm quality, human capital and technological

proximity. Recently, many authors have turned to patent citations as an alter-

native and direct way of measuring spillovers.44 We use this alternative source

of information as another way of investigating the possibility that our previous

results are driven by unobserved heterogeneity, rather than geographic proximity.

To implement this approach we estimate a patent citation equation of the

following form

CITESUS
pit = g(USpit, UKpit,W

US
i ,WUK

i , xpit, upit). (4.1)

42The coefficient on the interaction of US R&D and WUS
i in an equivalent specification to

column (5) of Table 3 was equal to 0.191 with a standard error of 0.57.
43We also investigated including other countries R&D stocks (in addition to the US) and their

interactions, but although usually positive these were rarely significantly different from zero,
and their interactions with the relevant geographical location of the firm’s inventors was never
significant. This is not to say that the UK learns only from the US, rather that the US is by a
long way the most important partner.
44For an early example see Adam Jaffe, Manuel Trajtenberg and Rebecca Henderson (1993).
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The dependent variable CITESUS
pit is a count of the number of non-self citations

from patent p of UK firm i at time t to a patent with a US inventor that was applied

for within the previous three years. This is the type of citation that we consider

most likely to be associated with technology sourcing. USpit and UKpit are dummy

variables that are equal to unity if the citing patent is invented in the US or UK

respectively, and zero otherwise. The base category is all other countries. WUS
i and

WUK
i are the basic firm-level location weights described above. Control variables

(xpit) include the total number of cites made by the patent (TOTALCITESpit),

year dummies, industry dummies, technology class dummies and all other firm

and industry-level variables in the production function.45 Finally, upit is a serially

uncorrelated error term.

An established result in the citations literature is that patents are more likely to

cite other patents with inventors in the same country than they are to cite patents

with foreign inventors, and these citations tend to come sooner.46 Thus we expect

USpit to enter positively in equation (4.1). However, if our interpretation of the

production function results is correct, we expect the firm-level variableWUS
i not to

be significantly different from zero in equation (4.1) conditional on the location of

the citing patent’s inventor. If WUS
i were to enter positively, even after controlling

for USpit, this would suggest the presence of some firm-level propensity to cite US

inventors that was not entirely accounted for by the presence of individual inventors

in the US. In particular, it might be the case that the firm’s UK-based inventors

were also systematically more likely to cite US inventors. This would suggest that

the firm-level location weightWUS
i was acting as a proxy for something more than

just the geographical location of inventors in the US.

45The results were not very sensitive to the set of control variables that were included.
46See Adam Jaffe and Manuel Trajtenberg (2002) for a recent survey of this literature.
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The sample is all patents applied for by our sample of UK firms over 1990-1998.

Restricting our attention to patents applied for after 1989 allows us to use the same

pre-sample firm-level location weights as before.47 We estimate equation (4.1) by

a negative binomial count data model.48

Table 5 presents the results. In column (1) we exclude the individual inven-

tor location indicators USpit and UKpit. The firm-level location variable WUS
i is

strongly associated with the propensity to cite US inventors. This initial result is

reassuring as it corroborates the hypothesis that our firm-level inventor location

weight is picking up knowledge transfers using a completely different methodology

to the production function approach. If the US R&D labs of our UK firms were

not really tapping into localised US knowledge (e.g. if they were just adapting Eu-

ropean knowledge to the US market) we would not expect them to be extensively

citing US patents.

In column (2) we include USpit and UKpit in the specification. The coefficient

on the US inventor dummy is positive and highly significant, confirming the result

found elsewhere in the literature that US inventors are more likely than foreign

inventors to cite other US inventors. This is true even though all the patents in the

sample are owned by UK firms. The reported coefficients on USpit suggests that the

citation rate per patent to US inventors is about 68% higher for patents invented

in the US. More importantly for our purposes, conditioning on the location of the

47We do not consider patents applied for after 1998 because the patent database only contains
information on granted patents. Since the process of granting a patent can take several years,
this raises the possibility of truncation bias by omitting patents that have been applied for but
not yet granted.
48Similar results to the Negative Binomial model emerge from a Poisson specification, although

the Poisson model is strongly rejected in favour of over-dispersion. The data support a hypothesis
of constant dispersion, with the additional dispersion coefficient, delta, significantly greater than
zero, as shown in Table 4. We also estimated a probit regression where the dependent variable
is equal to one if CITESUSpit is greater than zero, and the results were qualitatively very similar.
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patent’s inventor drives the coefficient on the firm-level location weight WUS
i to

zero. So there is no evidence for any firm-level propensity to cite US inventors that

is not entirely accounted for by the presence of individual inventors in the US. In

particular, UK inventors are not more likely to cite US inventors when their firm’s

value of WUS
i is high.

These results from patent citation behaviour support our interpretation of the

earlier production function results. UK firms with inventors located in the US are

more able to benefit from localised US spillovers precisely because of the presence

of those inventors in the US, and not because of some other firm-level characteristic

that is correlated with having inventors located in the US.

5. Summary and Conclusions

The results presented in this paper provide strong evidence for the existence of

knowledge spillovers associated with technology sourcing. The idea that firms

might invest in R&D activity in a technologically advanced country such as the

US in order to gain access to spillovers of new "tacit" knowledge has been suggested

in the business literature, but we know of no studies that have attempted to find

evidence for this in observed productivity outcomes.

Our main results suggest that the increase in the US R&D stock in manufac-

turing over 1990-2000 was associated with on average a 5% higher level of TFP

for the UK firms in our sample. This compares with an average 6% higher level of

TFP associated with the increase in their own R&D stocks over the same period.

The US innovation boom in 1990s had major benefits for the UK economy, and

by implication for many other countries in the world. An interesting extension of

our methods would be to replicate the findings for other countries. A larger stock
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of US R&D also increased the incentives for multinationals to locate R&D in the

US, which is indeed what has occurred. Future research needs to show to what

extent this is driven by technology sourcing rather than other contemporaneous

events.

Our result has interesting implications for policy. Governments are generally

keen to promote higher levels of domestic R&D activity, and the Member States of

the European Union have recently expressed an aspiration to raise the level of R&D

spending within the EU to 3% of GDP. One of the proposed ways of achieving this

is through R&D tax credits. Evidence suggests that one of the main impacts of

these is to encourage relocation of R&D.49 Our results suggest that policies which

seek to achieve this target by inducing multinational European firms to relocate

their existing R&D efforts away from the US and towards Europe could be at

least partly counterproductive, as they may reduce the ability of European firms

to benefit from US R&D spillovers.

From the point of view of the US, our results suggest that while US R&D

does generate large spillover benefits for the rest of the world, foreign firms must

actually invest in innovative activity in the US in order to reap the full returns.

When it comes to international technology spillovers it seems there is no such thing

as a completely free lunch.

49See Rachel Griffith and Nick Bloom (2001).
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A. Appendix: Data

In order to implement our empirical strategy we need to measure three types of
information: the location of firms’ innovative activity, firms’ productivity perfor-
mance, and the domestic and foreign spillover pools available to firms. We use
data from the US Patent Office (USPTO), firm accounts data, and OECD data on
industry level R&D expenditure.

A.1. Innovative activity

The first dataset is the NBER patent citations data file which contains comput-
erised records of over two million patents granted by the USPTO between 1901
and 1999. This is the largest electronic patent dataset in the world. We restrict
our attention to patents applied for after 1975 as data on citations are only avail-
able for patents applied for after this date. This is combined with firm accounting
data from the Datastream on-line service which contains information on output,
employment, investment, capital and R&D.50

A.1.1. Inventor location

Patents identify the address (including country) of the inventor(s) listed on the
patent application. Table 1 (in the main text) shows the primary inventor’s coun-
try for the 38,160 patents matched to our sample of 188 UK firms listed on the
London Stock Exchange in 1985. The average share of a firm’s patents with the
lead inventor located in the US varies somewhat across industries, with the high-
est average share in Office, Accounting and Computing Machinery (47.5%), Radio,
Television and Communication Equipment (47.2%) and Food, Beverages and To-
bacco (46.4%), and the lowest shares in Textiles, Leather and Footwear (12.7%),
Other Transport Equipment (24.5%) and Basic Metals (28.7%).

A.1.2. Patent Citations

We use data on patent citations to refine our measures of the location of firms’
innovative activity. The 38,160 patents matched to our sample of UK firms make
275,013 citations to other patents, an average of 7.2 citations made by each patent.
Of these 275,013 citations, 236,367 have information on the location of the lead
inventor of the cited patent. Because we are interested in whether firms are bene-
fitting from external knowledge that has not been generated within the same firm
we exclude self-citations, where a patent cites another patent that is owned by the
same firm. 8.5% of all citations in our sample are made to patents owned by the
same patenting subsidiary (or “assignee”), while a further 1.4% of all citations are
made to a different assignee that is nevertheless part of the same parent firm.

50More details of the matching between the datasets can be found in Nick Bloom and John
Van Reenen (2002).
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Table A1 shows a cross-tab of the location of the citing and cited inventor for
the 209,090 non-self citations in our sample. It is important to remember that all
of these citations were made by patents that are owned by UK firms, even if the
inventor was located in the US. Only 6.9% of citations made by UK inventors are
made to another UK inventor, while 59.9% are made to a US inventor. In contrast,
71.5% of citations made by US inventors are made to other US inventors, while only
3.2% are made to UK inventors. This probably illustrates both the fact that the
data is from the US patent office, but also the dominant global position of the US
in innovation. This provides preliminary evidence that most patents owned by UK
firms, but invented by an inventor located in the US, are building on knowledge
created by other inventors located in the US. When we look at self-citations to
a patent that is owned by the same parent firm (not shown) the percentages in
the diagonals (for example a UK inventor citing another UK inventor) are much
higher. We also see that, even within firms, the transfer of knowledge from the
UK to the US appears to be small compared to the transfer of knowledge within
the US.

A.1.3. Patent Application dates

We also use information on the application dates of each citing and cited patent
in order to refine our measures of the location of firms’ innovative activity. In
particular we look at citations made to patents that were applied for within the
last three years. Table A2 shows the same cross-tab of the country of the citing and
cited inventor for all non self-citations of this type. The proportions are similar to
those in Table A1, although UK inventors are slightly more likely to cite other UK
inventors than before, and US inventors are less likely than before to cite other US
inventors.

A.2. Firm Accounts data

We sought to construct similar types of data for both US and UK firms, although
some differences were inevitable. Both samples were independently matched to
USPTO data. They are based on publicly listed firms, whose primary sales are
in manufacturing and who report some R&D between 1990 and 2000. All data
relates to the firms’ consolidated worldwide accounts. Observations with missing
data, firms with less than five consecutive observations over 1990 - 2000, and firms
for which there were jumps greater than 150% in any of the key variables (capital,
labour, sales) were dropped.

A.2.1. UK firms

For UK firms the data on value-added, labour (DS Item 219) and R&D expenditure
(DS Item 119) comes from the Datastream On-Line service (DS) and is a sample of
firms listed on the London Stock Exchange. Capital is estimated as a replacement
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value using the method described in Bond and Meghir (1994). Although these
are “UK firms” in the sense that they are listed on the London Stock Exchange,
a key feature of the data is that it relates to the firms global activities. Value
added is the sum of total employment costs (DS117), operating profits (DS137),
depreciation (DS136) and interest payments (DS153).51

The initial sample is all firms listed on the LSE in 1985 with names starting
with the letters A-L, plus any of the top 100 UK R&D performers not already
included. The sample includes 415 firms, 266 of whom had taken out at least
one patent between 1975 and 1998. All these firms’ subsidiaries were identified
usingWho Owns Whom by Dun and Bradstreet in 1985.52 Firms who entered the
sample after 1985 were matched based on their date of entry. All the subsidiaries
were then matched by name to the USPTO.
In the UK most firms did not report R&D expenditure before 1989 and so

the analysis is restricted to the years 1990-2000.53 An R&D capital stock was
constructed using a perpetual inventory method and an assumed 15% rate of ob-
solescence (Griliches, 1979, and Hall et al, 2004).
Industry codes for UK firms are at the 3-digit level. We matched 3-digit SIC80

codes to 2-digit ISIC Revision 3 codes for the purposes of assigning firms to a
2-digit industry.
After cleaning our data we have a sample with 1794 observations on 188 firms,

141 of which are matched to at least one patent. Table 2 in the main text reports
summary statistics. On average, firms in our sample have applied for 240 patents
(see Table A3).

A.2.2. US firms

US Data was taken from the match between Compustat (CS) and the USPTO
conducted by Bronwyn Hall et al (2000). We tried to make the sample and variable
construction as close as possible to the UK sample. We matched in industry level
data by primary SIC code (1987 Revision). The book value of capital is the
net stock of property, plant and equipment (CS Item A8 - PPENT). R&D is CS
item A46 - XRD. Unfortunately staff costs are only available for about 10% of
firms in the Compustat data so constructing a value added measure is extremely
difficult. Consequently we follow the tradition in the US literature (e.g. Griliches

51The first two items dominate this measure.
52As with other matches this has the disadvantage that we do not track changes in ownership

over time. This is inevitable given the labor intensity of the data matching exercise. Another
issue is that we do not track the sales of patents from one firm to another (this may cause us
to overestimate the proportion of UK inventors in the US if UK firms buy many US patents).
Fortunately such non-M&A related patent sales appear to be a relatively rare event.
53Even after 1989 when a firm reports zero R&D it is not clear that this corresponds to a true

zero, although it is unlikely to perform a large amount of R&D. In the results presented in this
paper, a dummy variable was used to denote reported zero R&D expenditure, but the results are
not sensitive to the exact treatment of reported zeros.
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and Mairesse, 1998) and use real sales as our output measure (CS Item A12-
SALE). Fortunately, using sales instead of value added in the UK leads to similar
qualitative results to those for value added.54

The inventors of patents owned by US firms are much more localised in the
United States than in UK firms (see Table 1). 95% of all inventors were located
in the US and only about 1% of inventors were located in the UK. This reflects
the innovative strength of the US and the fact we are using USPTO data, so there
is some inevitable home bias for the US. The industries where there is greater
US innovative presence in the UK are (unsurprisingly) those where the UK has
some traditional strengths - medical equipment, pharmaceuticals, and petroleum
refining. Table A4 describes the data on US firms.

A.3. Industry level data - R&D Spillover pool

The domestic and foreign spillover pools were constructed using the OECD’s An-
alytical Business Expenditure on R&D dataset (ANBERD, 2002). This contains
information on R&D spending at the 2-digit manufacturing industry (ISIC Revi-
sion 3) for all OECD countries. A stock measure was constructed using a perpetual
inventory method and an assumed 15% rate of obsolescence,55 with a starting year
of 1987. Although there are various problems with using industry-level measures,
as discussed above, this data has the crucial advantage for our purposes that it
contains R&D expenditures by geographical location of the R&D activity. This
would be extremely hard to recreate using data on firms’ reported R&D as they do
not decompose R&D into a foreign and domestic element. Our measure also has
the advantage of including all R&D carried out in each industry in each country,
and not just the R&D of the other sampled firms. We also use data on 2-digit
industry level value-added taken from the OECD’s Structural Analysis database
(STAN, 2003). Value added price deflators at the two digit level are also used from
this source. In addition, we use three digit value-added from the NBER produc-
tivity database and from the UK PACSTAT data (similar findings were uncovered
from 3 and 2 digit analysis).

A.4. Technological Proximity Measure

We constructed a measure of technological proximity between our UK firms and
US industries following the Jaffe(1986) method. We allocated the Compustat firms
described above to a two digit industry and calculated the average technological
profile using the average share of patents in each of the 623 technology classes
in the USPTO. We the calculated the uncentered correlation coefficient between
54For example, in the context of our preferred model of column (5) of Table 3 the coeffi-

cient(standard error) on the key interaction term was 0.168 (0.083).
55We experimented with other depreciation rates but the results were not significantly changed.
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each of our UK firms and the US industry. The technological proximity formula
following Jaffe (1986) between firm i and industry, where firm i is in industry j, is

PROXij =
TiT

0
j

(TiT
0
i )

1
2 (TjT

0
j)

1
2

where Ti =(T i1, Ti2, ...., Ti623) is a vector whose elements are the proportion of
patents over the 1975 to 1989 period in each of 623 (labelled N-class) technology
classes in the USPTO. PROXij is the uncentered correlation. Compared to the
original Jaffe (1986) paper and its descendents we are treating US industry j as
a "pseudo" firm. We also tried an alternative measure using all patents among
Compustat firms not distinguishing by industry.

B. Appendix: Econometric modelling strategy

In the main text we compare results from two alternative approaches to deal with
these problems, a GMM method (Richard Blundell and Stephen Bond, 2000) and
the popular "OP" method (Stephen Olley and Ariel Pakes, 1996) adapted for
the presence of endogenous R&D (Thomas Buettner, 2004). These approaches
are based on different assumptions and different strengths and weaknesses (see
Griliches and Mairesse, 1998, for a discussion). The OP approach has a more flex-
ible form for the "not so fixed" effect of the unobserved heterogeneity (allowing it
to evolve over time as a Markov process). The GMM approach allows for a per-
manent component to unobserved heterogeneity and for the transitory component
to be contemporaneously correlated with labour and capital. This appendix gives
some more detail on each method.

B.1. System GMM

Consider a simplified form of the production function

yit = αxit + ait (B.1)

where xit is an endogenous input and the residual productivity term takes the form

ait = tt + ηi + uit. (B.2)

Year dummies (tt) control for common macro effects and the firm fixed effect
(ηi) and stochastic productivity shock (uit) may be correlated with the regres-
sors. Assuming no serial correlation in the uit process yields the following moment
conditions

E[xi,t−s∆uit] = 0 (B.3)
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for s ≥ 2.56 This allows the use of suitably lagged levels of the variables to be
used as instruments after the equation has been first differenced. We test for serial
correlation using an LM test, shown at the base of the GMM columns. If there is
higher order (but finite) serial correlation in the uit process longer lags can still be
used as instruments.
Unfortunately, the first differenced GMM estimator has been found to have

poor finite sample properties when the endogenous variables are highly persistent,
because the lagged instruments are often weakly correlated with the first differences
of the endogenous variables. If we are prepared to make assumptions on the initial
condition that E[∆yi2ηi] = 0 and E[∆xitηi] = 0 then additional moment conditions
become available.57 The additional moment conditions take the form:

E[∆xi,t−s(ηi + uit)] = 0 (B.4)

for s = 1 when uit ∼MA(0). This means that lagged differences of x can be used as
instruments in the levels equations. We test the validity of the additional moment
conditions using a Sargan difference test. The levels equations and differenced
equations are stacked in a system, each with its appropriate instruments.
We assume that all firm-level variables are endogenous, whereas all industry-

level variables are treated as exogenous. We examine specifications where the
industry-level R&D stocks are treated as endogenous and the results are not signif-
icantly affected. The results are also robust to lagging the industry-level variables
by one period, in which case they can be treated as pre-determined. We instrument
firm-level variables in the differenced equation with their levels lagged from two
to five times inclusive, and in the levels equation by their first-differences lagged
once, as well as by all time and industry dummies and all exogenous variables.
The standard errors we present allows for arbitrary heteroskedasticity and ar-

bitrary serial correlation. They are the "One-Step robust" results from the DPD
package written in GAUSS58 (i.e. we do not iterate on the GMM weight matrix
because Monte Carlo evidence suggests this underestimates the second step stan-
dard errors). We include full sets of time dummies and industry dummies in all
regressions.

B.2. Olley Pakes with endogenous R&D

Olley and Pakes (1996) essentially assume that the production function can be
written
56If there is serial correlation in the error term this can be dealt with by using longer lags as

instruments. For example, if uit ∼MA(1) lags dated t−3 and earlier will be valid instruments.
57Stationarity of yit and xit is sufficient (but not necessary) for these conditions to hold. What

is essential is that the first moments of the endogenous variables are time invariant conditional
on the time dummies. The higher order moments are unrestricted.
58Available from: http://www.ifs.org.uk/econometindex.shtml
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yit = α0 + αllit + αkkit + ωit + υit (B.5)

where ωit is the unobserved productivity state and υit is a serially uncorrelated
additional productivity shock or measurement error (which can be serially corre-
lated). This is equation (2.1) with β = γi1 = γi2 = 0 and ait = ωit + υit. Capital
is quasi-fixed and labour completely variable. The bones of the Olley Pakes model
is as follows. At the beginning of the period t, firm i observes its productivity
state ωit and capital stock kit. The key difference between ωit and υit is that ωit

is a state variable and affects investment decisions whereas υit does not. The firm
decides whether to stay in business based on its expectations of net present value
value compared to a critical cut off. Denote χit = 1 if the firm chooses to stay in
business and χit = 0 if the firm chooses to exit. If the firm decides to continue
operations it sets labour and chooses the level of investment in physical capital.
Physical capital evolves in a deterministic process based on investment according
to the standard perpetual inventory formula. The additional shock υit is then
realized after these choices are made. The key insight of the OP algorithm is to
use the monotonicity of the investment policy function in unobserved productivity
(conditional on current capital). This can be used to get consistent estimates of
the parameter on variable inputs at stage 1 and then use these (at stage 2) to
obtain the capital coefficient.
We take two approached to dealing with firm R&D. First, we consider estimates

of the standard OP algorithm and include R&D as an exogenous variable.59 Sec-
ondly, we follow Thomas Buettner’s (2004) extension of the OP structural model
to include endogenous R&D chosen at the same time as fixed investment. Un-
like fixed investment, however, R&D is stochastic. The productivity state ωit still
evolves stochastically over time according to a controlled Markov process, but the
distribution of next period’s productivity is increasing (in a first order stochastic
dominance sense) not only in the current productivity state but also in the amount
of R&D expenditure. We can think of this as the firm "buying" an improved prob-
ability distribution of ωit+1 through spending more on R&D this period.60 We
assume that the distribution of ωt+1 is governed by a parameter ψt, a single index.
The distribution of next period’s productivity ωt+1 is a member of the family of
distributions,

zψt+1 = {F (ωt+1|ψt+1), ψt+1 ∈ Ψ}.
A contribution of Buettner (2003) is to show that (in the context of this ex-

tended structural model) the invertibility of the investment policy function still
holds and that the R&D investment function is also invertible. Consequently

59Analogously to plant age in the original Olley Pakes (1996) application.
60This is an important restriction as it implies that R&D and ωit affect ωit+1 only through

ψit+1. Thus productivity shocks and R&D are not allowed to have a qualitively different impact
on the distribution of future productivity.
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stage 1 of the OP algorithm does not need to be changed, although stage 2 must
be altered to account for endogenous R&D.

B.2.1. Stage One: Estimation of the coefficient of the variable input.

The estimation strategy is to control for the unobserved productivity shock non-
parametrically by exploiting the monotonicity of the investment policy function.
Unobserved productivity can be written as61

ωit = eω(iit,kit)
Substituting this into the production function (B.5) gives

yit = α0 + αllit + φ(iit,kit) + υit (B.6)

where
φt = φ(iit,kit) ≡ α0 + αkkit + eω(iit,kit)

We do not know the functional form of φt so we use a series estimator to ap-
proximate it.62 Estimation of equation (B.6) gives a consistent estimate of αl and
estimates of the unknown function φt.

B.2.2. Stage Two: Estimation of the coefficient of the quasi-fixed input.

Rearranging (B.6) after we have an estimate of the coefficient on the variable input
(αl) gives

y∗it = yit − αllit = α0 + αkkit + υit

The expectation of y∗it, conditional on information at t− 1 and survival until t,
is then

E[y∗it|Jt−1, χit = 1] = α0 + αkkit +E[ωit|ψit,χit = 1]

where Jt−1 is the information set in t − 1, and the distribution of productivity
states is ψit, (which is influenced by the firm’s R&D choice). Under the Markov
assumption for productivity, we can re-write productivity conditional on survival
as:

ωit = E[ωit|ψit,χit = 1] + ξit.

The second stage estimation becomes

y∗it = α0 + αkkit +E[ωit|ψit,χit = 1] + ξit + υit.

61Or equivalently eω(kit+1,kit) since capital is formed deterministically: kit+1 = (1− δ)kit.
62Olley and Pakes (1996) and Levinsohn and Petrin (2003) find that the fully non-parametric

estimator of φt gives similar results to the series estimator. We found that fourth or sixth order
series expansions (instead of our preferred fifth order) made little difference to the results.
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where the productivity innovation ξit is uncorrelated with kit.To control for selec-
tivity we will take a similar approach to stage 1 and control for the expectation
non-parametrically.
In the absence of selection63 and R&D the second stage becomes simply

y∗it = α0 + αkkit + g(ωit−1) + ξit + ηit (B.7)

Since ωit−1 = φt−1 − αkkit−1 − α0, equation (B.7) can be estimated by non-
linear least squares where the unknown function g(ωit−1) can be approximated by
a nonparametric function in φt−1 − αkkit−1.The key difference between Buettner’s
model and the original OP model is that ψit, depends on both ωit−1 and kit−1 in
the model with endogenous R&D whereas it only depends on ωit−1 in the original
OP set-up. This means that there is a difference between the method we use to
estimate stage 2 and OP.64

We use the fact that the R&D function can be written r(ψit,ωit−1) and invert
this to obtain

ψit = r−1(rit−1,ωit−1) (B.8)

where rit−1, denotes the observed R&D spend at t-1. Using equation (B.8) to con-
trol for the distribution in period t, the second stage estimation equation becomes

y∗it = αkkit + g(r−1(rit−1,ωit−1)) + ξit + υit (B.9)
= αkkit + eg(rit−1,φt−1 − αkkit−1) + ξit + υit

Equation (B.8) can be used to obtain estimates for αk replacing g(r−1(., .)) with a
nonparametric function eg(.,.) in rit−1 and φt−1 − αkkit−1.
Armed with these estimates for the parameters of the production function we

can then construct the productivity term ωit. Since the spillover terms are as-
sumed exogenous they can be included as additional variables in the production
function. We calculate the standard errors though a bootstrapping procedure with
100 replications.

63We allow for selection in the empirical results.
64In particular we cannot identify αk from g(φt−1 − αkkit−1, kit−1).
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Figure 1: US R&D growth and “productivity growth premium” for UK firms with a 
high proportion of US inventors  

 

 
 
Notes: Vertical axis is the “productivity premium” for UK firms with strong inventor presence in the US 
between 1990 and 2000 (i.e. the differential in annual average labour productivity growth for our UK firms 
with above median US inventor presence versus those with below median US inventor presence). The 
horizontal axis is average annual growth in US R&D stock. Shaded industries are those with largest US-UK 
TFP gap over the period (i.e. where UK firms had the “most to learn”). Industry points are weighted by 
number of firms in our sample. Although there is a positive relationship across all industries, it is strongest 
in the “high gap” sector. 
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Table 1: Country of inventor 

Country of 
Inventor 
 

(1) 
Number of  

patents matched 
to our 

UK firms  

(2) 
% Share of 

patents matched 
to our 

UK firms  

(3) 
% Share of 

patents matched 
to our US firms  

(4) 
% Share of all 

USPTO patents 

   UK 14,058 36.8 1.1 3.0 

   USA 14,856 38.9 92.3 55.7 

   Japan 2,886 7.6 1.5 18.8 

   Germany 1,647 4.3 1.3 7.9 

   France 1,117 2.9 0.9 3.0 

   Other 3,596 9.4 2.9 11.6 

   Total 38,160 100 100 100 

 

Notes: First two columns give lead inventor location for patents matched to the 188 UK firms in our 
sample. Column (3) gives the lead inventor location for the sample of 570 US firms. Final column refers to 
all patents registered at the US Patent Office between 1975 and 1998  

 

 

 

Table 2: Descriptive Statistics for UK firms  
 Mean Median Standard 

Deviation 
Firm level variables    

   Employees 10,711 1,750 27,564 

   Value added (£m) 372 48 914 

   Capital stock per worker (£) 38,700 30,000 31,900 

   Value added per employee (£) 31,404 50,201 12,438 

   R&D expenditure/value added 0.029 0.010 0.044 

   R&D stock/value added 0.158 0.046 0.272 

Industry level variables    

   Ln(UK R&D stock) 7.272 7.740 1.404 

   Ln(US R&D stock) 9.730 9.621 1.276 

 
Notes: Sample includes 188 firms, 1990-2000; all monetary amounts are in 1995 currency, deflated using 
OECD 2 digit industry price deflator; firm level value-added is constructed as the sum of total employment 
costs, operating profit, depreciation and interest payments; capital stock and R&D stock are constructed 
using a perpetual inventory method as described in the text. 
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Table 3: R&D-Augmented Production Functions  
 

 (1) (2) (3) (4) (5) (6) 

Estimation Method OLS  OLS  GMM GMM GMM Olley-Pakes 

Dependent variable ln (Y) it ln (Y/K) it ln (Y/K) it ln (Y/K) it ln (Y/K) it ln (Y) it 

Company listed in: UK UK UK UK UK UK 

Location weight: iW  - Location Location Location & 
Citation 

Location & 
Citation 
within 3 

years 

Location & 
Citation 
within 3 

years 
       
ln (L/K) it 

labour-capital  - 
0.657 

(0.046) 
0.648 

(0.065) 
0.647 

(0.065) 
0.642 

(0.067) 
- 

ln (L) it 

labour 
0.620 

(0.057) 
- - - - 

0.555 
(0.039) 

Ln(K) it 

capital 
0.343 

(0.042) 
- - - - 

0.385 
(0.041) 

ln (R&D) it, 
firm R&D stock 

0.029 
(0.008) 

0.012 
(0.007) 

0.026 
(0.011) 

0.025 
(0.010) 

0.022 
(0.010) 

0.015 
(0.005) 

US
iW * ln (US R&D) jt 

 
- 

0.076 
(0.024) 

0.066 
(0.035) 

0.084 
(0.031) 

0.173 
(0.054) 

0.165 
(0.062) 

UK
iW * ln (UK R&D) jt 

 
- 

0.035 
(0.022) 

0.026 
(0.028) 

0.092 
(0.095) 

0.400 
(0.291) 

-0.488 
(0.557) 

ln (US R&D) jt 
US industry R&D stock  - 

0.050 
(0.118) 

0.065 
(0.067) 

0.059 
(0.065) 

0.063 
(0.066) 

-0.054 
(0.038) 

ln (UK R&D) jt 
UK industry R&D stock  - 

0.273 
(0.165) 

0.221 
(0.101) 

0.219 
(0.101) 

0.206 
(0.096) 

0.250 
(0.083) 

US
iW  

% inventors in US 
- 

-0.696 
(0.240) 

-0.602 
(0.336) 

-0.765 
(0.313) 

-1.658 
(0.543) 

-1.353 
(0.617) 

UK
iW  

% inventors in UK 
- 

-0.296 
(0.156) 

-0.254 
(0.193) 

-0.760 
(0.683) 

-3.270 
(2.533) 

3.127 
(4.336) 

       
Firms 188 188 188 188 188 188 
Observations 1794 1794 1794 1794 1794 1794 
1st order serial  
 correlation test (p-value) - - 

-1.212 
(0.226) 

-1.212 
(0.226) 

-1.212 
(0.225) - 

2nd order serial  
 correlation (p-value) - - 

-1.788 
(0.074) 

-1.769 
(0.077) 

-1.719 
(0.086) - 

Sargan Difference Test  
(p-value) - - 

17.52 
(0.562) 

17.90 
(0.534) 

18.81 
(0.456) - 

Sargan Test of  
over-identifying restrictions  
(p-value) 

- - 
86.39 

(0.217) 
86.18 

(0.222) 
86.52 

(0.214) - 
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Notes: US
iW  and UK

iW are the (pre-1990) proportion of a firm’s inventors located in the US and UK 

respectively. Standard errors in brackets under coefficients are robust to heteroskedacity and 

autocorrelation of unknown form and are clustered by industry. The dependent variable in columns (2) 

through (5) is the log of value added divided by capital stock. The dependent variable in columns (1) and 

(6) is the log of value added. The time period is 1990-2000. Columns (1) and (2) are estimated by OLS. 

Columns (3) to (5) are estimated by System-GMM (one-step robust standard errors). In System GMM (see 

Blundell and Bond, 2000) the firm-level variables are assumed endogenous and industry level variables are 

assumed strictly exogenous; endogenous variables are instrumented by levels lagged from two to five times 

in the differences equation and differences lagged once in the levels equation, as well as by all exogenous 

variables and year and industry dummies. Column (6) is estimated by the OP method (Olley-Pakes, 1996). 

In OP we use a fifth order series expansion in the first and second stage (the second stage also includes  a 

selection correction term).  After obtaining the firm specific (total factor) productivity term (?  it) from 

stage one, we regress this against the indicated variables (including full sets of industry and time dummies). 

In OP the standard errors are bootstrapped (100 replications) and allow for clustering by firm. For 

diagnostic tests p-values are in brackets and italics. All equations include a full set of industry dummies and 

time dummies.  

 



 44 

Table 4:  R&D Augmented Production Function results – Further Investigations  
 (1) (2) (3) (4) 

Estimation method GMM GMM GMM GMM 

Dependent variable ln (Y) it Log(Y/K) it Log(Y/K) it Log(Y/K) it 

Company listed in USA UK UK UK 

Sample USA  High TFP Gap 
with USA 

Low Gap with 
the USA “Domestic” 

Location weight: 
Location Location & 

Citation within 3 
years 

Location & 
Citation within 3 

years 

Location & 
Citation within 3 

years 
     
ln (L/K) it 

- 
0.757 

(0.076) 
0.518 

(0.087) 
0.610 
(0.072 

ln (L) it 0.706 
(0.078) 

- - - 

ln (K) it 0.220 
(0.052) 

- - - 

ln (R&D) it 0.049 
(0.035) 

0.029 
(0.013) 

0.005 
(0.014) 

0.029 
(0.014) 

US
iW * ln (US R&D) jt 0.002 

(0.072) 
0.277 

(0.130) 
0.123 

(0.093) 
0.212 
(0.063 

UK
iW * ln (UK R&D) jt 0.151 

(0.131) 
0.434 

(0.267) 
-0.826 
(1.072) 

-0.672 
(0.408 

ln (US R&D) jt 0.247 
(0.078) 

0.353 
(0.171) 

0.035 
(0.070) 

0.116 
(0.096 

ln (UK R&D) jt -0.063 
(0.046) 

0.404 
(0.152) 

-0.041 
(0.121) 

0.211 
(0.115 

US
iW  -1.244 

(0.978) 
-2.849 
(1.445) 

-1.182 
(0.844) 

-2.028 
(0.637) 

UK
iW  -0.097 

(0.781) 
-3.540 
(2.338) 

4.861 
(7.040) 

4.199 
(2.757) 

     
Firms 570 99 89 135 
Observations 5446 938 856 1267 
1st order serial  
 correlation test (p-value) 

-4.877 
(0.000) 

-1.101 
(0.271) 

-2.702 
(0.007) 

-1.198 
(0.231) 

2nd order serial  
 correlation (p-value) 

-1.739 
(0.082) 

-0.243 
(0.808) 

-1.468 
(0.142) 

-1.814 
(0.070) 

Sargan Difference Test  
(p-value) 

39.34 
(0.063) 

10.84 
(0.941) 

21.22 
(0.336) 

13.99 
(0.693) 

Sargan Test of  
over-identifying restrictions  
(p-value) 

67.96 
(0.081) 

55.22 
(0.801) 

66.93 
(0.197) 

83.63 
(0.283) 
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Notes:  Column (1) contains US firms and columns (2) through (4) contain UK firms.  “High TFP Gap” 

indicates those industries where the TFP gap with the USA was above the median (see Figure 1).  

“Domestic” indicates the sub-sample of UK firms who are estimated to have little or no overseas 

production facilities.  US
iW  and UK

iW are the (pre-1990) proportion of a firm’s inventors located in the US 

and UK respectively. Standard errors in brackets under coefficients are robust to heteroskedacity and 

autocorrelation of unknown form.  The dependent variable in columns (2) through (4) is the log of value 

added divided by capital stock and in column (1) it is the log of real sales. The time period is 1990-2000.  

All columns are estimated by System-GMM (one-step robust standard errors). The firm-level variables are 

assumed endogenous and industry level variables are assumed exogenous. Endogenous variables are 

instrumented by levels lagged from two to five times in the differences equation and differences lagged 

once in the levels equation, as well as by all exogenous variables and year and industry dummies.  For 

diagnostic tests p-values are in brackets and italics. All equations include a full set of industry dummies and 

time dummies. Column (1) also includes US industry value added (which was insignificant in the other 

column s) to control for domestic industry-level shocks. 
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   Table 5: Citations results 
 (1) (2) 

Dependent variable US
pitCITES  US

pitCITES  

   

US
iW  

0.631 
(0.267) 

0.104 
(0.198) 

UK
iW  

0.197 
(0.205) 

0.054 
(0.199) 

pitUS  - 
0.684 

(0.158) 

pitUK  - 
0.037 

(0.107) 

pitTOTALCITES  
0.013 

(0.001) 
0.012 

(0.001) 
   

Dispersion (delta) 
1.050 

(0.069) 
0.999 

(0.067) 
   
Observations 14,161 14,161 
Mean of dep. var.  0.695 0.695 
Log Pseudo-L -15,116.06 -14,996.25 

   
 
Notes:  Estimated using a negative binomial count data model with constant dispersion. The dependent 

variable is the number of citations per patent to a US inventor (not owned by the same firm and applied for 

within the last three years). The sample consists of all patents applied for by our UK firms between 1990 

and 1998.  Reported coefficients are equal to the incidence-rate ratio minus one. US
iW  and UK

iW are the (pre-

1990) proportion of a firm’s inventors located in the US and UK respectively.  pitUS  and pitUK  denote 

whether the patent’s lead inventor is located in the US or UK respectively.  TOTALCITES is the total 

number of cites made by the patent. Robust standard errors in brackets are adjusted for clustering by firm. 

All specifications include 8 year dummies, 14 industry dummies and 36 technology class dummies, as well 

as all firm and industry level variables from the production function in Table 3.  
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Appendix Tables 
 
 
Table A1: Location of citing and cited inventors: non self-citations 

Cited country: UK USA Other Total 

Citing country:     

     
       UK 3,978 34,762 19,332 58.072 

 (6.9%) (59.9%) (33.3%) (100%) 

     

       USA 3,375 75,249 26,570 105,194 

 (3.2%) (71.5%) (25.3%) (100%) 

     

       Other 1,463 24,431 19,930 45,824 

 (3.2%) (53.3%) (43.5%) (100%) 

     

       Total 8,816 134,442 65,832 209,090 

 (4.2%) (64.3%) (31.5%) (100%) 

     

Notes: all citations made by patents matched to the 188 UK firms in our sample, excluding self-citations 
(where the citing and cited patent are matched to the same parent firm). The time period is 1975-1998. 
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Table A2: Location of citing and cited inventors: non self-citations to patents that have been applied 
for within the previous three years 

Cited country: UK USA Other Total 

Citing country:     

     

       UK 817 5,886 4,549 11,252 

 (7.3%) (52.3%) (40.4%) (100%) 

     

       USA 459 10,905 4,561 15,925 

 (2.9%) (68.5%) (28.6%) (100%) 

     

       Other 256 4,242 4,828 9,326 

 (2.7%) (45.5%) (51.8%) (100%) 

     

       Total 1,532 21,033 13,938 36,503 

 (4.2%) (57.6%) (38.2%) (100%) 

     
Notes: all citations made by patents matched to the 188 UK firms in our sample to other patents that have 
been applied for within the previous three years, excluding self-citations (where the citing and cited patent 
are matched to the same parent firm). The time period is 1975-1998. 
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Table A3: Summary statistics for UK patenting firms  

 
  Mean   Median 

 
Standard 
Deviation 

   Min   Max 

      

Total patent applications  
240 40.5 657 1 5820 

UK Location Weight 0.354 0.274 0.363 0 1 

UK Location + Citation Weight 0.082 0.017 0.145 0 1 

UK Location + Citation Within 3 Years 0.019 0.000 0.054 0 0.5 

USA Location Weight 0.462 0.425 0.379 0 1 

USA Location + Citation Weight 0.417 0.368 0.349 0 1 

USA Location + Citation Within 3 Years 0.162 0.134 0.184 0 1 

      
Notes: 141out of our 188 UK firms matched to at least one patent; location weights are constructed as 
described in the text. 
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Table A4 Descriptive Statistics for US firms  
 

 Mean Median Standard 
Deviation 

    

Employees 13,760 3,528 38,640 

Real Sales ($1000) 3,196 586.4 10,742 

Capital per employee ($) 59,407 34,607 81,630 

Real sales per employee 
($1000s) 

193.736 162.843 128.641 

R&D expenditure/value 
added 

0.059 0.029 .198 

R&D stock/value added 0.237 0.113 0.567 

Notes: All in 1995 prices, 570 firms, 5446 observations, 1990-2000 
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Table A5: Data underlying Figure 1  

Industry 

Average 
annual % 
Growth 
in US 
R&D 
stock  

R&D 
expenditure 
/Value added 
in US in 2000 

% 

Mean annual 
labour 

productivity 
growth for 
high WUS 

firms (%) 

Mean annual 
labour 

productivity 
growth for low 
WUS firms (%) 

Difference in 
mean annual 

labour 
productivity 
growth rate 

Observations in 
UK sample 

Observations in 
US sample 

        

High US -UK TFP 
gap industries        

31 Electrical 
Machinery NEC 6.65 10.1 5.76 4.67 1.08 143 354 

24 Chemicals 
(including 
pharmaceuticals) 

5.23 13.2 5.81 5.73 0.07 191 820 

32 Communication 
equipment 4.13 19.4 5.27 6.16 -0.88 138 725 

29 Machinery and 
equip NEC 3.96 5.8 -0.94 -1.70 0.76 277 659 

34 Motor vehicles 3.48 16.1 2.31 4.05 -1.73 63 264 

30 Computing 
machinery 2.39 32.1 2.47 5.18 -2.71 20 323 

28 Metal products 1.85 1.9 -2.89 1.03 -3.92 104 268 

        
Low US -UK TFP 
gap industries  

 
   

  

33 Precision 
instruments 7.88 31.6 5.11 5.91 -0.80 58 696 

20-22 Paper, 
printing and 
publishing 

6.12 1.6 1.05 0.54 0.50 170 607 

27 Basic metals 0.71 1.3 4.28 5.01 -0.72 80 168 

25 Rubber and 
plastics 4.64 3 1.53 -0.95 2.48 72 347 

17-19 Textiles and 
footwear 2.19 0.5 -2.67 2.08 -4.76 174 261 

15-16 Food, 
beverages and 
tobacco 

1.07 1.1 0.87 3.09 -2.21 131 283 

35 Other transport 
equipment -5.08 18.3 7.10 4.69 2.40 73 109 

26 Non-metallic 
minerals -4.66 2.3 0.97 0.36 0.61 98 132 

        

Notes: TFP is calculated based on a superlative index. Labour productivity is real value added per worker. 
US R&D stock is calculated using a perpetual inventory method and a 15% rate of obsolescence. 
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