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Abstract

The 3-step approach has been recently advocated over the simultaneous 1-step approach to

model a distal outcome predicted by a latent categorical variable. We generalise the 3-step

approach to situations where the distal outcome is predicted by multiple and possibly

associated latent categorical variables. Although the simultaneous 1-step approach has

been criticised, simulation studies have found that the performance of the two approaches

is similar in most situations (Bakk & Vermunt, 2016). This is consistent with our findings

for a 2-LV extension when all model assumptions are satisfied. Results also indicate that

under various degrees of violation of the normality and conditional independence

assumption for the distal outcome and indicators, both approaches are subject to bias but

the 3-step approach is less sensitive. The differences in estimates using the two approaches

are illustrated in an analysis of the effects of various childhood socioeconomic

circumstances on BMI at age 50.

Keywords: 3-step approach, latent class analysis, robustness, multiple latent variables
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A general 3-step maximum likelihood approach to estimate the effects of multiple latent

categorical variables on a distal outcome

Introduction

In recent years, methodological developments have been proposed to relate a latent

categorical variable to additional variables of interest in regression models where latent

class membership is the outcome variable (e.g. Asparouhov & Muthén, 2014a; Vermunt,

2010) or a predictor of an outcome (e.g. Bakk, Tekle, & Vermunt, 2013; Bakk & Vermunt,

2016). Of these two extensions, the latter is of particular interest in life-course research

where questions of interest include how childhood circumstances influence later life

outcomes such as overall well-being. These latent, and possibly multi-dimensional,

childhood circumstances may be related to a set of observed indicators or items through a

measurement model and treated as predictors of an adult outcome in a regression model.

In this paper we focus on situations where the outcome is temporally distal to the latent

construct(s), in which case the outcome should not influence the measurement of the latent

variable.

Previous research has focused on the case of a single latent variable C, measured by p

observed responses U = (U1, . . . Up), and a distal outcome Z. In general, methods for this

situation can be categorised into two major groups: the 1-step approach and various

step-wise approaches(including the modal class, modified Bolck-Croon-Hagennars (BCH),

Lanza-Tan-Bray (LTB) and 3-step maximum likelihood methods). The 1-step approach

simultaneously estimates the measurement model and the regression model of Z on C,

treating Z as an additional indicator for C. Parameter estimates, including item response

probabilities and regression coefficients, are obtained by jointly maximizing the

log-likelihood of response patterns and the distal outcome. There are three main

advantages of the 1-step approach. First, it is more efficient compared to step-wise

approaches that may introduce additional uncertainty between steps; second it allows for

more flexible model structures, such as models with direct effects of covariates on
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indicators and the distal outcome; and, third, it is straightforward to account for residual

correlation between Z and Us, beyond that captured by class membership (Bakk et al.,

2013). However, the 1-step approach has received criticism over the past ten years

regarding the practicality of the simultaneous estimation and the requirement for

additional distributional assumptions about Z. Vermunt (2010) noted the burden of having

to re-estimate the entire model should one decide to add or delete covariates in the

measurement model. He also pointed out a more serious issue that the inclusion of a distal

outcome into the measurement model creates an unintended circular relationship in that

the latent class C that is supposed to explain Z is also determined partly by Z (also

discussed in Bakk & Vermunt, 2016). If there are multiple distal outcomes, the shift in the

latent class proportions can be severe, especially when the classes outnumber the indicators

or when class separation is poor. Moreover, by treating Z as an indicator for C, the 1-step

approach requires additional assumptions and, for continuous Z, that Z is normally

distributed within classes (Asparouhov & Muthén, 2014a; Bakk et al., 2013; Bakk &

Vermunt, 2016).

When there is more than one latent categorical variable, extensions to standard

step-wise approaches are required. The consideration of such an extension was first

suggested by Bolck et al. (2004). Bakk et al. (2013) also discussed briefly an application of

the 3-step maximum likelihood (ML) approach with two latent categorical variables where

one predicts the other. Our proposed model has a more flexible specification that allows for

an association between the latent variables through a log-linear model. Similar structures

can be found in the structural equation modelling literature. For example, B. Muthén

(2001) discussed a confirmatory latent class analysis of a two-wave panel study, with two

associated latent class variables for antisocial behaviour; and mixture growth modelling

with repeated measures of two related latent variables capturing fundamental individual

differences, where each class has a unique set of growth parameters. In social research, it is

common to have more than one latent predictor and researchers may wish to treat these as



A GENERAL 3-STEP ML APPROACH 5

categorical (e.g. socio-economic situations). In the structural equation modelling

framework, Ploubidis et al. (2015) considered an application with two latent variables, with

a causal relationship, that jointly predict distal outcomes (using the modal class approach).

Bauldry et al. (2016) fitted a model that estimates the effects of two associated continuous

latent summaries of perceptions of physical and personality attractiveness on education

attainment (using the 1-step approach).

This article contributes to the existing literature in several ways. First, we propose

an extended 3-step approach that can relate more than one, possibly associated, latent

categorical variables to a distal outcome. Second, building upon the recent investigations of

Asparouhov and Muthén (2014a) and Bakk and Vermunt (2016), we further examine the

robustness of the general 3-step approach by considering additional forms of non-normality

in the distribution of Z within classes, such as distributions with skewness and excess

kurtosis. In addition, our work fills a gap in current research by comparing the 3-step

approach with the 1-step approach. Although the limitations of the 1-step approach are

now well-established, few studies have evaluated the relative robustness of the 1-step and

3-step approaches (Asparouhov & Muthén, 2014a, 2014b). Third, we assess the impact of

the violation of the common assumption of conditional independence between Z and the

Us for both the 1-step and 3-step ML approaches. In addition, extending the work of

Asparouhov and Muthén (2014a, 2014b) which shows that the 1-step approach leads to a

shift in the latent class proportions when Z follows a bimodal distribution within classes,

we further explore whether the number of classes needed to capture the association among

the Us is altered. This has not been discussed before and is more serious because if the

number of classes changes, the interpretation of the latent variable may no longer hold.

The rest of the paper is organised as follows. We start with a brief review of the

step-wise methods used for situations with a single latent categorical variable and a distal

outcome. Next, we propose a general 3-step ML approach for multiple latent variables and

demonstrate its performance through both simulations and an empirical example. We
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conclude with a further discussion and recommendations for future research.

Review of step-wise methods

Various step-wise approaches have been proposed in recent years in order to preserve

the latent classes from the measurement model for U . The key difference from the 1-step

approach is that in step-wise approaches the measurement model is estimated separately,

with parameters from this step carried forward in later analyses that involve external

variables. Commonly used approaches are the modal class approach, the modified Bolck,

Croon and Hagenaars (BCH) approach (Vermunt, 2010, developed from Bolck et al.,

2004), the 3-step ML approach (with modal or proportional assignments) and the

Lanza-Tan-Bray (LTB) approach (Lanza, Tan, & Bray, 2013). In the following, we

summarise the key concepts and restrictions of each method in situations where the latent

variable predicts the distal outcome. The methods are described for a single latent

variable, as in previous research. We consider the extension to multiple latent variables in

the next section.

The modal class approach

After estimating the latent class model, the modal class assignment (M) is saved for

each individual based on their posterior probability of being in each class, i.e. P (C|U).

The modal class membership is often treated as a known nominal covariate in further

analysis. However, this approach ignores the uncertainty of classification, i.e. the

probability of a class assignment r given the true class k (misclassification error):

P (M = r|C = k) =
∑

u

P (M = r,U = u|C = k)

=
∑

u P (C = k|U = u)P (M = r|U = u)P (U = u)
P (C = k) , (1)

where r, k ∈ {1, . . . , K} index the respective modal and latent classes. P (M |C) is therefore

a result of averaging the misclassification error over all patterns of U . Using M in place of
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C can therefore lead to biased estimates and spurious statistical inferences of class effects

(and of the effects of covariates correlated with the latent variable) on the distal outcome.

A modification of the modal class approach is called the pseudo class approach (Clark &

Muthén, 2009). Instead of assigning individuals to classes with certainty, individuals are

now assigned to classes randomly sampled from the multinomial distribution based on the

posterior probability of being in each class. However, when the class separation is poor, we

can expect a large amount of classification error in both methods that may lead to biased

estimates for coefficients of Z on C.

When it comes to modelling the relationship between Z and M , one needs to take

into account that (Z, M) is different from (Z, C) and therefore a correction is needed.

The modified BCH approach

In this paper we are interested in studying the effects of latent predictors on a distal

outcome, i.e. the conditional distribution of Z given C. To achieve this, one needs to first

establish the relationship between (Z, M) and (Z, C). Translating equation (9) of Bolck et

al. (2004) into our context, we have

P (M = r, Z = z) =
∑

k

P (C = k, Z = z)P (M = r|C = k), (2)

which can be expressed in terms of the conditional relationship of Z given C as

P (M = r, Z = z) =
∑

k

P (Z = z|C = k)P (C = k)P (M = r|C = k), (3)

which is equivalent to a latent class model with two indicators (M , Z). Equations (2) and

(3) also imply that to obtain P (Z = z|C = k), one needs to adjust for the misclassification

probability P (M = r|C = k) given by (1). Also worth noting is that to obtain (2) and (3),

it is implied that M depends only on U (as M is only determined in the measurement

model) and we assume the Us are conditionally independent of Z given C.

The modified BCH approach (Vermunt, 2010) originated from the BCH approach

proposed by Bolck et al. (2004). It was first developed for latent class models with
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covariates before being extended by Bakk et al. (2013) to the situation where Z is a distal

outcome. The weighted pseudo log-likelihood function is:

l =
N∑

i=1

K∑
k=1

wiklogP (Z = zi|C = k)P (C = k), (4)

where i indexes subjects, wik = ∑K
r=1 pirdrk and pir = P (M = r|U = ui) for

k, r ∈ {1, . . . , K}. Note that drk represents an element of the inverted K ×K matrix D of

the misclassification probabilities P (M = r|C = k). A detailed description of this approach

is available in Vermunt (2010) and Bakk et al. (2013).

Using the modified BCH approach, the latent class solution derived from Step 1

remains unchanged. It is also robust to violation of the assumptions that Z is normally

distributed within classes and has constant variance across classes (Asparouhov & Muthén,

2014b; Bakk & Vermunt, 2016). However, estimation problems may arise for categorical

Z when negative cell frequencies are obtained in the weighted cross-classification of

categorical Z and C (Asparouhov & Muthén, 2014b; Bakk et al., 2013). This problem

may be exacerbated when there are multiple distal outcomes. Bakk, Oberski, and Vermunt

(2016) also show that standard errors are underestimated when the sample size is small

and class separation is poor.

The Lanza-Tan-Bray approach

The LTB approach was first proposed by Lanza et al. (2013) as a method that

preserves the latent class solution estimated from the measurement model. To estimate the

class-specific means for outcome Z, they first estimate P (C|Z), treating Z as a predictor of

C. Bayes′ theorem is then applied to obtain P (Z|C) by using the kernel density to

approximate P (Z). In a later modification by Asparouhov and Muthén (2014a), the

sample distribution of Z is used which produces similar results to using the kernel

approximation. However, it suffers from several limitations. First, the measurement model

cannot include covariates as otherwise both the covariates and the outcomes will be

predicted by C after Bayes′ transformation (Asparouhov & Muthén, 2014a). Second, when
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the within-class distribution of Z has outliers, the estimated mean of Z is severely biased

Bakk, Oberski, and Vermunt (2014). They also find that for continuous Z the LTB

approach produces heavy bias when heterogeneity across classes is not accounted for. A

further limitation of the LTB approach is that it cannot be generalised to multiple distal

outcomes, unless they are strictly conditionally independent given C. Further details about

the LTB approach, including standard error estimation can be found in Asparouhov and

Muthén (2014a) and Bakk et al. (2016).

The 3-step ML approach

The 3-step ML approach is based on the idea of the modified BCH approach, which

was first proposed by Vermunt (2010). To illustrate this method, consider a simple model

with one latent categorical variable C measured by observed indicators U = (U1, ..., Up)

and a binary distal outcome Z predicted by both C and an observed covariate X.

Parameter estimation involves the following three steps (also illustrated in Figure 1a).

Note that Step 1 and 2 of the modified BCH and the 3-step ML approaches are essentially

the same; only Step 3 differs. Further details are available in Vermunt (2010), Bakk et al.

(2013) and Asparouhov and Muthén (2014a).

Step 1: Perform a latent class analysis (LCA) without Z or X. Calculate the

posterior probability of being in each class and the modal class M for each individual.

Step 2: Calculate the misclassification probabilities given in (1), which will be

treated as fixed quantities in Step 3.

Step 3: The log-likelihood function is given as:

logL3step =
N∑

i=1
log

K∑
k=1

P (Z = zi|C = k,X)P (C = k)P (M = r|C = k). (5)

The key advantage of the 3-step ML approach is that it preserves the class solution in the

measurement model and that the efficiency of the 3-step ML approach is close to 1-step

approach. Similar to the modified BCH method, the misclassification probabilities

obtained from Step 1 are carried forward in subsequent analyses. One limitation is that
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although Step 1 estimates the measurement model separately from Z, the inclusion of Z in

Step 3 may lead to a change in the latent class proportions when the within-class

distribution of Z is bimodal (Asparouhov & Muthén, 2014a; Bakk & Vermunt, 2016).

The 3-step ML approach also understates the standard errors by treating the

misclassification probabilities in Step 2 as observed, rather than estimated from Step 1. A

standard error correction method was proposed by Bakk et al. (2014) that takes into

account this additional source of variation.

Comparison of methods: Evidence from simulation studies

A number of simulation studies have been conducted to compare the performance of

different methods in a range of situations including varying entropy levels and sample sizes.

Vermunt (2010) considered a latent class model with covariates that predict class

membership. He finds that the modified BCH and 3-step ML approaches result in slightly

downward-biased estimates, while 1-step estimates have a slight upward bias (averaging

across all scenarios with varying entropy levels and sample sizes). It has also been noted

that when the sample size is small and entropy is low (0.36), the 1-step, the modified BCH,

and the 3-step ML approaches all fail, although estimates from the 1-step approach are less

biased than those from the latter two approaches, especially for large samples (N=10,000).

One possible explanation is that at low entropy levels, the differences between classes are

over-stated, which leads to an underestimation of the classification error (Bakk et al.,

2014; Vermunt, 2010). Standard errors are severely underestimated using the modified

BCH approach, although using a sandwich variance estimator provides a slight correction.

Both the 3-step ML and 1-step approaches give average estimated standard errors that are

close to the standard deviation of the parameter estimates across replications; the former

SE is slightly underestimated while the latter is slightly overestimated. The 3-step ML

approach is also shown to be roughly as efficient as the 1-step approach.

From studies that considered latent class models with latent variables as predictors of
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a distal outcome, we can conclude the following. When all necessary model assumptions

hold, the sample size is large and class separation is good (entropy>0.6), all methods

perform well with small bias, correct SEs and good coverage. When the sample size is

small and entropy is low (<0.6), all methods can fail with either large bias or poor coverage

(Asparouhov & Muthén, 2014a, 2014b; Bakk et al., 2013; Lanza et al., 2013), although

the 1-step approach slightly outperforms other methods (Asparouhov & Muthén, 2014a,

2014b).

The robustness of each method to departures from normality has been investigated

for continuous Z. When Z follows a bimodal distribution within classes, the class

proportions may be affected for both the 1-step and 3-step ML approaches, which then

leads to heavily biased estimates of the effects of C on Z (Asparouhov & Muthén, 2014a,

2014b; Bakk & Vermunt, 2016). It has also been noted by Asparouhov and Muthén

(2014a) that when estimates for class proportions from Step 1 are used as starting values in

Step 3 (instead of random sets of starting values), the latent class solution remains

unchanged. However, in a later investigation of the impact of a bimodal Z, the class

proportions from Step 1 and Step 3 differ significantly in almost all replications when

entropy is 0.7 (Asparouhov & Muthén, 2014b). The modified BCH approach provides

unbiased estimates but poor coverage (around 89%) across all entropy levels, particularly

when entropy is low. This is mainly because the weights wik depend on the misclassification

error, which has a higher variability when class separation is unclear (Asparouhov &

Muthén, 2014b). When Z has a medium or low degree of bimodality, the LTB approach

results in larger bias when class separation is low and unbiased estimates coupled with

poorer coverage when class separation is high, compared with the 3-step ML approach that

allows for unequal class-specific residual variances (Asparouhov & Muthén, 2014b; Bakk

& Vermunt, 2016). Bakk and Vermunt (2016) also showed that both the modified BCH

and the 3-step ML approaches are insensitive to unequal class-specific variances because

they explicitly allow for unequal variances, while the LTB approach produces large bias.
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Considering the robustness, efficiency, interpretability and the potential for

generalisation to more complex model structures with possibly mixed types of distal

outcomes, the 3-step ML approach is particularly appealing. Further investigations of this

approach are therefore the focus of this research.

A GENERAL 3-STEP ML APPROACH FOR MULTIPLE LATENT

VARIABLES

We now consider an extension of the 3-step ML method for models with multiple

latent categorical variables. The method is described for two latent categorical variables

but extensions to include multiple categorical variables are straightforward, and a model

with four latent variables is considered in the empirical study. Figure 1b illustrates the

structure of this model, where C1 and C2 denote two latent categorical variables (LV) and

M1 and M2 are the corresponding modal classes derived from separate latent class analyses

of two distinct sets of indicators (not shown in Figure 1b for simplicity). The associated

posterior probabilities of being in each class, as well as the misclassification probabilities,

are calculated in the second step for use in the last step. The curved arrow between the

two latent variables indicates the existence of an association. For a general setting (without

specifying the direction of the association between C1 and C2), a log-linear model can be

specified. As the latent variables are both categorical, we consider the cross-classification of

C1 and C2 assuming two classes for each latent variable. Let k1 and k2 be the class index

for each latent variable (k1, k2 ∈ 1, 2) and µk1k2 the expected frequency in each cell. We

assume cell counts ∼ i.i.d Poisson(µk1k2).

A log-linear model with a two-way interaction between C1 and C2 can be specified as

log(µk1k2) = ω0 + ωC1
k1 + ωC2

k2 + ωC1C2
k1k2 , (6)

where ω0 is the intercept term, ωC1
k1 and ωC2

k2 are the main effects of latent variables C1 and

C2 and ωC1C2
k1k2 is their interaction effect. This is the saturated model for the 2×2 table of

cell frequencies. As the marginal frequencies in the cross-classification are known, we only
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have four free cell frequencies to estimate, but (6) includes nine. Thus for model

identification, the following five constraints are imposed,

ωC1
2 = ωC2

2 = ωC1C2
12 = ωC1C2

21 = ωC1C2
22 = 0, (7)

where category 2 is taken as the reference for each latent variable. The ωs can be

interpreted as log-odds or log-odds ratios:

ωC1
1 = log

(µ12

µ22

)
, ωC2

1 = log
(µ21

µ22

)
, ωC1C2

11 = log
(µ11/µ12

µ21/µ22

)
, (8)

where ωC1C2
11 indicates the association between C1 and C2.

After specifying the association between the latent variables, the last step is to fit a

regression model to estimate the effects of C1, C2 and X on distal outcome Z. For

example, a logit model for binary Z can be written:

logit[P (Z = 1|X,C1 = k1, C2 = k2)] = τ0 + τC1
k1 + τC2

k2 + λX, (9)

where τC1
k1 and τC2

k2 denote the main effects of C1 and C2. For the ease of illustration, we

assume the effect of X, λ, is constant across classes of C1 and C2 and that interaction

effects are not considered, although it is straightforward to extend the model to include

interactions between the latent variables or between a latent variable and X.

Similar to (5), the log-likelihood of the observed data for a random sample of size N

is:

logL2-lv3step =
N∑

i=1
log

∑
C2

∑
C1

P (C1, C2)P (Z = zi|X,C1, C2)P (M1,M2|C1, C2). (10)

Note that in Step 1, the latent class models are estimated separately (to ensure the class

solution of C1 is not determined by indicators for C2) and the association between two

latent variables is only introduced in Step 3. We can therefore simplify the third

component of (10) to

P (M1,M2|C1, C2) = P (M1|C1)P (M2|C2), (11)
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where both terms on the right-hand side are essentially misclassification probabilities given

in (1) and calculated in Step 1. P (C1, C2) in (10) can be derived from the log-linear model

for latent variables using (6), where P (C1 = k1, C2 = k2) = µk1k2/N .

The extension of the 3-step ML approach to include multiple categorical latent

variables allows for a flexible specification of the association between latent variables.

However, we should also note that the above misclassification probabilities are fixed and

treated as known. As they are in fact calculated from the LCA in Step 1, the standard

errors of estimates in the 3-step ML method are expected to be understated. Bakk et al.

(2014) also highlighted potential sources of bias, for instance, if the within-class

distribution of continuous Z is bimodal or the error variance is not constant across classes.

SIMULATION STUDY

As noted above, the few studies that have compared the performance of the 3-step

ML and simultaneous 1-step methods have found that their performance is often similar.

We build upon earlier work by conducting a simulation study to further investigate the

relative performance of the two methods under departures from two key model

assumptions (within-class normality of Z and conditional independence of Us and Z) and

for the extension to two categorical latent variables. For both investigations, we are

concerned with potential bias of coefficients for the latent variables in the model for Z, as

well as a more fundamental problem where the number of classes that are needed to

capture the association among the Us may be altered. Extending the work of Bakk and

Vermunt (2016) that examined the robustness of the 3-step ML approach for bimodal and

heterogeneous class-specific distributions of Z, we consider the performance of the general

3-step ML approach and the 1-step approach under other forms of non-normality, i.e.

skewness and excess kurtosis. These two forms of non-normality are common in practice

and may not be well captured by a finite mixture of normal components. Previous research

has found that non-normality of Z can lead to both biased coefficients and shifted class



A GENERAL 3-STEP ML APPROACH 15

proportions for both methods (Asparouhov & Muthén, 2014a; Bakk & Vermunt, 2016).

We build on the literature by investigating whether non-normality of Z affects the number

of classes needed in the measurement model for the 1-step approach. We anticipate that

additional (spurious) classes may be required to capture the distribution of Z. The second

investigation of the impact of local dependence of Z on both methods has not be

considered in previous research. We anticipate that if such dependence is not accounted

for, both methods can give biased estimates and the 1-step approach may even identify

spurious classes.

Data generation

We generate data from models with a distal outcome Z that is predicted by two

associated latent categorical variables, each measured by five binary items and with two

classes. Both continuous and binary Z are considered. For simplicity, we do not include

covariates but extensions are straightforward. We compare the performance of both

methods in a number of scenarios where all assumptions are met (Study 1), when the

normality assumption about a continuous Z is violated in various ways (Study 2) and when

the conditional independence assumption is violated (Study 3). Note that assumptions

considered in studies 2 and 3 are common to both methods. We generate data from a

measurement model with ten dichotomous indicators, where the first five measure C1 and

the latter five measure C2. Taking the second class as the reference for both latent

variables, class 1 (2) of C1 and C2 gives high (low) response probabilities for all five

indicators. Latent variables are generated from the log-linear model specified in (6).

Similar to previous research (Asparouhov & Muthén, 2014a; Bakk et al., 2014;

Bakk & Vermunt, 2016), varying sample sizes are considered and we manipulate the

entropy levels through class-specific thresholds in the measurement model. Specifically,

entropy values of 0.7 (high) and 0.4 (low) correspond to logit thresholds of 1.25 and 0.75,

respectively.
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The distal outcome Z is generated from the model Z = β0 + β1C1 + β2C2 + ε where

ε ∼ N(0, 1) and from the model logit[P (Z = 1|C1, C2)] = β0 + β1C1 + β2C2 for a binary Z.

Other parameter values for the population model specific to each scenario are provided in

the corresponding section. In the 3-step ML approach, as results from previous studies

show that modal and proportional assignments of individuals to classes lead to similar

parameter estimates in Step 3 (Bakk et al., 2016, 2013; Vermunt, 2010), and that the

proportion of misclassified observations is smaller using the modal assignment, we use

modal assignments in Step 1. In order to mimic empirical studies, in the 1-step approach

we use 100 sets of random starting values and impose parameter constraints (greater or less

than zero) on log-linear parameters for latent class allocations. These constraints are

mainly set to avoid potential label switching in the class allocation of mixture models. We

generate 500 replications in each study. The latent class models for the two sets of binary

items are estimated separately in Mplus 7.31 (L. Muthén & Muthén, 2015); the modal

class assignments and misclassification probabilities are then exported to Latent GOLD 5.0

(Vermunt & Magidson, 2013) for Step 3 of the estimation procedure. The reported

summary statistics are relative bias (%), average standard error across replications (SE),

standard deviation of estimates across replications (SD) and 95% coverage rates. The

codes for selected simulation studies are included in the supplementary material.

Study 1: all model assumptions are satisfied

Simulations are carried out for combinations of low and high entropy levels, sample

sizes of 500, 2000 and 10,000, and for correlated and independent latent variables. Due to

space constraints, only the results for the more common case of correlated C1 and C2 are

presented. As results are fairly similar for all values of N , we present results only for

N=2000. For continuous Z, coefficients are set at β0 = 3, β1 = 2, β2 = −1.5; for binary Z,

β0 = 1.2, β1 = 1, β2 = −1.5. Parameters of the log-linear model for the latent variables are

set at ω1 = 0.7, ω2 = 0.7, ω12 = 0.5, indicating a positive association between C1 and C2.
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Similar to the results obtained for the 3-step ML approach with one latent variable

(Asparouhov & Muthén, 2014a; L. Muthén & Muthén, 2015), Table 1 shows that both

the 3-step ML and 1-step approaches give unbiased estimates and excellent coverage for

almost all parameters when model assumptions hold. The 3-step ML approach gives a

slightly lower coverage for ω2 due to its underestimated SE. In the following studies, we

investigate the relative performance of these two methods in scenarios where the model

assumptions are violated in various ways.

Study 2: violation of the normality assumption about Z

In this study, we are mainly concerned with the situation where the distal outcome Z

is non-normal, but we fit a standard finite mixture model assuming within-class normality.

The normality assumption is common to both the 1-step and 3-step ML approaches. In the

simultaneous 1-step approach, Z is treated as an additional indicator for the latent

variables. We therefore hypothesise that compared to the 3-step ML approach where the

measurement model in Step 1 is estimated separately from Z, the 1-step approach is more

sensitive to non-normal within-class distributions. Through the simulation study, we

evaluate the relative performance of the two methods when the within-class distribution of

a continuous Z exhibits skewness, excess kurtosis, and bimodality, respectively. The results

for bimodality are given in the supplementary material as they are similar to results for the

single latent variable case (Bakk et al., 2014; Bakk & Vermunt, 2016) but with slightly

lower coverage in situations with poor class separation. We also conduct simulations using

the modified BCH approach (detailed results in the supplementary material) as previous

research confirmed its robustness to violations of distributional assumptions (Asparouhov

& Muthén, 2014b; Bakk & Vermunt, 2016).

We simulate non-normality by generating Z from a mixture of non-normal and

normal distributions. We first focus on the impact of these forms of non-normality on the

main coefficients of interest, i.e. β1, β2 (estimates for ωs are shown in the supplementary
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materials). Next we investigate whether the number of classes needed in the mixture model

can be influenced by non-normality. For each form of non-normality, entropy is fixed at the

same value for each latent variable: 0.7 (high) and 0.4 (low). Parameters of the log-linear

model for latent variables are set at ω1 = 0.7, ω2 = 0.7, ω12 = −0.5, leading to the following

proportions for cells in the cross-classification of C1 and C2 (hereafter referred to as class

patterns): 0.33 for [C1=1, C2=1], 0.27 for [1,2] and [2,1] and 0.13 for [2,2]. Across all

sub-studies, we generate sample sizes of N=200 and 2000, where 200 can be regarded as a

(very) small sample.

Study 2a: Excess kurtosis. In this scenario, we generate Z from the model

Z = 3 + 2C1 − 1.5C2 + ε, where ε is drawn from a student-t distribution with 7 degrees of

freedom (excess kurtosis =2) for class patterns [1 2] and [2 1], but from N(0, 1) for the

other two class patterns. Selected results are summarised in Table 2. We find that the

3-step ML approach provides unbiased estimates in all situations apart from small N and

low entropy, where there is an obvious change in the class proportions from Step 1 to Step

3 (see supplementary material Table 2 for estimates of ωs). For both the 3-step ML and

1-step approaches, performance is best for large N and clear class separation. Comparing

the results with the BCH approach in the supplementary material, the performance of the

two approaches is similar across all scenarios investigated.

Study 2b: Skewness. We now consider Z with a skewed distribution for class

pattern [1 2] and [2 1] but a normal distribution for the other class patterns. In the

simulation, we generate residual ε from the log-normal distribution with zero mean. We

generate a right-skewed Z from the model Z = 3 + 2C1− 1.5C2 + ε (skewness=5.0) for class

pattern [1 2] and for class pattern [2 1], we generate a left-skewed Z from the model

Z = 3 + 2C1 − 1.5C2 − ε (skewness=-5.0). For other class patterns, ε ∼ N(0, 1). To capture

the heterogeneity of the data, it is standard practice to fit a finite mixture model assuming

within-class normality. The results are presented in Table 3. In general, the 3-step ML

approach clearly outperforms the 1-step approach when the within-class distribution of Z
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is skewed, although both approaches give biased estimates. When class separation is clear

the general 3-step ML approach produces estimates with a relative bias slightly over 5%,

even when the sample size is small. However, when class separation is poor, class

assignment in Step 1 is shifted in Step 3 (see supplementary material Table 3 for the

heavily biased estimates of the ω parameters), which can partly explain the biased

coefficient estimates. It should also be noted that for the general 3-step ML approach

alone, skewness seems to lead to heavier bias than bimodality and excess kurtosis. Clark

and Muthén (2009) showed that kurtosis can be approximated as a quadratic function of

skewness and hence if the distribution of the data is highly skewed, it also has severe excess

kurtosis, which can exacerbate the bias in parameter estimates. Comparing results with

the BCH approach (see supplementary material Tables 4 to 7), the BCH approach

outperforms the 3-step ML approach in terms of relative bias and coverage of the estimated

coefficients for all combinations of entropy levels and sample sizes tested, with the

exception of the case where the class separation is poor and N=200.

Number of classes. In the above simulations, we observe that in some situations

the 1-step approach produces heavily biased estimates (including those for the ω

parameters shown in the supplementary material). As noted earlier, it is also possible that

for the 1-step approach non-normality of Z may lead to an increase in the number of latent

classes needed to fit the data (Bauer, 2007). This is a major concern in empirical studies

because a change in the number of classes may alter their interpretation and hence bias

their estimated effects on the distal outcome. For the 3-step ML approach, the

measurement model is estimated without Z in Step 1 such that the true number of classes

should be obtained (provided the assumptions in Step 1 are met).

To investigate the impact of non-normality on the number of classes required in the

1-step approach, data are generated from a model with only one latent categorical variable

(1-LV) with four classes. The 2-LV model with two independent classes for each variable

can be viewed as a 1-LV model with four classes. Linking with previous scenarios, the same
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class proportions are generated, corresponding to four class patterns in the 2-LV model but

with no correlation. For data generated from a 4-class model, models with 3-5 classes are

fitted and the sample size adjusted BIC (ssaBIC) and p-values from the bootstrap

likelihood ratio test (BLRT) are obtained for each, following the recommendation of

Nylund, Asparouhov, and Muthén (2007). All parameter values in the population model

for each scenario remain the same as in the 2-LV model.

Table 4 shows the percentage of replications for which each model has the minimum

BIC value and for which each model is rejected or not based on the BLRT. If the number

of classes is unaltered, we expect to obtain ssaBIC close to 100% for the 4-class model and

close to 0% for the 3 and 5-class models. We expect BLRT p-values (averaged across

replications) close to 95% for tests of 3-class vs 2-class and 4-class vs 3-class models and

close to 5% for the test of the 5-class vs 4-class model.

Of the three types of within-class non-normality of Z considered, skewness is

particularly troublesome as the selection rate based on ssaBIC is the lowest (below 80%).

When N=2000, we also observe that ssaBIC identifies more classes than there truly exist

(ssaBIC agrees with BLRT when class separation is poor). When the sample size is small

(N=200), we focus on BLRT as Nylund et al. (2007) show that ssaBIC performs poorly in

such situations. When class separation is poor (low entropy), fewer classes are needed for

all types of non-normality (according to BLRT). However, when the class separation is

good, regardless of the sample size, none of the three types of non-normality of Z influence

the ability of the 1-step approach to correctly identify the number of classes.

Combining the results from investigations of bias in the coefficient estimates and of

the ability to extract the true number of classes when the within-class normality

assumption is violated it is obvious that, although the assumption is common to both the

1-step and the general 3-step ML methods, the 1-step approach is more sensitive than the

3-step ML approach to all forms of non-normality. Both methods perform the worst when

there is within-class skewness in Z, but the 1-step approach is also likely to alter the
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number of classes needed to fit the data (consistent with the findings of Bauer, 2007).

Moreover, both methods perform poorly when sample size is small and the class separation

is poor, as expected.

Study 3: violation of the conditional independence assumption about Z

This study investigates the impact on the number of classes extracted and the

parameter estimates of violation of the assumption that Z and the Us are conditionally

independent given the latent variable C. This has not been studied in previous research but

the conditional independence assumption is common to both the 1-step and 3-step ML

approaches, i.e. P (U,Z|C) = P (U |C)P (Z|C) (see also Bakk et al., 2013). Compared to

the 1-step approach, one obvious advantage of the 3-step ML approach is that it is not

subject to the change in the number of classes when local dependence of Z is present as the

decision of the number of classes to be retained is made in Step 1, without Z. We also

anticipate that if such residual dependence is not accounted for, the 1-step approach will

produce more biased estimates for the relationship between latent categorical variables and

Z than the 3-step ML approach, as a wrong model with insufficient/extra classes will be

estimated. Study 3 investigates the relative performance of both approaches for different

entropy levels and sample sizes.

For ease of illustration, we consider a 1-LV model with four classes and continuous Z.

Data were generated from a model with class proportions of 0.30, 0.25, 0.25, 0.20. We then

generate ten binary indicators conditional on class membership from a logit measurement

model. We consider the same high and low entropy situations by manipulating the

thresholds in the measurement model described earlier, for sample sizes N=500 and 2000.

We increase the small sample size from 200 (used in Study 2) because we have

reformulated the 2-LV model with two classes for each variable as a 1-LV model with four

independent classes. The larger sample size of N=500 helps to avoid boundary solutions

due to small classes. Next, to induce local dependence between item U10 and Z, we
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introduce an additional continuous random variable u ∼ N(0, 4). Note that conditional

independence between all Us is still valid so that the measurement model is correctly

specified. In addition, we set the class-specific variance of ε to be 4, 3, 2, 1 for C=1, 2, 3, 4,

respectively and the corresponding class-specific means are 3.5 (β1), 5 (β2), 1.5 (β3) and 3

(β4). The data are then analysed using both the 1-step and the 3-step ML approaches

using the DU3STEP command in Mplus. Note that we employ a slightly different

parameterisation to that in earlier simulations as we are restricted by the technicalities of

the program. The parameters estimated are means of Z in each latent class rather than

contrasts with a reference category.

We first check if the number of classes needed is altered in this scenario using the

1-step approach Table 6. The results show that when conditional independence holds the

1-step approach tends to identify fewer classes when the class separation is unclear and

especially when sample size is small; these findings are consistent with those of Nylund et

al. (2007). Second, both ssaBIC and BLRT indicate that even when the conditional

independence assumption between Z and items in the measurement model is violated for

only one item, there is a tendency to extract additional (spurious) classes, irrespective of

the level of class separation. When there is local dependence between Z and an indicator,

the percentage of times that ssaBIC favours the (K + 1)-class model over the correct

K-class model increases. For example, in the high entropy case with N=500, ssaBIC

suggests a correct 4-class model in 89% of replications when conditional independence

holds, which decreases to 61% when the assumption breaks down. Similarly, the percentage

of times that ssaBIC suggests the 5-class model increases from 13% when conditional

independence holds, to 39% when the assumption breaks down.

In addition, we observe that when class separation is unclear or sample size is small,

there is greater disagreement between the ssaBIC and BLRT statistics. Our findings are

particularly worrying for empirical studies as the assumption of conditional independence

between the distal outcome and items that measure the latent variable is rather strong. If
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such local dependence is not accounted for in the model, we anticipate that the problem

discussed above will be exacerbated when Z is correlated with more than one item.

We next examine the impact of departures from conditional dependence on the

estimated coefficients when a model with the correct number of classes is fitted using both

the 1-step and 3-step ML approaches. The simulations are performed in Mplus using the

DU3STEP command that allows for unequal class-specific variances. The results are

reported in Table 5. For illustrative purposes, we only present results for parameters β3

and β4 (class-specific means of Z for C = 3 and C = 4) as they are the most biased among

all βs.

Clearly, regardless of the entropy level, the 1-step approach is more sensitive to the

violation of the conditional independence assumption than the 3-step ML approach; the

latter produces around 10% relative bias at most. The 1-step method performs particularly

poorly when entropy is low. This is expected as forcing the 1-step approach to estimate a

4-class model (when the 5-class model is a better fit) leads to changes in the interpretation

of classes, resulting in larger bias in the estimates. The same rationale also applies to the

observation that for the 3-step ML approach, the relative bias does not seem to reduce

when the sample size increases, and regardless of the entropy level. Comparing with the

results from the BCH approach (see supplementary material), we find a similar

performance for 3-step ML and BCH, except for the scenario with poor class separation

and large sample size, where the modified BCH approach produces greater bias.

EMPIRICAL EXAMPLE

We now illustrate the general 3-step ML approach in an analysis of the effects of four

latent categorical variables, capturing different aspects of childhood socio-economic

situations (SES), on body mass index (BMI) at age 50. The data are taken from the 1958

British National Child Development Study (NCDS) (Power & Elliott, 2006), a cohort

study that contains four waves of childhood information (at ages 0, 7, 11 and 16). The
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distal outcome Z is log-transformed to adjust for positive skewness. We consider repeated

measures of four aspects of childhood SES: social class (father or male head’s occupation),

financial difficulty, material hardship and family structure. The choice of the definition of

indicators follows the work of Hobcraft (1998), Schoon, Sacker, and Bartley (2003) and

Chandola, Clarke, Morris, and Blane (2006). In Step 1, we estimate a separate latent class

model for each of the four sets of repeated measures. Based on the Bayesian Information

Criteria (BIC), log-likelihood and bivariate residuals among indicators, we conclude that

3-class, 2-class, 3-class and 2-class models best fit the data for the four dimensions of SES.

Table 8 of the supplementary material summarises the derived modal class membership

from the latent class analyses. Note that the labels of classes are assigned by examining the

pattern of estimated response probabilities conditional on latent class membership over

time. The Latent GOLD code for this empirical study is included in the Appendix.

For ease of illustration the four latent variables and gender are considered as the only

predictors of log(BMI). The reference categories for each of the four measures are: father or

male head in the high social class, family with low financial difficulty, family with low

material hardship and parents in stable union, respectively. Estimated coefficients and

standard errors from the regression model for log(BMI), using the modal class, 1-step and

the 3-step ML approaches are presented in Table 7. It is clear from this analysis that the

modal class and 3-step ML approaches yield similar conclusions about the significance of

the coefficients, although the estimates differ slightly. This is mainly because each of the

four measurement models has a good class separation (entropy> 0.7). However, there are

some substantial differences between the results from the 1-step and 3-step ML approaches.

For the effects of the low level father’s social class and high degree of financial difficulty in

childhood on log(BMI), the 1-step approach produces estimates that are insignificant and

with an opposite sign to those estimated from the 3-step ML approach. This may signal

some violation of either the conditional independence or the within-class normality

assumptions to which the 1-step approach is more sensitive. Similar to the results from the
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simulation study, the estimated standard errors of the 1-step approach are slightly higher

than those of the 3-step ML approach, while the modal class approach gives the smallest

standard errors. This is mainly because latent variables are treated as known in the

regression model in the latter approach, and hence the uncertainty in the parameter

estimates is underestimated. Based on the 3-step ML results we find that, controlling for

gender, children from family backgrounds with fathers in the lower social class and with

higher financial difficulty before age 16 tend to have higher and lower values of BMI at age

50, respectively.

DISCUSSION

This paper generalises the 3-step ML approach to estimate the effects of multiple,

possibly associated, latent categorical variables on a distal outcome by explicitly specifying

a joint distribution of latent variables. The simulation studies show that when all model

assumptions are satisfied, the 1-step and 3-step ML approaches perform equally well.

When model assumptions are violated, the estimates from both methods are subject to

bias, although the 3-step ML approach is less sensitive. The differences in the estimated

coefficients in our empirical example are consistent with our findings from the simulation

studies. Specifically, when there is within-class non-normality for a continuous Z, skewness

of Z is shown to be the worst form of non-normality for both approaches, compared to

bimodality and excess kurtosis. Moreover, the results confirmed a major drawback of the

1-step approach as it not only alters the class proportions (shown in Asparouhov &

Muthén, 2014a; Bakk & Vermunt, 2016), but also changes the number of classes needed

to capture the association among indicators, particularly at low entropy levels. When there

is local dependence between Z and the indicators for the latent variables, the 1-step

approach leads to greater bias than the 3-step ML approach. This is mainly explained by a

tendency to extract too many classes when there is residual correlation between Z and the

Us. It should be noted that the extraction of pseudo classes is not necessarily wrong from a
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theoretical point of view, but one needs to question the validity of such extra classes, which

may not be interpretable.

Comparing results of the 3-step ML approach with the BCH approach, in general, we

do not observe a consistently better performance of the modified BCH approach in

situations where model assumptions are violated, except for the case where the conditional

distribution of Z is skewed. If in applications of 3-step ML, a substantial shift in

classification from Step 1 to Step 3 is observed, the general 3-step ML approach may not

be appropriate and further developments of the BCH approach for more than two latent

variables could be helpful in this situation. However, in addition to the severe

underestimation of standard errors in the BCH approach (see supplementary material),

Bakk and Vermunt (2016) also noted the presence of negative cell frequencies for the BCH

approach in an application with a categorical distal outcome and poor class separation.

Overall, the development of the 3-step approach is more promising as it is more easily

generalised to multilevel models for longitudinal and other forms of clustered data.

Regarding the impact of manipulating design factors (i.e. entropy and sample size)

on the amount of bias of the general 3-step ML approach, we find that in cases where

distributional assumptions are violated, low entropy levels (when sample size is fixed) and

small sample size (when entropy is fixed) lead to poor estimates. In the case where there is

local dependence between the distal outcome Z and an indicator U , the performance of the

3-step ML approach is similar at high and low entropy levels for fixed sample size, although

a larger sample tends to produce greater bias when entropy is fixed. This could be

explained by the fact that class proportions in Step 3 of the 3-step approach are influenced

by the inclusion of Z and such influence is more obvious in larger sample sizes.

There are several issues that have not been addressed or discussed in this paper.

First, in the three simulation studies and our application, we assume a measurement model

where the latent class solution is not influenced by the outcome Z. This is natural when we

are interested in a Z that is temporally distal to the indicators U , as is common in
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longitudinal studies. However, it is possible that Z is an important indicator that helps to

identify the latent classes, for example when Z and the Us are measured

contemporaneously. In this case, the true data-generating model would take the form of

the 1-step model, and we would expect that the 3-step ML approach that excludes Z from

the measurement model would lead to incorrect latent class solutions. Second, although

simulation results suggest that the 1-step approach tends to extract extra classes when

local dependence exists, it should be noted that the approach is also flexible enough to

allow for additional pairwise association between Z and the Us without introducing

additional classes. In contrast, as Z is only introduced in the last step of the 3-step ML

approach, it is less straightforward to adapt this approach to account for local dependence.

Third, as we have shown several limitations of the 3-step ML approach when model

assumptions do not hold, further research is required that modifies the current approach to

improve its robustness. Finally, this paper only considers one distal outcome. Potential

extensions are to situations with more than one and possibly mixed types of distal

outcomes, or more complex models where external variables can include distal outcomes,

mediators, and covariates.

Appendix

Latent GOLD syntax for the empirical example

options

output parameters=effect standarderrors probmeans=posterior profiler

classification ParameterCovariances frequencies bivariateresiduals iterationdetails;

variables

dependent m1 nominal 3, m2 nominal 2, m3 nominal 3, m4 nominal 2, logbmi50 continuous;

independent gender nominal coding=2;

latent l1 nominal 3 coding=3, l2 nominal 2 coding=2,

l3 nominal 3 coding=3, l4 nominal 2 coding=2;

equations

l1<-1;l2<-1;l3<-1;l4<-1;
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m1<- (C~wei) 1| l1; m2<- (D~wei) 1| l2; m3<- (E~wei) 1| l3; m4<- (F~wei) 1| l4;

logbmi50<- 1+l1 + l2 + l3 + l4 + gender;

l1<->l2;l1<->l3;l1<->l4; l2<->l3;l2<->l4; l3<->l4;

C={0.824 0.169 0.007

0.061 0.910 0.028

0.008 0.093 0.899};

D={0.734 0.266 0.032 0.968};

E={0.854 0.097 0.049

0.055 0.943 0.002

0.053 0.003 0.944};

F={0.837 0.163 0.003 0.997};
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Table 1

Study 1: Simulation results when all model assumptions are satisfied (N=2000; 500

replications).

Continuous Z 1-step 3-step

Parameters True Bias (%) SE SD Coverage Bias (%) SE SD Coverage

β1 (C1) 2.00 −0.03 0.07 0.07 0.94 −0.01 0.04 0.04 0.95

β2 (C2) −1.50 0.35 0.07 0.07 0.93 0.02 0.01 0.01 0.93

ω1 0.70 −0.87 0.08 0.06 0.94 0.01 0.07 0.08 0.94

ω2 0.70 −2.26 0.14 0.08 0.94 −1.05 0.08 0.11 0.81

ω12 0.50 2.28 0.11 0.08 0.93 −1.03 0.09 0.09 0.95

Binary Z 1-step 3-step

Parameters True Bias (%) SE SD Coverage Bias (%) SE SD Coverage

β1 (C1) 1.00 0.49 0.20 0.20 0.96 0.05 0.08 0.08 0.97

β2 (C2) −1.50 0.43 0.19 0.20 0.97 0.10 0.14 0.14 0.94

ω1 0.70 −0.11 0.07 0.07 0.97 0.01 0.08 0.09 0.94

ω2 0.70 0.06 0.10 0.11 0.96 0.01 0.09 0.13 0.83

ω12 0.50 0.00 0.08 0.09 0.97 −0.02 0.11 0.11 0.95

Notes: Bias (%)=(Estimate-True)/True × 100%
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Table 2

Study 2a: Simulation results for excess kurtosis (N=200, 2000; 500 replications).

1-step 3-step

N=200, High entropy True Bias (%) SE SD Coverage Bias (%) SE SD Coverage

β1 (C1) 2.00 −4.48 0.30 0.73 0.90 0.60 0.19 0.19 0.94

β2 (C2) −1.50 −7.80 0.30 0.60 0.92 −0.30 0.19 0.19 0.96

N=200, Low entropy

β1 (C1) 2.00 −8.43 0.59 0.77 0.89 −14.38 0.33 0.44 0.84

β2 (C2) −1.50 −11.45 0.59 0.63 0.88 −25.14 0.36 0.79 0.85

N=2000, High entropy

β1 (C1) 2.00 0.03 0.09 0.09 0.95 0.96 0.06 0.06 0.94

β2 (C2) −1.50 −0.09 0.09 0.09 0.97 1.57 0.06 0.06 0.95

N=2000, Low entropy

β1 (C1) 2.00 −52.03 0.14 1.72 0.72 −2.68 0.10 0.10 0.92

β2 (C2) −1.50 55.01 0.15 1.29 0.70 −3.21 0.11 0.11 0.92
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Table 3

Study 2b: Simulation results for skewness (N=200, 2000; 500 replications).

1-step 3-step

N=200, High entropy True Bias (%) SE SD Coverage Bias (%) SE SD Coverage

β1 (C1) 2.00 −65.44 0.38 1.64 0.57 −7.31 0.27 0.23 0.90

β2 (C2) −1.50 66.67 0.45 1.44 0.60 −5.66 0.27 0.24 0.94

N=200, Lowentropy

β1 (C1) 2.00 −71.66 1.32 2.15 0.58 −22.73 0.46 0.49 0.56

β2 (C2) −1.50 −24.77 1.34 2.16 0.72 −41.29 0.46 0.49 0.76

N=2000, Highentropy

β1 (C1) 2.00 −84.37 0.13 1.74 0.47 −7.25 0.09 0.07 0.63

β2 (C2) −1.50 72.31 0.13 1.23 0.54 −6.22 0.09 0.07 0.82

N=2000, Lowentropy

β1 (C1) 2.00 −150.11 0.12 0.68 0.03 −28.89 0.14 0.33 0.20

β2 (C2) −1.50 145.00 0.14 0.38 0.03 −38.09 0.14 0.33 0.25
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Table 5

Study 3: Estimated coefficients for fitting a 4-class model when there is local dependenc

between Z and U10.

1-step 3-step

N=500, High entropy Bias (%) SE SD Coverage Bias (%) SE SD Coverage

β3 −11.35 0.32 0.32 0.92 −6.69 0.27 0.30 0.89

β4 −5.93 0.35 0.35 0.92 −3.54 0.29 0.31 0.93

N=500, Low entropy

β3 −59.52 0.59 0.65 0.52 9.01 0.40 0.76 0.70

β4 −9.70 0.68 0.93 0.66 −6.68 0.44 0.92 0.60

N=2000, High entropy

β3 −11.54 0.15 0.16 0.79 −10.98 0.13 0.14 0.72

β4 −6.04 0.16 0.16 0.82 −6.07 0.14 0.14 0.75

N=2000, Low entropy

β3 −60.00 0.30 0.36 0.14 −10.95 0.21 0.48 0.62

β4 −10.67 0.52 0.70 0.64 −10.64 0.24 0.63 0.50
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Table 7

Empirical study: Results for analysis of log(BMI) at age 50: Comparison of the modal

class, 1-step and 3-step approaches.

Covariate Estimate(SE)

MC 1-step 3-step

Intercept 3.164** 3.163** 3.163**

(0.007) (0.007) (0.007)

Male 0.208** 0.208** 0.208**

(0.006) (0.006) (0.006)

Latent categorical variables

Social class of father or male head (ref.=high)

Low 0.027** -0.057 0.040**

(0.010) (0.046) (0.018)

Medium 0.030** 0.035** 0.030**

(0.007) (0.008) (0.007))

Financial difficulty (ref.=low)

High -0.019** 0.068 -0.037*

(0.010) (0.046) (0.021)

Material hardship (ref.=low)

Medium 0.008 0.004 0.007

(0.007) (0.010) (0.009)

High 0.008 0.006 0.012

(0.008) (0.008) (0.011)

Family structure (ref.=stable)

Unstable 0.012 0.003 0.017

(0.011) (0.013) (0.013)

** p<0.05, * p<0.10
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Figure 1 . The 3-step ML approach for 1-latent-variable and 2-latent-variable cases
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