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Abstract When sample surveys are clustered and subject to non-response, it is possible to
study cluster-level association between response rates and cluster-level quantities derived
from survey variables. The existence of association may suggest informative nonresponse
with possible biasing effects. In this paper, this problem is studied for the case where the aim
is to fit a cluster-level regression model. Two possible underlying models for nonresponse
with potential biasing effects are considered. Alternative estimators of regression coefficients
under these models are proposed. The properties of these estimators are studied in two
simulation studies and with real data from a survey of employees, where the clusters consist
of workplaces.

Keywords Cluster specific nonignorable nonresponse · Cluster sample ·
Informative nonresponse · Regression model · Selection

1 Introduction

A feature of nonresponse in clustered survey data is that it is possible to study cluster-level
association between response rates and aggregate statistics, such as means or proportions,
for survey variables of interest. Thus, if pi denotes the response rate among elementary
sample units in cluster i and ȳr i denotes the mean of a variable Y among responding units
within cluster i then it is possible to study the association between these two quantities across
clusters, perhaps conditional on some other cluster-level factors. In contrast, no equivalent
association can be observed at the elementary unit level (in unclustered data) since Y is
missing for nonresponding units.
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The occurrence of such cluster-level association between pi and ȳr i may be suggestive
of some kind of informative nonresponse. In this paper, we consider this issue when the
objective is to fit a regression model at the cluster level, as may be of scientific relevance
when the clusters are of analytic interest. As a motivating example in Sect. 3, we consider a
survey of employees, where the clusters consist of workplaces and there is analytic interest in
how the well-being of employees at a workplace depends upon different kinds of innovations
at the workplace. Another example is a survey of hospital patients about the quality of care
received, where there may be interest in analysis at the hospital level but nonresponse may
arise at the individual patient level [9].

We shall be interested in the case where testing for inclusion of pi or some function of it as
a covariate in the model may be used as some kind of diagnostic for informative nonresponse.
We shall introduce twomodels of nonresponsemechanismswhichmight provide explanations
for such association and which lead to bias in the estimation of the regression coefficients if
the nonresponse is ignored by simply running the regression on respondent data. Moreover,
we shall consider possible ways of controlling for this bias by including pi or some function
of it as a covariate in the model.

The basic approach of ordinary least squares (OLS) estimation using respondent data will
not lead to biased estimation of the regression coefficients if nonresponse is conditionally
independent ofY given the explanatory variables included in themodel (and if unequal sample
inclusion probabilities can be ignored). In standard (unclustered) settings, it can be difficult
to detect departures from this conditional independence condition without strong modelling
assumptions [8, sect. 1.3] . In our clustered setting, however, we suggest that the use of pi ,
or some transformation of it, as an auxiliary explanatory variable can provide a relatively
simple way to detect at least some forms of informativeness in the nonresponse. In this paper
we consider two possible models which might underly such an effect and, for which, the
inclusion of the auxiliary variable in the regression offers some control for nonresponse bias
under departures from the conditional independence assumption.

Nonresponse in two-stage surveys can operate at either stage and, in this paper, we focus
on the problem when nonresponse occurs at the second stage and suppose that data from all
sampled clusters are available, even though data for elementary units are missing from many
if not all sampled clusters. For simplicity, we suppose that the explanatory variables in the
regression are defined at the cluster level and are not missing.

We present a simulation study in which we consider the performance of estimators based
on each model under the assumption that the data are generated from either the assumed
model or the alternative model. We also present a real application using data from a survey
of workplace employment relations in Great Britain.

The analytic focus of this paper differs from the main literature on clustered survey non-
response which has considered problems of estimation of finite population parameters, such
as means or totals, and associated weighting and imputation questions. Thus, Yuan and Little
[12,13] proposed model-based inference approaches for both unit and item nonresponse;
Skinner and D’Arrigo [11] and Kim et al. [6] considered weighted estimation; Shao [10],
Haziza and Rao [3] and Lago and Clark [7] considered imputation.

The formal framework for the paper is set out in Sect. 2 and the motivating example is
given in Sect. 3. Possible models which could account for association between ȳr i and pi
are introduced in Sect. 4 and estimators of regression coefficients based on these models are
proposed in Sect. 5. The properties of these estimators are studied in simulation studies in
Sect. 6 andwith real data from themotivating example in Sect. 7. Some concluding comments
are given in Sect. 8.
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2 Basic set-up and regression model of interest

We consider a clustered population, containing N clusters with Mi elements in cluster i =
1, 2, . . . , N . We suppose that two-stage sampling is employed, where n clusters are selected
and mi elements are selected in the i th sampled cluster (i = 1, 2, . . . , N ). Each stage
of sampling may involve simple random sampling, for example, but we discuss the role
of the sampling scheme more generally later in this section. Without loss of generality,
we write the sampled clusters as i = 1, . . . , n and the sampled elements in cluster i as
j = 1, . . . ,mi . We consider regression analysis for an outcome variable Y and a vector of
covariates x = (1, x1, . . . , xk)′. We suppose that Y is defined at the element level with yi j
denoting the value of Y for the j th population element ( j = 1, 2, . . . , Mi ) in the i th cluster
(i = 1, 2, . . . , N ) and Ȳi = M−1

i

∑Mi
j=1 yi j denoting the population mean of Y in the i th

cluster. We suppose that interest focusses on the dependence of Ȳi on a vector of covariates
x, defined at the cluster level with xi denoting the value of x for the i th cluster.

We define the regression model of interest by

Em(Ȳi ) = x′
iβ, (1)

where Em(.) denotes expectation with respect to a model and β is the vector parameter of
interest. The expectation is implicitly taken to be conditional on xi .

We write Ri j = 1 if yi j is observed and Ri j = 0 if yi j is missing as a result of nonresponse
by element j in cluster i for i = 1, . . . , n and j = 1, . . . ,mi . We suppose xi is always
observed for i = 1, . . . , n. We denote the number of respondents in cluster i by ri =∑mi

j=1 Ri j and the associated response rate by pi = ri/mi .
We shall adopt a purely model-based approach to inference about β in this paper. In

particular, as our simplest approach to estimating β, we replace Ȳi by the respondent mean
ȳr i = ∑mi

j=1 Ri j yi j/ri , wherewe assume ri ≥ 1, and estimate themodel in (1) using ordinary
least squares (OLS) to regress ȳr i on xi . We refer to the resulting estimator of β as the OLS
estimator. We shall allow for the clustered structure of the population in variance estimation
by bootstrapping at the cluster level.

There is a large literature on the role of the sampling scheme in inference about regression
models. See e.g.Chambers andSkinner [2]. In this paper,we shall assume that the nature of the
sampling scheme is such that it can be ignored for inference aboutβ (beyond the allowance for
clustering in bootstrap variance estimation and for nonresponse) and, in particular, sampling
weights can be ignored. The implicit assumption here is that the sample inclusion probabilities
are unrelated to yi j given xi . We touch on this point again at the end of the paper. Moreover,
we shall not explore standard weighting or imputation methods which might be used to
handle the problem of nonresponse here. We suppose that nonresponse will be addressed by
appropriate choice of the regression model and associated estimation methods.

3 Example: workplace employment relations survey

To illustrate the set-up, we describe here a regression analysis using data from the 2004
Workplace Employment Relations Survey (WERS) [5], where the elementary units consist
of employees and the clusters consist of workplaces. The broad analytic objective is to
study how the well-being of employees at a workplace is affected by innovations in working
practices at the workplace. Our analysis is based on a much fuller consideration of how
innovation affects worker well-being, presented in Bryson et al. [1].
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A sample of workplaces in Great Britain with at least 5 employees was selected, with face-
to-face interviews conductedwith senior managers with responsibility for employee relations
and personnel matters. These managers then distributed self-completion questionnaires to 25
randomly selected employees at the workplace (or to every employee in workplaces with
5–25 employees). The response rate of employees to this questionnaire was about 60%. We
consider here data on 13,500 employees at 1238 workplaces on a job satisfaction variable yi j ,
derived from responses by employees to questions about satisfaction with various aspects of
their job and an innovations variable x1i , derived from responses by the manager to questions
asking about changes initiated bymanagement at theworkplace. These variables are described
in more detail in Sect. 7. We follow [1] in using only data on private sector workplaces.

Fitting the workplace-level regression model in (1) with ȳr i as dependent variable and
just x1i and an intercept as independent variables using OLS gives an estimated coefficient
of x1i as −0.29 (with standard error 0.06). This negative association between innovation and
job satisfaction was also found by Bryson et al. [1] in their much fuller analyses including
other explanatory variables as well as an analysis using instrumental variables to control for
the possible endogeneity of innovation. If we also include pi as an explanatory variable in
our linear regression model, we find that it has a least squares coefficient 0.71 (standard error
0.35), differing significantly from 0 at a 0.05 level. The positive coefficient indicates that
workplaces with higher response rates to the employee questionnaire tend to have higher
levels of job satisfaction, which may be plausible.

The concern here is that if nonresponse is informative, with the probability of response
increasing as yi j increases, will this bias the estimation of the regression model of interest
and in what way?

4 Models for nonresponse

In this section, we begin by formalising the notion of informative nonresponse in our context
and then consider two models of the nonresponse mechanism which might account for asso-
ciation between ȳr i and pi , conditional on xi , as observed in the application in the previous
section.

We definemodels for nonresponse in terms of the relationship between the random vectors
yi = (yi1, . . . , yimi ) and Ri = (Ri1, . . . , Rimi ) for i = 1, . . . , n. Note that noninformative
sampling is assumed so that the distribution of yi j is the same whether i j is in the sample or
not. Moreover, we assume that the pairs (yi ,Ri ) are independently distributed for different
clusters i = 1, . . . , n.

4.1 Noninformative nonresponse

We say that the nonresponse is noninformative if yi and Ri are conditionally independent
given xi . It follows from (1) that under this condition we have

Em(yi j | Ri ) = Em(ȳr i | Ri ) = x′
iβ, (2)

and that the OLS estimator

β̂OLS =
(

n∑

i=1

xix
′
i

)−1 n∑

i=1

xi ȳr i , (3)

is unbiased for β.
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4.2 Normal selection model

As our first possible source of informative nonresponse, we formulate a two-level selection
model following Heckman [4]. See also Little and Rubin [8, sect. 15.4]. This model is related
to the parametric cluster-specific nonignorable nonresponse model in Yuan and Little [12].
To model the response outcome Ri j , we introduce a variable ui j so that Ri j = 1 if ui j > 0
and Ri j = 0, otherwise. We then specify a model for both yi j and ui j as:

yi j = x′
iβ + εi j , (4)

ui j = z′
iγ + δi j , (5)

where zi = (1, zi1, . . . , zil)
′
is a vector of covariates which are assumed to influence nonre-

sponse and may include covariates in xi . It is assumed that the disturbance terms in (4) and
(5) obey (

εi j
δi j

)

∼ N2

([
0
0

] [
σ 2

ε σεδ

σεδ σ 2
δ

])

, (6)

where the distribution in (6) is taken to be conditional on xi and zi . Nonresponse is noninfor-
mative if yi and Ri are conditionally independent given xi and zi , which arises if σεδ = 0,
using (4), (5) and (6). In this case, and assuming (1) holds, the OLS estimator is unbiased for
β, as in Sect. 4.1. In general, however, this will not be the case. Thus, we may write

E(yi j |Ri j = 1) = x′
iβ + E(εi j |ui j > 0)

= x′
iβ + E(εi j |z′

iγ + δi j > 0)

= x′
iβ + E(εi j |δi j > −z′

iγ ). (7)

From (6) we can write, εi j = σεδσ
−2
δ δi j + ξi j , where ξi j is independent of δi j so that

E(yi j |Ri j = 1) = x′
iβ + E(σεδσ

−2
δ δi j + ξi j |δi j > −z′

iγ ). (8)

Following Heckman [4], we have

E(yi j |Ri j = 1) = x′
iβ + cλ(z′

iψ), (9)

where ψ = σ−1
δ γ , c = σεδσ

−1
δ , λ(z′

iψ) = φ(z′
iψ)/�(z′

iψ) is the inverse Mills ratio, φ(.) is
the probability density function of the standard normal distribution and�(.) is the cumulative
distribution function of this distribution.

We might view the term λ(z′
iψ) in (9) as a missing auxiliary variable which could induce

bias in the OLS estimator β̂OLS and could be ’proxied’ by pi if pi is included as an extra
explanatory variable when fitting model (1) to respondent data. To explore this idea, note
that we might express pi approximately as pi ≈ E(Ri j ) and we have

E(Ri j ) = Pr(ui j > 0) = Pr(δi j > −z′
iγ ) = �(z′

iψ). (10)

Hence, we might approximate the term λ(z′
iψ) in (9) by λ(�−1(pi )), i.e. a transformation

of pi , and this could provide the basis of one explanation for the significance of pi when it
is added into the regression in Sect. 3.

4.3 A simple informative nonresponse model

We next consider a simple informative nonresponse model, which may be considered as a
special case of the previous selection model or as a simple version of a pattern-mixture model
considered in Little and Rubin [8, Example 15.10]. We suppose that
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E(yi j |Ri j = 1) − E(yi j |Ri j = 0) = δ, (11)

for some constant δ, that is that respondents and nonrespondents differ in their expected
value of yi j by a fixed amount, given the values of the covariates. When nonresponse is
noninformative we have δ = 0, but nonresponse is informative in general.

It follows that this is a special case of the selection model by noting that, under this
model, we may show that E(yi j |Ri j = 0) = x′

iβ − cλ(−z′
iψ) and so, from (8), E(yi j |Ri j =

1) − E(yi j |Ri j = 0) = cλ(z′
iψ) − cλ(−z′

iψ), which reduces to a constant if zi is fixed.
To explore the consequences of this model, define the nonrespondent mean of yi j by

ȳnri = ∑mi
j=1(1 − Ri j )yi j/(mi − ri ) and note that we may write the sample mean of yi j as

ȳi = ∑mi
j=1 yi j/mi = pi ȳri + (1 − pi )ȳnri. It follows, using (11), that we may write

E(ȳi | Ri ) = pi E(ȳr i | Ri ) + (1 − pi )E[ȳnri | Ri ]
= E(ȳr i | Ri ) − (1 − pi )δ (12)

and hence, using (1), that
E(ȳr i | Ri ) = x′

iβ + (1 − pi )δ. (13)

Analogous to the way we viewed λ(z′
iψ) in (9), we may view (1− pi ) in (13) as a source

of bias in the estimation of β arising from the simple informative nonresponse model.

5 Estimation of β and testing of informativeness

It follows from the discussion in the previous section that the OLS estimator β̂OLS will,
in general, be biased under either of the two informative nonresponse models considered
there unless σεδ = 0 or δ = 0. We now consider how we might seek to remove this bias by
constructing estimators based upon each of these models. In both cases, our approach is to
include an additional covariate to control for the selection effect.

One approach is to use the simple informative nonresponse model, where it follows from
(13) that we just need to include 1 − pi as an additional covariate and regress ȳr i on xi and
1 − pi . We refer to the resulting estimator of β as the simple informative estimator. This
is similar to a method discussed in Yuan and Little [13] in which an estimated cluster-level
response rate is included as a covariate in a model used to adjust for nonresponse. We next
turn to the normal selection model and define a two-step estimator of β (c.f. Heckman [4])
as follows

Step 1. Noting that Pr(Ri j = 1) = �(z′
iψ) from (10), obtain an estimator ψ̂ of ψ by

probit regression of Ri j on zi .
Step 2. Calculate the estimated inverse Mills ratio,

λ(z′
i ψ̂) = φ(z′

i ψ̂)/�(z′
i ψ̂), (14)

plug this into (9) and regress yi j onxi and this estimated inverseMills ratio to obtain estimators
of β and c.

A simpler version of this estimator, which is not dependent on the choice of zi , is obtained
by using the large mi approximation (based on (10))

pi ≈ E(Ri j ) = �(z′
iψ), (15)

and replacing λ(z′
i ψ̂) by λ(�−1(pi )) in the two-step approach. We refer to this as the pi -

approximate two step estimator.
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An approximate maximum likelihood (ML) estimator is obtained as follows. Under the
working assumption that the observations are independent, the log likelihood for the observed
data and the model in (4)–(6) is

n∑

i=1

mi∑

j=1

(1 − Ri j )log[1 − Pr(ui j > 0)] + Ri j log[Pr(ui j ) > 0] + Ri j log[ f (yi j |ui j > 0)],

where f (. | .) denotes the relevant conditional probability distribution. This log likeli-
hood may be maximised numerically using the facts that f (yi j |ui j > 0) = Pr(ui j >

0|yi j ) f (yi j )/Pr(ui j > 0), yi j ∼ N (x′
iβ, σ 2

ε ) and ui j |yi j ∼ N [z′
iγ + σεδσ

−2
ε (yi j −

x′
iβ), σ 2

δ − σ 2
εδσ

−2
ε ]. Evaluation of the log likelihood requires evaluating Pr(ui j > 0)

for all cases (i, j) and evaluating the probability density function of N (x′
iβ, σ 2

ε ) and
Pr(ui j > 0|yi j ) for all cases with Ri j = 1.

We shall estimate the standard errors of each of the above point estimators of β using
a bootstrap approach with 1000 replicates in which the sampled clusters i = 1, ..., n are
resampled by simple random sampling with replacement.

The above estimation methods imply approaches to testing the informativeness of the
nonresponse.Letting δ̂ denote the estimator of δ in (13) using the simple informative estimator,
the ’t-statistic’ obtained by dividing δ̂ by its bootstrap standard error will have a standard
normal distribution under noninformativeness and may be used to test this assumption. Note
that the validity of this null distribution does not depend on the model assumption in (11)
but only on the general assumption in (2). Similarly, it is possible to construct a test from
the t-statistic formed by dividing the two-step estimator of c in (9) by its bootstrap standard
error. The validity of the null distribution of this test depends not only on the assumption in
(2), but also on the assumption that zi does not feature on the right hand side of (4) (other
than as a component of x′

iβ).

6 Simulation studies

We now present two studies of the properties of the estimators introduced in the previous
section, one in which values are generated from the normal selection model and one with
values generated from the simple informative nonresponse model.

6.1 Study 1 based on normal selection model

Here we vary the correlation ρ = σεδ/(σεσδ), which governs the degree of informative
missingness in the model via (6) and fix the scale parameters at σε = 3 and σδ = 1. We set
N = 1, 000 and take various combinations of the sample sizes n and mi , assuming the latter
are constant with mi = m. We set xi = (1, x1i )′ so that k = 1 and similarly zi = (1, z1i )′.
The following simulation steps are repeated 10,000 times.

Step 1 Generate εi j and δi j from a bivariate normal distribution following (6).
Step 2 Generate x1i and z1i from a bivariate normal distribution with means zero, variances

one and correlation 0.5.
Step 3 Determine yi j from (4) using values of εi j from step 1 and x1i from step 2 and

β0 = 0, β1 = 1.
Step 4 Similarly, determine ui j from (5) and values of δi j from Step 1 and z1i from Step 2

and γ0 = 0, γ1 = 1. These values imply an expected overall response rate of 50 %.
Step 5 Compute values of the alternative estimators defined earlier.
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6.2 Study 2 based on simple informative nonresponse model

We again set N = 1000 and xi = (1, x1i )′ so that k = 1. Now we vary the quantity δ in (11)
which governs the degree of informativeness. We repeat the following steps, again 10,000
times.

Step 1 Generate x1i and z1i as in Study 1, and then set

πi = 4exp(z1i )

1 + 4exp(z1i )
. (16)

Step 2 Generate Ri j from P(Ri j = 1) = πi .
Step 3 Generate yi j from

yi j =
{

(xi ′β + ε1i + ε2i j ) + (1 − pi )δ, if Ri j = 1

(xi ′β + ε1i + ε2i j ) − piδ, if Ri j = 0,
(17)

where ε1i and ε2i are generated from ε1i ∼ N (0, 1) and ε2i j ∼ N (0, 9),β0 = 0, β1 =
1, and δ = 1, 2 or 4.

Step 4 Compute values of the alternative estimators defined earlier.

The model in (17) may be viewed as a pattern mixture model in the sense that it generates
R before generating y|R in order to determine (R, y) and it ensures that (11) holds. We also
undertook a similar study where pi in (17) is replaced by πi and obtained very similar results.

6.3 Results of study 1

Wepresent results for two choices of n andm: n = 20,m = 25 inTable 1 and n = 100,m = 5
in Table 2. It seems important to consider different values of m since the ’information’ in pi
may be expected to decline as m decreases and we would expect this to affect the relative
performances of the estimators. The first choice of m corresponds to the maximum value of
mi in the motivating application. Results for the estimators with least absolute bias, variance
and mean squared error (MSE) are presented in bold. With 10,000 runs, the simulation error
is small. The simulation standard errors for themeans of the estimates of β0 and β1 in Tables 1
and 2 range from 0.002 to 0.004.

In Table 1 we see that the OLS estimators of β0 and β1, as expected, display bias when
ρ �= 0. All the other estimators of these parameters tend to have less bias when ρ �= 0
and for all these other estimators (unlike the OLS estimator) the reduced bias tends to be
dominated by the standard error when considering MSE. The OLS estimator does, however,
have lower variance than the other estimators, at least for smaller values of ρ and it is the
preferred estimator when ρ = 0. The OLS estimator also has MSE comparable to that of the
other estimators when ρ = 0.2. For larger values of ρ, however, the OLS estimator tends to
have a much higher MSE. The other estimators have broadly similar performance across the
range of values of ρ here. Focussing on β1 which is of primary interest, the approximate ML
estimator tends to perform slightly better in terms of MSE when ρ �= 0, followed by the two
step estimator.

Table 2 shows some similarity of results to Table 1 but some differences. When ρ �= 0
the OLS estimator is again biased and all the other estimators reduce this bias. However,
it is no longer the case that the bias is dominated by the variance for the other estimators.
The bias for the simple informative and pi -approximate two step estimators tends to be
worse than that of the two-step and approximate ML estimators and the bias of the former
estimators is particularly pronounced when ρ = 0.5 or 0.8. The poor performance of the
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Table 1 Study 1. Simulation mean, variance and mean square error of estimators of β0 and β1 for n = 20, m
= 25 and alternative values of ρ under normal selection model

Estimator Mean Variance MSE

β0 β1 β0 β1 β0 β1

ρ = 0

1. OLS 0.009 0.973 0.047 0.048 0.047 0.049

2. Simple informative 0.038 0.965 0.173 0.061 0.174 0.062

3. Two-step 0.023 0.968 0.185 0.062 0.186 0.063

4. pi -approximate two step 0.037 0.965 0.163 0.060 0.164 0.061

5. Approximate ML 0.024 0.968 0.180 0.061 0.180 0.062

ρ = 0.2

1. OLS 0.391 0.897 0.050 0.060 0.203 0.071

2. Simple informative 0.001 1.007 0.175 0.071 0.175 0.071

3. Two-step −0.039 1.019 0.189 0.070 0.191 0.071

4. pi -approximate two step 0.006 1.008 0.165 0.070 0.165 0.070

5. Approximate ML −0.032 1.017 0.183 0.069 0.184 0.069

ρ = 0.5

1. OLS 0.982 0.693 0.066 0.069 1.031 0.163

2. Simple informative 0.053 0.963 0.172 0.062 0.175 0.063

3. Two-step −0.065 0.991 0.183 0.058 0.188 0.058

4. pi -approximate two step 0.067 0.965 0.163 0.061 0.167 0.062

5. Approximate ML −0.035 0.985 0.163 0.057 0.164 0.057

ρ = 0.8

1. OLS 1.557 0.582 0.090 0.092 2.515 0.267

2. Simple informative 0.163 0.984 0.150 0.052 0.177 0.052

3. Two-step −0.014 1.019 0.158 0.042 0.158 0.043

4. pi -approximate two step 0.178 0.988 0.138 0.050 0.169 0.050

5. Approximate ML 0.009 1.023 0.100 0.039 0.101 0.040

The true values are β0 = 0, β1 = 1
Figures in bold face identify the estimator with least absolute bias, variance or MSE, depending on the column

simple informative and pi -approximate two step estimators when m is as small as 5 may be
attributed to the dependence of these estimators on pi , which will be very noisy for such a
small value of m. The two-step and approximate ML estimators tend to perform better than
the other estimators for larger values of ρ.

6.4 Results of study 2

We consider here the results only for n = 20,m = 25, as in Table 1. Table 3 shows that, as
in Study 1, the OLS estimators of both β0 and β1 are biased for each non-zero value of δ

considered here, with bias increasing as δ increases.
Using the simple informative estimator removes the bias but with inflated variance. The

pi -approximate two-step estimator behaves similarly to the simple informative approach.
The two-step estimator performs a little worse than these estimators. The approximate ML
estimator has more bias than the other estimators, excluding OLS, but the bias is dominated
by the variance for these sample sizes and, overall, this estimator performs as well as the
simple informative estimator in terms of MSE.
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Table 2 Study 1. Simulation mean, variance and mean square error of estimators for n=100, m = 5 and
alternative values of ρ under normal selection model.

Estimator Mean Variance MSE
β0 β1 β0 β1 β0 β1

ρ = 0

OLS −0.063 0.981 0.035 0.032 0.039 0.032

Simple informative −0.123 0.998 0.097 0.037 0.112 0.037

Two-step −0.108 0.993 0.166 0.040 0.178 0.040

pi -approximate two step −0.118 0.997 0.095 0.037 0.109 0.037

Approximate ML −0.111 0.994 0.188 0.042 0.200 0.042

ρ = 0.2

OLS 0.544 0.883 0.035 0.175 0.331 0.049

Simple informative 0.330 0.943 0.095 0.039 0.204 0.042

Two-step 0.144 0.987 0.171 0.044 0.191 0.044

pi -approximate two step 0.332 0.943 0.094 0.039 0.205 0.042

Approximate ML 0.143 0.987 0.171 0.044 0.191 0.044

ρ = 0.5

OLS 1.058 0.486 0.034 0.032 1.153 0.296

Simple informative 0.395 0.685 0.084 0.033 0.240 0.133

Two-step −0.155 0.809 0.143 0.035 0.167 0.071

pi -approximate two step 0.390 0.689 0.083 0.033 0.236 0.130

Approximate ML −0.170 0.818 0.117 0.034 0.146 0.067

ρ = 0.8

OLS 1.706 0.442 0.035 0.034 2.947 0.345

Simple informative 0.759 0.711 0.077 0.033 0.653 0.117

Two-step −0.243 0.969 0.141 0.032 0.201 0.033

pi -approximate two step 0.751 0.715 0.077 0.033 0.640 0.114

Approximate ML 0.050 0.903 0.066 0.027 0.068 0.037

The true values are β0 = 0, β1 = 1
Figures in bold face identify the estimator with least absolute bias, variance or MSE, depending on the column

7 Application to workplace employment relations survey

We now apply the new methods devised in Sect. 5 to the analysis using WERS survey data
introduced in Sect. 3.

The outcome variable yi j is a job satisfactionmeasure, based on responses of employees to
the question “How satisfied are youwith the following aspects of your job?” for the following
eight aspects: achievement you get from your work; the scope for using your own initiative;
the amount of influence you have over your job; the training you receive; the amount of
pay you receive; your job security; the work itself; the amount of involvement you have in
decision-making at this workplace. Responses on each of these eight aspects were recorded
on a 5-point Likert scale from very satisfied to very dissatisfied, coded from −2 to 2, and
then summed to give an overall measure varying between −16 and 16.

As our primary independent variable of interest x1i , we considered a number of workplace
innovation variables, following Bryson et al. [1]. We decided to use a labour innovations
variable here, since this was found by Bryson et al. [1] to be most strongly related to job
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Table 3 Study 2. Simulation mean, variance and mean square error of estimators for n = 20, m = 25 and
alternative value of δ under simple NMAR model

Estimator Mean Variance MSE

β0 β1 β0 β1 β0 β1

δ = 1

1. OLS 0.24 0.92 0.08 0.09 0.14 0.10

2. Simple informative 0.00 1.00 0.28 0.11 0.28 0.11

3. Two-step −0.02 1.00 0.43 0.12 0.43 0.12

4. pi approximate two-step −0.01 1.00 0.31 0.11 0.31 0.11

5. Approximate ML 0.03 0.99 0.31 0.11 0.31 0.11

δ = 2

1. OLS 0.48 0.84 0.09 0.10 0.31 0.12

2. Simple informative 0.00 1.00 0.28 0.11 0.28 0.11

3. Two-step −0.05 1.00 0.43 0.12 0.43 0.12

4. pi approximate two-step −0.03 1.00 0.32 0.11 0.32 0.11

5. Approximate ML 0.07 0.97 0.28 0.11 0.28 0.11

δ = 4

1. OLS 0.96 0.69 0.10 0.11 1.02 0.21

2. Simple informative 0.00 1.00 0.28 0.11 0.28 0.11

3. Two-step −0.10 1.00 0.44 0.13 0.45 0.13

4. pi approximate two-step −0.06 1.00 0.32 0.11 0.32 0.11

5. Approximate ML 0.20 0.93 0.20 0.11 0.24 0.11

The true values are β0 = 0, β1 = 1
Figures in bold face identify the estimator with least absolute bias, variance or MSE, depending on the column

satisfaction. This variable is obtained from responses from the manager at each workplace to
the question “Over the past two years has management here introduced any of the changes
listed on this card?”,where the four changes listed are: changes inworking time arrangements;
changes in the organisation of work; changes in work techniques or procedures; introduction
of initiatives to involve employees. The labour innovations variable x1i is then defined as the
number of positive responses to these questions and thus ranges from 0 to 4.

In addition to considering regression models with just x1i and an intercept as covariates,
we also considered models with a much richer vector xi , including also a series of control
variables, following Bryson et al. [1]. These consist of both workplace level variables, such
as industry, union membership, workplace employment and the local unemployment rate,
obtained from themanager or from official statistics, andworkplacemeans of individual level
variables, such as gender, age, academic qualifications, occupation and disability, obtained
from employees.

We considered four of the estimators described in Sect. 5: the OLS estimator β̂OLS and
the simple informative, two-step and pi -approximate two step estimators. In the case of
the two-step estimator, it is necessary to specify the variable zi and for this we used the
(population) number of employees in the workplace, as a variable with the potential to be
related to non-response. We did attempt to use the approximate ML estimator but do not
report on results since it frequently failed to converge. The standard error of each estimator
of β was estimated from a bootstrap approach which resampled the clusters with replacement
1000 times.
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Table 4 Estimates of
coefficients in regression model
for WERS data with job
satisfaction as dependent variable
and labour innovation as
independent variable

Estimator Intercept, β0 Innovation, β1

OLS 4.481 (0.135) −0.286 (0.057)

Simple informative 4.694 (0.185) −0.286 (0.035)

Two-step −0.955 (1.098) −0.234 (0.059)

pi -approximate two-step 4.688 (0.180) −0.286 (0.057)
Standard errors in parentheses

Table 4 presents estimates of the regression model of job satisfaction on the labour inno-
vation variable. As noted in Sect. 3, higher levels of innovation were associated with lower
levels of job satisfaction. The covariate (1 − pi ) was found to be significant (at the 0.05
level) in the simple informative estimator, both when the only covariate consists of labour
innovation and when control variables were included in the covariate vector too. However,
the estimated coefficient of labour innovation is unchanged by the inclusion of the covariate
(1 − pi ) although the standard error is slightly increased, as might be expected.

The coefficient of the estimated inverse mills ratio variable in the two-step estimator was
also significant at 0.05 level, although it was not significant when control variables were also
included in the model. The estimates of β0 and β1 are different for this estimator, especially
the intercept which has a greatly increased standard error. The correlation between pi and
zi here is weak (only −0.05) and the fact that the coefficient of the estimated inverse mills
ratio becomes insignificant once control variables are included suggests that the two-step
methodmay be capturing something other than the effect of nonresponse and hence produces
somewhat different results. The weak correlation between pi and zi may also be a reason
behind the non-convergence of the ML estimator.

The pi—approximate two step estimator makes no use of the variable zi and performs
similarly to the simple informative estimator, although with a larger standard error for β1.
The coefficient of λ(�−1(pi )) differs significantly from zero, whether or not the additional
control variables are included in the model.

8 Conclusion

In this paper we have studied how the inclusion of a cluster-level non-response rate 1 − pi
as a covariate in a cluster-level regression may be used to detect certain kinds of informative
nonresponse. In our application, the coefficient of 1 − pi was found to differ significantly
from zero. Such a finding might arise because 1 − pi is acting as a proxy for some omitted
cluster-level variable, but in our study we found the coefficient still differed significantly
from zero, even after including many control variables which might be expected to influence
the outcome. We also showed by theory and through our simulation study that the inclusion
of 1− pi as a covariate can reduce the bias of the OLS estimator of the coefficients of interest
under certain informative nonresponse models.Whilst it can increase standard errors, we still
showed in the simulation study how the mean squared error can be reduced.

For comparison, we also considered a form of normal selection model, as in Heckman [4].
This was used both as a basis for a simulation study to assess the use of 1− pi as a covariate
and also to construct alternative estimators. Inevitably, it was possible to improve on the use
of 1 − pi as a covariate, if the model was correct and the covariate vector zi used to model
nonresponse in this model is known. However, the gain was modest unless the correlation ρ

is large and this approach is more complex given the requirement to specify the vector zi .
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We also showed how we could approximate the selection model approach and avoid
the need to specify zi by incorporating a non-linear transformation λ(�−1(pi )) of pi as a
covariate. We found this approach performed similarly to including 1 − pi as a covariate,
both in our simulation study and in our application, presumably because the transformation
is fairly linear across the range of values of pi that we used. The simulation study showed a
very slight advantage of the non-linear transformation.

We have not considered the impact of weighting in this paper. The procedures we have
studied should extend naturally to take account of weighting for unequal sample inclusion
probabilities in the definition of pi , but this does not immediately appear to raise new con-
ceptual issues.Weighting for nonresponse is different. Conventionally, such weighting might
be used in surveys when auxiliary variables are available and when a noninformative nonre-
sponse assumption might be plausible when these variables are conditioned upon. However,
when the objective is to fit a regression model, it is natural to seek to control for nonresponse
by including such auxiliary variables as covariates rather than by employing weights and this
is what we have done here. The informative nature of the nonresponse in our application was
not controlled for by using auxiliary variables as additional covariates and we do not antic-
ipate that it would be by the use of weights constructed from the same auxiliary variables,
but this topic might merit further investigation alongside the role of sampling weights.
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