

Reducing Model Risk With Goodness-of-fit

Victory Idowu London School of Economics

06 June 2017

Agenda

- I. An overview of Copula Theory
- II. Copulas and Model Risk
- III. Goodness-of-fit methods for copulas
- IV. Presentation of the new method

Measuring Dependence

06 June 2017

Copula's Definition

• A Mathematical Approach...

"d-dimensional copula is a multivariate distribution function on $[0,1]^d$ with uniform marginals."

A Conceptual Approach...

"a mixing of distributional functions which allows for flexibility in the dependence structure."

Copulas and Tail Dependence

- Copulas allow for flexibility in their dependence structure; incorporating tail dependence in the model fitting procedure is of upmost importance for risk management professionals
- · Internal models: Gaussian and Student-t Copulas
- Other interesting copulas: Empirical, Vine and Archimedean Copulas.

Copula	Lower Tail Dependence, λ_L	Upper Tail Dependence, λ_U
Gumbel	0	≥ 0
Frank	0	0
Clayton	≥ 0	0
Generalised Clayton	≥ 0	≥ 0

Institute and Faculty of Actuaries

06 June 2017

Copulas Gone Wrong

• Recent failures due to erroneous copula usage:

Photo: AP photo/Richard Drew https://www.wired.com/2009/02/wp-quant/

$$\mathcal{C}(u,v)=\phi_2 \left(\phi^{-1}(u),\phi^{-1}(v),\rho\right)$$
 for $-1\leq\rho\leq 1$

The Model Risk Problem

...model risk ... is the potential for adverse consequences from decisions based on <u>incorrect or misused model outputs and reports</u>."

Federal Reserve (2011)

Sources of Model Risk: Incorrect Model Use \\ Expert Judgements \\ Model Changes

 The Model Risk Problem with Copulas is: Selecting the wrong copula because of using the wrong selection criteria.

06 June 2017

Limitations of Copula

General Limitations		
Data Limitations		
Parameter Fitting		
Computational Cost		
Possibility for Overconfidence		
	Copula Specific Limitations	
	Practicality	
	Use Test	
	Stability	
	Communication	
		Institute and Facult of Actuari

Model Risk ≠ Model Error

06 June 2017

Goodness-of-fit and Model Risk

- Our Objective: to reduce model risk by developing a system that can select a copula and thus reduce uncertainty in the dependency structure between the risks.
- A definition for Goodness-of-fit

"the degree to which observed data matches the values expected by theory"

Hypothesis Test

· The hypothesis test under discussion is

$$H_0: C \in \mathcal{C}_0 \\ H_1: C \notin \mathcal{C}_0$$

where the copula family is represented by $C_0 = \{ C_{\theta} : \theta \in \Theta \}$ and Θ is the parameter space [Berg, 2009].

Institute and Faculty of Actuaries

06 June 2017

Current Goodness-of-fit Approaches

Cramér-von Mises, [Berg, 2009]

- Examines the squared deviances between the suggested copula C(u) and the empirical copula $C^*(u)$.
- Test Statistic (one sample case)

$$\int_{-\infty}^{\infty} (\mathcal{C}^*(\boldsymbol{u}) - \mathcal{C}(\boldsymbol{u}))^2 \, d\mathcal{C}(\boldsymbol{u})$$

Limitations Computational Expense \\ Limitations in the Tail of the Distribution

Current Goodness-of-fit Approaches

Anderson-Darling test, [Berg, 2009]

 An extension of the Cramér–von Mises test, and places more weights on the tails of the distribution:

$$n \int_{-\infty}^{\infty} (\mathcal{C}^*(\boldsymbol{u}) - \mathcal{C}(\boldsymbol{u}))^2 w_{AD} \, d\mathcal{C}(\boldsymbol{u})$$

where $w_{AD} = [C(u) (1 - C(u))]^{-1}$

Limitations Computational Expense \\ Requires knowledge of Critical Values

06 June 2017

Current Goodness-of-fit Approaches

Kolmogorov-Smirnov test, [Berg, 2009]

- Quantifies the distance between the suggested copula C(u) and the empirical copula C*(u)
- Test statistic

$$\sup |\mathcal{C}(\boldsymbol{u}) - \mathcal{C}^*(\boldsymbol{u})|$$

Limitations Computational Expense \\ Requires large dataset \\ Distribution must be fully specified

Institute and Faculty of Actuaries

and Faculty of Actuaries

Current Goodness-of-fit Approaches

Other tests

Overview: New Approach

- The approach discussed in my paper is a complete reformulation of the goodness-of-fit problem
- By finding a suitable approximation (see paper) to a given copula we can determine the relevant the copula family
- In order to achieve this we need some classical results from the field of uncertainty quantification.

06 June 2017

Overview: New Approach

- Convex Relaxation
- A trade-off between data usage and numerical computation, we aim to find a weaker algorithm

Benefits of the New Model

06 June 2017

Ongoing work

- · Great scope for implementation in the financial sector
- · Development of a computational package
- For further details of the corresponding mathematics and implementation of the approach see [Idowu, 2017] Working Paper.

Further Reading

- Victory Idowu is an academic working on Uncertainty Quantification and Model Risk research with an emphasis in Actuarial science
- Other areas of research include:
 - Structured Expert Judgement
 - Model Validation (see The Model Validator's Manifesto).

06 June 2017

Contact Details: V.Idowu@lse.ac.uk

The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation.

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuariat advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of the specific advice to a substitute for specific advice concerning individual situations. On no account may any part of the specific advice to a substitute for specific advice concerning individual situations. On no account may any part of the specific advice to a substitute for specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual situations. On no account may any part of the specific advice concerning individual

References

- Idowu, V., 2017. Goodness-of-fit measure for copulas using convex relaxation – working paper.
- Berg, D., 2009. Copula goodness-of-fit testing: an overview and power comparison. *The European Journal of Finance*, *15*(7-8), pp.675-701.
- McNeil, A.J., Frey, R. and Embrechts, P., 2015. *Quantitative risk management: Concepts, techniques and tools*. Princeton university press.

