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Abstract We examine whether fundamental measures of volatility are incremental to
market-based measures of volatility in (i) predicting bankruptcies (out of sample), (ii)
explaining cross-sectional variation in credit spreads, and (iii) explaining future credit
excess returns. Our fundamental measures of volatility include (i) historical volatility in
profitability, margins, turnover, operating income growth, and sales growth; (ii) disper-
sion in analyst forecasts of future earnings; and (iii) quantile regression forecasts of the
interquartile range of the distribution of profitability. We find robust evidence that these
fundamental measures of volatility improve out-of-sample forecasts of bankruptcy and
help explain cross-sectional variation in credit spreads. This suggests that an analysis of
credit risk can be enhanced with a detailed analysis of fundamental information. As a
test case of the benefit of volatility forecasting, we document an improved ability to
forecast future credit excess returns, particularly when using fundamental measures of
volatility.
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1 Introduction

Fixed income markets are enormous. As of Dec. 31, 2016 over $45 trillion of
investment grade bonds were included in the Barclays/Bloomberg Global Aggregate
Index (AGG). Out of the AGG, roughly $10 trillion represents bonds issued by
investment grade-rated companies from developed markets. In addition, there is about
$1.5 trillion of corporate bonds outstanding that have been issued by high yield-rated
companies from developed markets. Together, investment-grade and high-yield corpo-
rate credits comprise a very large market, and to date, little research has explored the
role of fundamental analysis in the context of credit markets.

The key risk in credit markets is default. Investors who are long credit claims are
exposed to the risk that the issuer will default before making all of the contractual
payments required by the credit instrument. The workhorse model in understanding how
the risk of default links to security prices in credit markets is the work of Merton (1974).
In this structural model, volatility is arguably the most important primitive variable for
determining default risk. While there are many variants of structural models, a theme is
that a firm will default if its asset value is below a default threshold at some future point.
Thus structural models provide a framework to quantify the probability that a firm will
have an insufficient asset value to satisfy its debt commitments. A firm’s closeness to the
default threshold is a function of both (i) the expected difference between asset values
and debt commitments and (ii) volatility. For a given asset value and capital structure
today, higher expected volatility implies a greater probability that future asset values will
not cover debt commitments (i.e., a greater chance of default).!

Our objective is to conduct a comprehensive empirical analysis of the usefulness of
market-based and fundamental-based measures of volatility from the perspective of a
credit investor. The FASB recognizes the potential usefulness of fundamental informa-
tion contained in general purpose financial reports for both equity and debt investors.
We focus on the latter group. While there is a rich literature examining how accounting
data can be used to help forecast corporate bankruptcy and default (e.g., Beaver 1966;
Altman 1968; Ohlson 1980; Beaver et al. 2005; Bharath and Shumway 2008; Campbell
et al. 2008; Correia et al. 2012), there is scant analysis of how fundamental measures of
risk can be used to improve credit-related investment decisions. Most of these studies
use a mix of fundamental and market-based variables to predict bankruptcy, but a
theme in this research is the central importance of market-based measures of volatility.
A recent notable exception is the work of Konstantinidi and Pope (2016), who
document that quantile-based forecasts of the risks embedded in accounting rates of
return can help explain credit ratings and spreads. Our focus is on whether information
from the accounting system could be additive to market-based measures of volatility in
helping investors in the credit markets quantify default risk and how that risk is priced.
While it is clear that measuring asset volatility is key for credit markets, it is ultimately
an empirical question as to whether and how measures of asset volatility derived from
financial statement data can be additive to market-based measures of asset volatility. At
a minimum, the information contained in historical volatility of fundamentals (e.g.,
accounting rates of return) differs from market-based measures. Financial statements

! Other studies using a structural approach to explain credit spreads include those by Crouhy et al. (2000);
Eom et al. (2004); Arora et al. (2005); Cremers et al. (2008); Zhang et al. (2009); and Correia et al. (2012).
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are prepared under modified historical cost accounting (not full mark to market).
Penman (2016) suggests that the unconditional conservatism built into financial
reporting creates the possibility of risk to be reflected in the outputs of that system. It
is volatility in these outputs that we examine.

We source our market-based measures of asset volatility from traded security prices
in secondary markets. We derive several measures of historical asset volatility, ranging
from a simple deleveraging of historical equity volatility to a complete measure that uses
historical equity and credit return volatilities and historical return correlations (e.g.,
Schaefer and Strebulaev 2008). We also combine forward-looking market information
using the implied volatility from at-the-money put and call options. Our fundamental-
based measures of volatility are obtained from the primary financial statements and are
designed to capture fundamental volatility in unlevered profitability. We use a wide
range of fundamental volatility measures, including (i) historical volatility in profitabil-
ity, margins, turnover, operating income growth, and sales growth; (ii) dispersion in
analyst forecasts of future earnings; and (iii) quantile regression forecasts of the inter-
quartile range of the distribution of profitability (e.g., Konstantinidi and Pope 2016).

Our empirical analysis is comprised of three main sections. First, we examine the
relative importance of market- and fundamental-based measures of asset volatility to
forecast (out-of-sample) bankruptcy and default. For a large sample of U.S. firms from
1989 to 2012 using traditional discrete-hazard modelling and classification and regres-
sion trees (CART) methodology, which allows for nonlinear and interactive associa-
tions between probability of default and different explanatory variables, we find that
combining information about volatility from market and fundamental sources improves
forecasts of corporate bankruptcy. Our bankruptcy prediction models are superior to the
standard models in at least two respects. First, we demonstrate improvement in out-of-
sample classification accuracy, which is typically not reported (e.g., Altman 1968;
Ohlson 1980; Bharath and Shumway 2008; Campbell et al. 2008). Second, we show
that combining multiple measures of volatility generates superior forecasts, relative to
prevailing bankruptcy forecasting models (e.g., Campbell et al. 2008).

Second, we assess the relative importance of market- and fundamental-based measures
of asset volatility to explain cross-sectional variation in credit spreads. Assuming markets
are reasonably efficient with respect to the usefulness of market- and fundamental-based
measures of volatility in forecasting (out-of-sample) bankruptcies, these measures should
also help explain variation in credit spreads. Using traditional unconstrained linear
regression analysis and CART, which allows for various nonlinear and interactive effects,
we find that combining market- and fundamental-based volatility estimates improves
explanatory power of cross-sectional credit spreads, although the market-based measures
appear to dominate fundamental measures. This analysis is robust to a broad cross-section
of corporate bond spreads from 1992 to 2012 as well as CDS spreads from 2004 to 2012.
We extend this analysis by using market- and fundamental-based measures of asset
volatility within the structural model of Merton (1974). This constrained use of asset
volatility significantly improves our ability to explain cross-sectional variation in credit
spreads. This is because the relation between leverage and asset volatility and default risk
and hence credit spreads is inherently nonlinear. For the constrained analysis, we continue
to find robust evidence that combining market- and fundamental-based volatility estimates
improves explanatory power of cross-sectional credit spreads, but again the market-based
measures appear to dominate.
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Third, we explore the relative importance of market- and fundamental-based mea-
sures of asset volatility to forecast future credit excess returns. We undertake this
analysis given the somewhat surprising result from our first two sets of analyses. In
the first set of empirical tests, we find that both market- and fundamental-based
measures of asset volatility are important to forecast bankruptcy, but in our second
set of analyses, market-based measures tend to dominate. This raises the possibility that
credit markets are not paying enough attention to fundamental-based measures. Using
the regression framework from Correia et al. (2012), we assess whether measures of
credit risk mispricing (the difference between observed credit spreads and modelled
credit spreads using either market- or fundamental-based measures of asset volatility)
help predict credit excess returns. If the market is not paying enough attention to
fundamental measures of asset volatility, we would expect to see measures of credit risk
mispricing based on fundamental asset volatility better predict credit excess returns.
Using a large sample of corporate bonds from 1996 to 2012, we find results consistent
with this hypothesis.

Overall, our paper fits into the broad default forecasting literature and the more recent
literature linking fundamental analysis to asset pricing attributes from the credit market
(both spreads and returns). The paper also relates, more broadly to the risk ratings (e.g.,
Liuetal. 2007) and to the credit ratings literatures (e.g., Kraft 2014). Our results speak to
the relevance of fundamental analysis from the perspective of a credit investor. While
our focus is on measuring asset volatility using fundamental information, there are
additional aspects of financial statement information that also matter from the perspec-
tive of a credit investor, including measuring different aspects of leverage: on and off
balance sheet financial leverage as well as operating leverage. Given the growing size
and importance of credit markets globally, we hope that future research can continue to
explore the relevance of financial statement information for credit valuation.

The rest of the paper is structured as follows. Section 2 describes our sample
selection and research design. Section 3 presents our empirical analysis and robustness
tests, and section 4 concludes.

2 Sample and research design
2.1 Secondary credit market data

Our analysis is based on a comprehensive panel of U.S. corporate bond data, which
includes all the constituents of (i) Barclays U.S. Corporate Investment Grade Index and
(ii) Barclays U.S. High Yield Index. The data includes monthly returns and bond
characteristics from September 1988 to February 2013. We exclude financial firms
with SIC codes between 6000 and 6999.

2.2 Representative bond

Given that corporate issuers often issue multiple bonds and that our analysis is directed
at measuring asset volatility of the issuer, we need to select a representative bond for
each issuer. To do this, we follow the criteria of Haesen et al. (2013). We repeat this

exercise every month for our sample period. The criteria used for identifying the
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representative bond are selected so as to create a sample of liquid and cross-sectionally
comparable bonds. Specifically, we select representative bonds on the basis of (i)
seniority, (i) maturity, (iii) age, and (iv) size.

First, we filter bonds by seniority. Because most companies issue the majority of
their bonds as senior debt, we select only bonds corresponding to the largest rating of
the issuer. To do this, we first compute the amount of bonds outstanding for each rating
category for a given issuer. We then keep only those bonds that belong to the rating
category that contains the largest fraction of debt outstanding. These bond tends to have
the same rating as the issuer. Second, we then filter based on maturity. If the issuer has
bonds with time to maturity between 5 and 15 years, we remove all other bonds for that
issuer from the sample. If not, we keep all bonds in the sample. Third, we then filter
based on time since issuance. If the issuer has any bonds that are at most two years old,
we remove all other bonds for that issuer. If not, we keep all bonds from that issuer in
the sample. Finally, we filter based on size. Of the remaining bonds, we pick the one
with the largest amount outstanding.

Our resulting sample includes 121,300 unique bond-month observations, corre-
sponding to 5362 bonds issued by 1504 unique firms. Table 1 Panel A shows the
industry composition of the sample, using Barclays Capital’s industry definitions.
Approximately 35% of the sample firms are consumer products firms. Capital goods
firms and basic industry make up another 20% of the sample. Sample bonds have an
average option-adjusted spread (OAS) of 3.31% over the sample period and an average
option adjusted duration of 5.16 years (Table 1, Panel B). Appendix I defines these
variables as well as other variables used in the paper in more detail.

2.3 Measures of asset volatility
2.3.1 Historical market data
We calculate historical equity volatility using the annualized standard deviation of

CRSP realized daily stock returns over the past 252 days, og. We combine historical
credit and equity market data to obtain our first measure of asset volatility, oy

a'X = \/wzo'i- + (1_(4.))20'2D + 2W(l_w)pD7EUE0'Da (1)

where w is the ratio of the market value of the firm’s equity to the total firm value,
op is the annualized standard deviation of total monthly bond returns, and pp g is

2 For example, Basic Energy Services, Inc. has two bonds in the Barclays Capital bond sample with return
information for October 2009, one with rating BA3 and another with rating CAA1. We first compute the
fraction of debt outstanding for each rating. In this case, half of the debt is rated BA3, and the other half
CAAL, as the bonds have the same amount outstanding of $225,000. Therefore both bonds are kept in the
sample after the first step. The second selection step is based on years to maturity. The first bond has 4.75 years
to maturity, and the second bond 6.46. We drop the first bond as time to maturity is lower than five, and
therefore the second bond is selected as the representative bond. Viacom Inc. has five bonds in the sample in
December 2012, all with the same rating of BAAI. Two of these bonds have time to maturity between 5 and
15 years. Therefore we remove the remaining three bonds from the sample. Both bonds were issued at the
same time. They are both 1.36 years old. Therefore we select the representative bond based on amount
outstanding. Similar bond selection criteria are used by Correia et al. (2012) and Cascino (2017).
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an estimate of the historical correlation between equity and bond returns. Note that,
while our selection of a representative bond can change each month for a given
issuer, our correlation and volatility measures hold a given bond fixed when looking
back in time.

Table 1 Panel B presents descriptive statistics for the variables used to compute
asset volatility. Sample firms have an average market leverage of approximately
36% (1-0.6348) and exhibit an average correlation between equity and debt
returns pp, g of 0.2194.

2.3.2 Forward-looking market data

We obtain Black-Scholes implied volatility estimates for at-the-money 91-day
options from the OptionMetrics Ivy DB standardized database.® We average the
implied volatility for a 91-day put and call option. Based on this implied equity
volatility, o;, we compute o}, using the approach in (1). Option implied volatility
has been shown to have incremental power with respect to historical volatility in
explaining time-series and cross-sectional variation in credit spreads (Cremers
et al. 2008b; Cao et al. 2010).

2.3.3 Fundamental data

Following Penman (2014), we use return on net operating assets (RNOA) as the
measure of unlevered (or enterprise) profitability. For each quarter, we compute RNOA
as operating income (OIADPQ) to average net operating assets (NOA) during the
quarter.

We construct a simple fundamental volatility measure, of, based on the historical
volatility of quarterly RNOA, which we then average across fiscal quarters to remove
the effects of seasonality. Specifically, we compute o as:

4 Std(RNOA
o = 3 SUENOA), @)
k=1

where Stdi(RNOA,;) is the standard deviation of RNOA for quarter k calculated over
the previous 20 quarters, requiring a minimum of 10 quarters of data. We annualize oz
by multiplying the average standard deviation by /4.

Our second fundamental volatility measure, ojor, is based on an estimate of the
interquartile range of the distribution of profitability, which is obtained using a quantile
regression approach (Konstantinidi and Pope 2016). This approach, which is described
in detail in Appendix III, has the advantage of not requiring time series data for
computation as it relies only on cross-sectional fundamental characteristics.

Our third fundamental volatility measure is based on the dispersion of analysts’
earnings forecasts. The dispersion of analysts’ earnings forecasts may be regarded
as a proxy for future earnings (fundamental) uncertainty. We obtain the standard
deviations of analyst EPS forecasts for the following two fiscal years (Orgps,,

® The standardized implied volatilities are calculated by OptionMetrics using linear interpolation from their
Volatility Surface file.
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orgps,) from the IBES Summary database and compute a weighted average
standard deviation as follows:

oreps = orEps, + (1—a)orgps,, (3)

where o is the number of months to the end of the current fiscal year divided by
12.

Based on the Dupont decomposition of profitability into profit margin and asset
turnover, we further compute the volatility of operating margins (the ratio of operating
income to sales) and asset turnover (the ratio of sales to total assets). Similarly to o,
these volatilities, omargin and OrurNOVER, represent an average of quarter-specific
volatilities. We calculate two additional fundamental volatility measures, the volatility
of operating income growth (0or growtn) and the volatility of sales growth (0sargs
GrowTh)- Operating income (sales) growth is defined as the percentage change in
operating income (sales), relative to the same quarter of the previous year.

2.3.4 Correlations across volatility measures

Table 1 Panel C reports descriptive statistics for the different volatility measures. We
winsorize all volatility measures at the 1st and 99th percentile values of their respective
distributions. These measures exhibit differences in scale. We discuss how we deal with
differences in scale when using different measures of asset volatility to derive implied
credit spreads in section 3.2.2.

Panel D of Table 1 reports the average monthly pairwise correlations across vola-
tility measures. Historical equity volatility, og, is highly correlated with implied
volatility, oy, (0.8814 (0.9005) Pearson (Spearman) correlation). The Pearson
(Spearman) correlation between these equity volatility measures and debt volatility,
op, ranges between 0.4329 and 0.4878 (0.3064 and 0.3377), respectively. As a result,
the correlations between weighted asset volatilities and the corresponding equity
volatility measures are, on average, lower than 0.75. The Pearson (Spearman) correla-
tions among the different fundamental volatility measures range from —0.0670 to
0.6717 (—0.2007 to 0.6161) and average 0.2152 (0.2237). Pairwise Pearson
(Spearman) correlations between fundamental- and market-based asset volatility mea-
sures (0%, 0%y} ) average 0.2042 (0.2317).

2.4 Bankruptcy data and distance to default

We estimate the probability of bankruptcy based on a large sample of Chapter 7 and
Chapter 11 bankruptcies filed between 1980 and the end of 2012. We combine
bankruptcy data from four main sources: Beaver et al. (2012)*; the New Generation
Research bankruptcy database (bankruptcydata.com); Mergent FISD; and the UCLA-
Lo Pucki bankruptcy database.

4 Beaver et al. (2012) combine the bankruptcy database from Beaver et al. (2005), which was derived from
multiple sources including CRSP, Compustat, Bankruptcy.com, Capital Changes Reporter, and a list provided
by Shumway with a list of bankruptcy firms provided by Chava and Jarrow and used by Chava and Jarrow
(2004).
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Asset volatility

We use a discrete time-hazard model and include three types of observations in
the estimation: nonbankrupt firms, years before bankruptcy for bankrupt firms,
and bankruptcy years (Shumway 2001). Our dependent variable equals 1 if a firm
files for bankruptcy within one year of the end of the month and zero otherwise.
We keep the first bankruptcy filing and remove from the sample all months after
this filing.

Following Correia et al. (2012), we use quarterly financial data to compute the
default barrier and update market data on a monthly basis to obtain monthly
estimates of the probabilities of bankruptcy. Market variables are measured at
the end of each month, and accounting variables are based on the most recent
quarterly information reported before the end of the month. We winsorize all
independent variables at 1% and 99%. We ensure that all independent variables
are observable before the declaration of bankruptcy. Furthermore, to ensure that
prediction is made out of sample and to avoid a potential bias of ex post over-
fitting the data, we estimate coefficients using an expanding window approach.
We convert the different scores into probabilities as follows: Prob =e**°*/1 +
e*°®. All of the models are nonlinear transformations of various fundamental
and market data.

The primary regression model for estimating bankruptcy over the next 12 months is
as follows:

Vi
PriYyp1=1)= f{ln (X_t) , Exrety, In(Ey), Ps i, Skewy, Kurty, oy iz | - 4)

it

In ()‘;—j) is a measure of dollar distance to default barrier (akin to an inverse measure of

leverage). We compute V;; as the sum of the market value of the firm’s equity and the
book value of debt. We compute our default barrier, X, as the sum of short-term debt
(DLCQ) and half of long-term debt (DLTTQ) as reported at the most recent fiscal
quarter (e.g., Bharath and Shumway 2008). Exret;, is the excess equity return over the
value-weighted market return over the previous 12 months. In(E;,) is the logarithm of
the market value of equity measured at the start of the forecasting month. Ps_;, is an
estimate of the 5th percentile of the distribution of RNOA. It is calculated as described
in Appendix III, using the quantile regressions employed by Konstantinidi and Pope
(2016). Ps_;, is a measure of left-tail risk in profitability. Skew;, is an estimate of the
skewness of the distribution of RNOA. Following Konstantinidi and Pope (2016), we

(P75—Ps0)—(Pso—Pas)
10R

Accordingly, Skew;, ranges between —1 and 1 and is zero when the distribution of
RNOA is symmetric within the interquartile range. Kurt;, is an estimate of the kurtosis
of the distribution of RNOA, estimated following Konstantinidi and Pope (2016) as
<P87.5_P62.53515P37.5_P12.5)

estimate skewness as , Where /OR is the interquartile range (P75 — P;s).

. 0y 1s the respective measure of asset volatility as defined in

section 2.3. The choice of independent variables is based on the Merton model of credit
spreads to which we add a measure of left-tail risk. We estimate equation (4) using
various combinations of our measures of asset volatility over different samples to assess
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the relative importance of market-based and fundamental-based measures of asset
volatility in the context of forecasting bankruptcy.

Our priors for equation (4) are as follows. (i) In (X—;) is expected to be negatively

associated with bankruptcy likelihood (the further the market value of assets is from
the default barrier the lower the likelihood of hitting that barrier in the next
12 months). (ii) Exret;; is expected to be negatively associated with bankruptcy
likelihood (assuming there is information content in security prices, decreases in
security prices should be associated with increased bankruptcy likelihood). (iii)
In(E;,) is expected to be negatively associated with bankruptcy likelihood (large
firms offer better diversification and better realizations of asset values in the event
of default). (iv) Ps, ; is expected to be negatively associated with bankruptcy
likelihood (the higher the 5th percentile of the RNOA distribution, the lower the
probability that asset value will fall below the book value of debt). (v) Skew;, is
expected to be negatively associated with bankruptcy likelihood (the more nega-
tively skewed the distribution of earnings, the higher the likelihood the asset value
will fall below the book value of debt). (vi) Kurt; is expected to be positively
associated with bankruptcy likelihood (higher kurtosis indicates that the density of
the tails of the distribution is higher than what would be expected under a normal
distribution). (vii) oy j is expected to be positively associated with bankruptcy
likelihood (the greater the volatility of the asset value the greater the chance of
passing through the default barrier).

In an alternative specification, we also control for the level of option-adjusted
spreads (OAS;,) as a market based measure of credit risk. To the extent that credit
market participants incorporate fundamental volatility in assessing credit risk,
OAS;; could subsume the fundamental volatility measures.

2.5 Credit spreads

Given that a measure of asset volatility is useful in forecasting bankruptcy and
under the assumption that security prices in the secondary credit market are
reasonably efficient, we also test how different combinations of measures of asset
volatility can explain cross-sectional variation in credit spreads. We view the
analysis of credit spreads as supporting evidence for assessing the information
content of fundamental- and market-based measures of asset volatility.

We do this via two approaches. First, we estimate an unconstrained cross-
sectional regression where we include multiple measures of determinants of credit
spreads in a linear model. Second, we estimate a constrained cross-sectional
regression where we combine our various measures of asset volatility into mea-
sures of distance to default, which are in turn mapped to an implied credit spread
following the approach of Crouhy et al. (2000); Kealhofer (2003); and Arora et al.
(2005). A Dbenefit of the constrained approach is that it combines the dollar

distance to default, ln(X—?:), with measures of asset volatility, oy j, to better

identify closeness to the default threshold. An unconstrained regression cannot
capture the inherent nonlinear relations between leverage, asset volatility, defaults
(bankruptcy), and credit spreads.
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For the unconstrained approach, we estimate the following regression model.

Vi
OAS; = ajln (A%) + agExrety + asln(Ey) + ouPs i + asSkewy + asKurty

it

K
+ Y w60k + I'Controly + €. (5)
k=1

OAS;; is the option-adjusted spread for the respective bond as reported in the
Barclays Index. An intercept is not reported as we include time fixed effects. In addition

to the determinants of bankruptcy, i.e., In (X—:) , Exrety, In(E;y), Ps_ i, Skew;, Kurt;, and

0Oy i Which are all issuer-level determinants of credit risk, we also include issue-
specific determinants of credit risk and liquidity that will influence the level of credit
spreads. Specifically, our additional controls include (i) Rating;, the issue-specific
rating (higher rated issues are expected to have higher credit spreads, given that we
code ratings to be increasing in risk), (i) Age;, the time since issuance in years
(liquidity is decreasing for progressively off-the-run securities, so we expect credit
spreads to be increasing in time since issuance), and (iii) Duration;,, the option-adjusted
duration of the issue (for the vast majority of corporate issuers the credit term structure
is upward sloping so we expect credit spreads to increase with duration; see Helwege
and Turner 1999).
For the constrained approach, we then estimate the following regression model.

K
OAS = ayExretyy + anIn(Ey) + a3Ps iy + cuSkewy + asKurty + Y, oy sCS,, ,
k=1

+ I'Controli; + €. (6)

CS,, , is the theoretical credit spread for the k™ measure of asset volatility. The
estimation of theoretical credit spreads entails six main steps (which are described in
detail in Appendix II). (1) We standardize each asset volatility measure and match its
moments to the moments of weighted historical asset volatility, o%. (2) We construct
estimates of distance to default, based on each asset volatility measure. (3) We
empirically map each distance-to-default measure to our bankruptcy data, using a
discrete time hazard model to generate a forecast of physical bankruptcy probability
(see equation (A.1) of Appendix IT).” (4) We compute a cumulative physical bankruptcy
probability by cumulating default probabilities over the duration of the bond. (5) We
convert each cumulative physical probability measure into a risk-neutral measure, by
adding a risk-premium (see equation (A.2) of Appendix II). (6) Based on this risk-
neutral measure and the expected recovery rate (which is assumed to be constant), we
calculate theoretical credit spread as in equation (A.3).

We obtain a different theoretical credit spread for each asset volatility measure. We
estimate two additional credit spreads, CSg,,, and CSpros,,.. based on the combina-
tion of our seven fundamental volatility measures (i.e., Ok OiQr, OFEPS; OMARGINS

> We estimate this model using expanding windows to ensure that all observation used in the estimation is
available at time 7.
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OTURNOVER> 001 GROWTH> OSALES GROWTH)- CSg,yq and CSprop,, differ in the way in
which the different volatilities are combined. To obtain CSg,,,, we take the average of the
seven fundamental volatility measures after step (1) above (i.e., after matching their
respective moments to o' ). We then follow steps (2) to (6), using this average as a measure
of fundamental volatility. In contrast, to calculate CSprog,,;, We first follow steps (1) to (3)
to obtain estimates of the physical default probabilities corresponding to each of the seven
fundamental volatility measures. We then take the average of these physical default
probabilities and follow steps (4) to (6) based on this average. The average monthly
correlation between CSy,,, and CSpgrop,,; 1s above 0.9 (Table 1 Panel E).

CSe,y; and CSprop,,, €xhibit an average Pearson (Spearman) correlation with
market-based credit spreads ( CSoe, CSp¢ ) 0f 0.7740 (0.5938) and an average Pearson
(Spearman) correlation of 0.7172 (0.6165) with observed credit spreads. The high
correlation with OAS suggests that our structured use of leverage and asset volatility
as outlined in Appendix II is an effective way to aggregate market and fundamental
information for credit valuation purposes.

Theoretical spreads based on historical security data or option-implied vola-
tility exhibit a higher correlation with observed spreads than theoretical spreads
based on fundamental accounting data. In particular, OAS exhibits an average
Pearson (Spearman) correlation with market-based spreads (CSgv, CSq) of
0.7664 (0.6946) and an average Pearson (Spearman) correlation with
accounting-based spreads (CSg,... CSpros,) of 0.7172 (0.6165). Also note
that CSq,,, and CSpros,..exhibit stronger correlations with OAS than CSg,.
(The Pearson (Spearman) correlation between CS;, and OAS is 0.6288
(0.5781)). This suggests that there is value to conducting a deeper financial
statement analysis and combining different fundamental volatility measures.

3 Results
3.1 Bankruptcy forecasting

Table 2 reports the estimation results of regression equation (4). The sample size used
for the basis of estimating equation (4) is 81,802 bond-month observations (in speci-
fications with oy the sample is reduced to 61,132 observations, as oy is only available
from 1996 onward). The sample is further reduced in specifications that include oggps
and hence require availability of IBES data.

Across all specifications, we find expected relations for our primary determinants:

bankruptcy likelihood is decreasing in (i) distance to default barrier, In (X—It), (ii) recent

equity returns, Exret;,, and (iii) firm size, In(E;). The coefficients on Ps_;, Skew;, and
Kurt;, are insignificant across most specifications. To assess the relative importance of
our different measures of asset volatility, we first examine each measure individually
after controlling for the same-issuer-level determinants of bankruptcy. Across models
(1) to (6) in Table 2, we find that all of the measures of asset volatility are significantly
positively associated with the probability of bankruptcy.

To provide a sense of the relative economic significance across the different
measures of asset volatility, we report in Panel B of Table 2 the marginal effects for
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Asset volatility

Table 3 Probability of bankruptcy: margin and turnover volatility

1) (#] (©)] @ ® 6)
Intercept ~0.480 ~0.068 -1.370 ~0.882 ~0.555 ~1.760
(-0.18) (-0.02) (-0.47) (-0.33) (-0.19) (-0.61)
In(y) —2.977Hk 2,837 3,048 2,957k ~2.830%#% ~2.997#5%
(-3.18) (-3.13) (-3.32) (-3.20) (-3.15) (-3.34)
Exret ~0.859% ~0.868* ~0.853* ~0.783 ~0.787 ~0.786
(-1.95) (-1.95) (-1.84) (-1.63) (-1.62) (-1.56)
In(E) ~0.333%* ~0.364%%% ~0.247* ~0.272% ~0.296%* ~0.191
(-2.40) (-2.59) -1.72) (-1.89) (-2.03) (-1.30)
Ps 0.857 0.886 1812 1.002 1.077 1.961
(0.54) (0.46) (1.10) (0.62) (0.55) (1.17)
Skew ~0.764 ~0.788 ~0.240 ~0.672 -0.731 ~0.131
(-0.30) (-0.30) (-0.09) (-0.25) (-0.27) (-0.05)
Kurt 0.136 0.033 -0.242 0.179 0.099 -0.190
(0.11) (0.03) (-0.19) (0.15) (0.08) (-0.15)
0AS 5.488% 5.709% 5.246%
(1.80) (1.80) (1.71)
oy 2.060%%5 2,084 202075+ 1.465%% 1.469%* 1.437%%
(3.62) (3.56) (3.52) 2.17) (2.13) (2.10)
op ~0.424 ~0.283 ~0.203 ~1.443 ~1.336 ~1.130
(-0.48) (-0.33) (-0.24) (-1.41) (-1.35) (-1.22)
or 3.163%* 3.058%*
(2.49) (2.36)
OMARGIN 0.031 0.056
(0.17) (0.32)
CTURNOVER 0.039* 0.039%
(1.72) (1.65)
[ p— 0.834%5+ 0818+
(2.97) (2.87)
Nobs 60,468 60,468 60,468 60,426 60,426 60,426
Pseudo-R2 03153 03100 03284 03224 03177 03350

This table reports the coefficients from the estimation of a discrete hazard model, where the dependent variable
is equal to one if the firm files for bankruptcy within the following 12 months and zero otherwise. Variable
definitions are provided in Appendix I. Standard errors are clustered by firm and month

each explanatory variable. Specifically, we hold each explanatory variable at its average
value and report the change in probability of bankruptcy for a one standard deviation
change in the respective explanatory variable, relative to the full sample unconditional
probability of bankruptcy. For example, column (1) in Panel B of Table 2 states that the
marginal effect of og is 0.0110. This means that a one standard deviation change in og
is associated with a 1.1% increase in bankruptcy probability, relative to the full sample
unconditional probability of bankruptcy (0.80%). Comparing marginal effects across
explanatory variables reveals that the distance to default barrier is the most
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M. Correia et al.

economically important explanatory variable. Individually, the most important measure
of asset volatility is o7 (marginal effect of 0.0531 is the largest in the first 6 columns of
Panel B of Table 2).

Models (7) to (14) in Panel A combine different measures of asset volatility. We do
not include og and o7 in the same specification due to multi-collinearity (Panel D of
Table 1 shows that op and oy have a parametric correlation of 0.8814). In model (7),

we start with issuer-level determinants (In GIT':) , Exrety, In(E;), Ps i, Skew,, and Kurt;)

and op. We then add a measure of volatility from the credit markets, op. Combining
market-based measures of asset volatility from the equity and credit markets is superior
to examining equity market information alone. (The pseudo-R? marginally increases
from 39.22% in model (1) to 39.84% in model (7) and from 28.52% in model (2) to
28.53% in model (11).) However, the coefficient on oy, is not statistically significant
when op is combined with o; in model (11). In model (8), when we add our first
measure of fundamental volatility, o, we find that both op and of are significantly
associated with bankruptcy but o is not. When oy is added to o7 and op in model
(12), o7 and of are significant but op is not. Using the interquartile range of the
RNOA distribution and the dispersion of analyst forecasts as measures of fundamental
volatility in models (9) and (13) and in models (10) and (14), respectively, we find
similar results: combining measures of volatility from market and fundamental sources
improves explanatory power of bankruptcy prediction models. While we do not run a
horse-race between the fundamental volatility measures, we believe this could be an
interesting avenue for future research. In an untabulated robustness analysis, we
document further that our fundamental volatility measures also improve upon the
explanatory power of a bankruptcy prediction model that includes Merton-based
volatility and leverage measures (e.g., Bharath and Shumway 2008). This approach
takes equity prices, equity volatility, and current leverage as given and then solves
iteratively for asset value and asset volatility that price equity as a call option on the
asset value of the firm.

In Panel C, we add a control for the spread level, OAS. We find that OAS
subsumes o and op, which both cease to be significant in models (1) and (3).
Fundamental volatility measures remain significant, both when included by themselves
(models (4) to (6)) and when combined with og, o7 and op (models (8) to (10) and
(12) to (14)). Interestingly, the marginal effects reported in panel D of Table 2 reveal
that, after controlling for credit spreads, the difference in the relative importance of
market-based and fundamental-based measures is more muted. For example, in models
(12) to (14) op, ojor and opgps have similar importance to the market-based
measures. The fact that oy oOjor and opgps remain significant, after controlling for
OAS could be consistent with the market not paying enough attention to fundamental
measures of asset volatility.

In Table 3, we start with a model that includes oy, op, and o, in column (1).> We
then replace o by the volatility of operating profit margins, oyparcin, and the volatility
of asset turnover, oryrNOVER, 10 the spirit of the Dupont profitability decomposition.
The Pearson (Spearman) correlation between oymargmy and orurnover Volatility is
0.0087 (—0.1665) (Table 1 Panel C). When we include both opargmn and OrurRNOVER

° We keep the sample constant across columns (1) to (3) and (4) to (6).
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Fig. 1 Variable importance: bankruptcy prediction. Panels A, B, and C of this figure present the
distribution of the variable importance scores of the models reported in Table 4, columns (1), (2), and
(3), respectively. We form 100 bootstrap samples and estimate the minimum cost tree for each of these
samples. We report the minimum, 25th percentile, median, 75th percentile, and maximum of the variable
importance scores for each variable
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in equation (4), we find that oryrnovER 18 marginally significant but oypargy i not
(column (2)). We obtain similar results when we control for OAS in column (5)). The
volatility of operating income growth o1 gGrowTn 18 significant in both specifications
(columns (3) and (6)). In unreported analysis, we find similar results with the volatility
of sales growth, 0sar gs GrowTH, bUt due to its high correlation with 0o; Growrn We
do not report these results separately.

One limitation with the traditional discrete hazard model analysis is that it cannot
capture nonlinearities and interactions that are likely among the independent variables. As
an alternative methodological approach, we analyze our default data using the classifica-
tion and regression trees methodology developed by Breiman et al. (1984).” Frydman et al.
(1985) apply this technique to the prediction of financial distress and document that it
outperforms discriminant analysis in out-of-sample tests. The data is recursively split into
more homogeneous subsets, using the Gini rule to choose the optimal split at each node of
the tree. Based on this approach, we generate a maximal tree and a set of sub-trees. We
then use tenfold cross validation to estimate the area under the receiver operating
characteristic curve (i.e., AUC) for the different sub-trees and retain the minimal cost tree.
The resulting tree structure allows for nonlinear and interactive associations between
probability of default and the different explanatory variables, alleviating the concern that
documented results are simply due to method variance.

To focus on the relative importance of accounting- and market-based measures of asset
volatility, we first apply this technique to a basic set of bankruptcy determinants, i.e.,

In (%—;) , Exrety, In(E;), Ps_;, Skew;;, Kurt;; and a representative market-based measure of

asset volatility that combines information from implied equity option data and debt market
volatility, o%y;. The CART estimation does not pose the same multicollinearity issues as the
discrete hazard model estimation reported in Tables 2 and 3, and therefore we can include
all asset volatility measures simultaneously in the model. We thus augment the set of
bankruptcy predictors with our seven fundamental volatility measures: of, Oigr, OFEps,
OMARGIN> OTURNOVER> OO0 GROWTH> OSALES GROWTH:-

Panel A of Table 4 reports summary statistics for the predictive ability of the resulting
trees. Column (1) serves as the benchmark case where no fundamental-based measures of
asset volatility are included. Comparing columns (1) and (2), it is clear that the test-sample
(out-of-sample) AUC improves with the inclusion of fundamental-based measures of asset
volatility. Note that the test-sample AUC for the augmented model is 0.9337, while the test-
sample AUC for the basic model that only includes market volatility is 0.9215. We use
bootstrap resampling to test the statistical significance of improvement in AUC. In
particular, we construct 100 bootstrap samples and apply CART to each of these samples,
thus building 100 different trees for each set of variables. We then compute the difference
between the AUC of each of the augmented models and the AUC of the basic model.
The 5th percentile of this difference is positive for the augmented model (column (2)),
indicating that the improvement in the AUC achieved by incorporating the fundamental
volatility measures is statistically significant at conventional levels. The relative cost (the
simple sum of type I and type II classification errors) is also reduced by the inclusion of
fundamental asset volatility measures. In the base model the relative cost is 0.1716.

7 We use the Salford Predictive Modeler software suit, developed by Salford Systems, to perform the CART
analysis.

@ Springer



Asset volatility

However, the inclusion of accounting based measures of asset volatility lowers the relative
cost measure to 0.1374. The inclusion of OAS in the model (column (3)) does not
significantly increase the AUC, with respect to the model that includes fundamental
volatility information, and, in contrast, increases the relative cost.

To further understand the economic significance of fundamental-based measures of
asset volatility, we compute importance scores for each of the variables in the model
(Panel B of Table 4). These scores attempt to measure how much work a variable does
in a particular tree. They are calculated as the sum of the improvement that can be
attributed to that variable at each node of the tree, weighted by the number of
observations passing through that node (i.e., splits lower in the tree with only a smaller
fraction of data passing through receive lower scores). For example, suppose that there
are N observations in a given tree node (the parent node, £) and that variable s is chosen
to split those N observations into two child nodes (#; and ¢z). Variable s, together with
all the other variables used to recursively split the sample data in the tree, is called a
primary splitter. The improvement attributed to variable s in that specific node ¢ is

simply AR(s, 1) =R() = R(t) — R(tz;), with R(1) = +; Zt (y,—¥(1))*, and effectively re-
XnE

flects a change in the sum of square errors as a result of the split. To compute the
variable importance score for variable s, we thus (1) identify all the nodes ¢ in which variable
s is used as a splitter, (2) compute the split improvement (AR(s, 7)) for all of these nodes, (3)
adjust the split improvement to take into account the percentage of the sample flowing
through each node, (4) add all the resulting improvement scores to compute the raw variable
importance of variable s, and (5) rank and scale all raw variable importance scores, such that
the variable with highest importance receives a score of 100. Following Breiman et al.
(1984), we also examine the role that each variable plays as a surrogate. A surrogate is
simply a substitute for a primary splitter at a certain node. The surrogate divides the data in a
similar way to the primary splitter and may thus be used to replace the primary splitter when
the primary splitter is missing. Our total variable importance score considers the role of each
variable both as a primary splitter and as a surrogate. It is estimated following the approach
described above, except that we now identify all the nodes where CART selects the variable
either as a primary splitter or a surrogate and add all the corresponding improvement scores.
Leverage is the most important variable in models (1) and (3). Furthermore, the
importance scores of fundamental-based measures of asset volatility are higher than
those of market-based volatility measures, both considering just the role of each
variable as primary splitter and its combined role as primary splitter and surrogate.
When OAS is included in the model (model (3)) it becomes the second highest
importance variable (after leverage). While OAS is assigned a total variable importance
score of 94.35 in model (3), it has no importance as a primary splitter. This is in contrast
with leverage, which has a total variable importance of 100 and a variable importance
as a primary splitter of 100. This suggests that, while OAS is not directly used in the
prediction tree, it plays an important role as a surrogate, i.e., it could replace leverage
and other predictors if they were missing. Most importantly, the variable importance of
the fundamental volatility measures remains high when OAS is added to the model,
ranging from 7.63 to 43.90, compared to the 2.34 variable importance of o).
Variable importance scores capture the role played by a variable in a specific tree,
and CART trees may be sensitive to the training data. This issue is partially addressed
by the fact that we use cross-validation to build test samples and choose the optimal
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tree. To further circumvent this potential issue and assess the stability of our variable
importance scores, we build 100 bootstrap samples and compute variable importance
scores for each of these samples. Figure 1 plots the distribution (specifically, the
minimum, 25th percentile, median, 75th percentile and maximum) of these scores.
Note that the ranking of the variables in each of the panels of Fig. 1 may not exactly
correspond to the ranking of the variables in Table 4, Panel B. This is because the
ranking in Fig. 1 is based on the median importance of the variable in the 100 trees built
using the bootstrap samples, whereas the importance scores reported in Table 4, Panel
B are based on the tree built using our original data. Both Figure 1 and Table 4
highlight the importance of fundamental asset volatility for predicting defaults out of
sample, when compared to both 0%} and the basic set of bankruptcy determinants.

3.2 Cross-sectional variation in credit spreads
3.2.1 Unconstrained analysis

Having established the information content of our candidate measures of asset volatility
for bankruptcy prediction, we now turn to assess the information content of the same
measures for secondary credit market prices. As discussed in section 2.5, under the
assumption that security prices in the secondary credit market are reasonably efficient,
we expect to see that the determinants of bankruptcy prediction models should also be
able to explain cross-sectional variation in credit spreads.

Table 5 reports estimates of equation (5). This is our unconstrained analysis of
how and whether different measures of asset volatility have information content for
security prices. We include month fixed effects to control for macroeconomic
factors, and as such we do not report an intercept. As discussed in section 2.5,
we include additional issue specific measures (Rating;, Age;y, and Duration;) to
help control for other known determinants of credit spreads. Of course, we may be
controlling for characteristics that subsume volatility by including these determi-
nants, especially Rating;. For example, the rating agencies may be using algo-
rithms to assess credit risk that span fundamental and market data sources, and as
such included rating categories might subsume the ability of this data to explain
cross-sectional variation in credit spreads. In unreported analysis, we find that our
inferences of the combined information content of market- and accounting-based
information to measure asset volatility are unaffected by the inclusion of Rating;,.

Across all models estimated in Table 5, we find expected relations for our
primary determinants. Credit spreads are consistently decreasing in (i) distance

to default barrier, ln(X—:), and (ii) firm size, In(E;). Credit spreads are consis-

tently increasing in (i) credit rating (scaled to take higher values for higher
yielding issues), Rating;, and (ii) time since issuance, Age;. Recent excess
equity returns, Exrety, is usually negative across different models but is not
consistently significant at conventional levels. Option-adjusted duration,
Duration;;, is usually negatively associated with credit spreads. Ps ; and Skew;
exhibit negative coefficients across most models but are often not significant at
conventional levels. Conversely, Kurt exhibits positive but often insignificant
coefficients across most models.
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Asset volatility

Models (1) to (6) in Table 5 examine each of our measures of asset volatility
separately. Individually, each is significantly positively associated with credit spreads.
To provide a sense of their relative economic significance, we also report in Panel B of
Table 5 the marginal effects for each explanatory variable. Similar to the marginal effects
reported in Table 2, we report the change in credit spreads for a one standard deviation
change for the respective explanatory variable, relative to the full-sample unconditional-
mean credit spread. Individually, the most important measure of asset volatility is og.
(Marginal effect of 0.7736 is the largest in the first 6 columns of Panel B of Table 5.)

Models (7) to (14) in Table 5 combine different measures of asset volatility. As in
Table 2, we do not include o and oy in the same specification due to multi-collinearity
concerns. In models (7) and (11), we add a measure of volatility from the credit markets,
Op, to o and o7, respectively. Consistent with the results in Table 2, combining market-
based measures of asset volatility from the equity and credit markets is superior to
examining equity-market information alone. (The R? increases from 52.5% in model (1)
to 57.7% in model (7) and from 65.9% in model (2) to 70.4% in model (11).) When we
add our measures of fundamental volatility, of, o1or and Opgps, to the model that
includes o and op (i.e., model (7)), we find that the three measures are significantly
associated with credit spreads. In terms of relative economic significance in model (8),
op is 1.47 times as large as that for o, and of is only 8% as large as that for of.
Similarly, in model (9), op is 1.48 times as large as that for o, and o1gr is 16% as large
as that for og. Finally, in model (10), op is 1.46 times as large as that for o, and Oggpg is
27% as large as that for o. When oF, O1gr, and oggps are added to a model that includes
orand op, o1gr remains statistically significant, but o and orgps become insignificant.

In Table 6, we start with a model that includes oy, op, and or. We then replace o by
omarGIN and orurnovER, based on the Dupont decomposition, and examine the
incremental explanatory power of these variables. Neither onarGm NOT OTURNOVER
are statistically significant. In column (3), we instead replace o by 0or GroOwTH>
which, contrary to expectation, has a negative and significant coefficient. In columns
(4) to (6), we remove Rating from the model, as credit rating agencies may take into
account fundamental volatility and specifically 0o; GrowTrn in assigning credit ratings.
In fact, the correlation between Rating and 0o growTn (untabulated) is 0.5246. The
coefficient on 0o; gGrowTn remains negative but insignificant.

In Table 7, we report the results from a CART regression analysis of OAS.
Column (1) of Panel A presents the base model, which includes a market-based
measure of asset volatility o%%;. Column (2) adds the fundamental volatility mea-
sures to the base model. As in the CART bankruptcy prediction analysis in Table 4,
we can add all fundamental volatility measures simultaneously, as
multicollinearity does not raise estimation concerns. The inclusion of fundamental
volatility measures increases the test sample (i.e., out of sample) R? from 0.7455
to 0.7796. This increase is significant at the 5% level. The R? of the model further
increases to 0.7859 as Rating is included.

Panel B reports the variable importance scores. Consistent with the analysis in
Table 5, the average variable importance of fundamental volatility measures (12.94 in
model (2) an 12.55 in model (3)) is considerably lower than the variable importance of
the market-based measure, 0% (55.53 in model (2) and 46.78 in model (3)). Figure 2
plots the distribution of variable importance across the 100 bootstrapped samples. It
confirms that fundamental volatility measures have much lower variable importance
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scores than market-based volatility measures. This is in stark contrast to the findings of
the bankruptcy-prediction CART analysis reported in Figure 1, where o, was the

variable with the lowest importance.

Table 6 Unconstrained credit spreads: margin and turnover volatility

@ @ 3 @ ® ©
1n(¥) —0.003 %k —0.003 % —0.003##* —0.003%:#:* —0.003%:#:* —0.003 %
(-6.33) (-6.25) (—6.00) (—6.82) (—6.82) (—6.68)
Exret —0.002 —0.002 —0.002 —0.001 —-0.001 —0.001
(-0.89) (—0.89) (—0.88) (-0.51) (—0.50) (-0.47)
In(E) —0.003 %4 —0.003 % —0.003##* —0.004##* —0.004##* —0.004##*
(=7.05) (=7.00) (—6.89) (-12.18) (-12.13) (-12.86)
Age 0.000* 0.000* 0.000%* 0.000* 0.000%* 0.000%
(1.86) (1.87) (2.00) (1.74) (1.71) (1.66)
Duration —0.001##* —0.001#** —0.001#** —0.001#** —0.001##* —0.001%##*
(=3.90) (=3.91) (=3.66) (=5.21) (=5.24) (=5.30)
Ps —-0.000 —0.000 —0.001 —0.001 0.000 0.000
(-0.05) (-0.04) (-0.28) (-0.17) (0.09) (0.05)
Skew —0.014 —0.014 —0.014 —0.016* —0.016* —0.016*
(-1.57) (-1.56) (-1.49) (-1.82) (-1.79) (-1.73)
Kurt 0.004 0.004 0.004 0.005 0.005 0.005
(0.94) (0.93) (1.02) (1.32) (1.29) (1.29)
Rating 0.001#** 0.001##* 0.001 ##*
(3.57) (3.56) (4.63)
o1 0.078%:#* 0.078%#:* 0.0797%#:* 0.0807%#* 0.080%* 0.08 133
(11.98) (12.05) (12.14) (13.91) (14.13) (13.55)
op 0.102%%:#* 0.101 sk 0.100%#* 0.104%#* 0.105%#* 0.104s##:*
(6.14) (6.14) (6.02) (6.34) (6.36) (6.34)
OF 0.002 0.006*
(0.70) (1.70)
OMARGIN —0.000 0.001
(-0.02) (1.06)
OTURNOVER 0.000 0.000
(1.03) (1.56)
001 GROWTH —0.0027##* —0.000
(-3.55) (-0.75)
Month FE Yes Yes Yes Yes Yes Yes
Nobs 60,305 60,305 60,305 60,339 60,339 60,339
Pseudo-R2 0.704 0.704 0.705 0.700 0.700 0.700

This table reports the coefficients from the regression of option-adjusted spreads (OAS) on the different
volatility measures. Variable definitions are provided in Appendix I. Standard errors are clustered by firm and
month. Regressions are based on a sample of 60,339 firm-months for the period January 1996 through

December 2012
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Fig. 2 Variable importance: credit spreads (unconstrained). Panels A, B, and C of this figure present the
distribution of the variable importance scores of the models reported in Table 7, columns (1), (2), and (3),
respectively. We form 100 bootstrap samples and estimate the minimum cost tree for each of these samples.
We report the minimum, 25th percentile, median, 75th percentile, and maximum of the variable importance
scores for each variable
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Given the similarity in relative importance of market- and fundamental-based
measures of volatility for the purposes of forecasting bankruptcy (out of sample)
reported in Tables 2, 3 and 4 and the difference in relative importance of market- and
fundamental-based measures of volatility for the purposes of explaining cross-sectional
variation in credit spreads in Tables 5, 6 and 7 (with market-based measures seeming to
be more important), this raises the possibility the market is not paying sufficient
attention to the fundamental-based measures. We return to this issue in section 3.3.

3.2.2 Constrained analysis

‘We now assess the relative information content of the different measures of volatility in
a constrained specification. As described in Appendix II and equation (A.1), we

combine our measures of asset volatility with dollar distance to default (In ()\g—ﬁ)) to

identify a distance to default barrier in standard deviation units. We then calibrate the
various distance to default measures to an expected physical default probability, which
is converted to an implied spread as per equations (A.2) and (A.3). We thus generate k
different theoretical spreads where the difference is attributable to the use of different
measures of asset volatility. This approach is arguably superior to the unconstrained
analysis discussed in section 3.2.1, because of the inherent nonlinearity between
leverage, asset volatility, defaults (bankruptcy), and credit spreads. Two firms could
have the same dollar distance to default but different levels of asset volatility. It is the
ratio of these two measures that matters for determining physical bankruptcy probabil-
ity, not the two measures separately.

An empirical challenge that we face is combining different measures of
volatility that vary in scale (see Panel C of Table 1). To handle these differ-
ences in scale when we combine measures of asset volatility, we first standard-
ize each accounting-based measure and rescale them such that they have the
same mean and standard deviation as the market-based measures of asset
volatility to which they will be combined with. As a result of this process,
we end up with seven different measures of theoretical spreads. We have four
market-based theoretical spreads: (i) CSy,, which is based only on historical
equity volatility; (ii) CS,, which is based on only implied equity volatility; (iii)
CSgw, which is based on a weighted combination of historical equity volatility
and historical credit volatility; and (iv) CSUZUI’ which is based on a weighted

combination of implied equity volatility and historical credit volatility. We have
three accounting-based theoretical spreads: (i) CSg,, which is based on histor-
ical volatility of RNOA; (ii) CS,,,, which is based on the average of the
different fundamental volatility measures; and (iii) CSpros,,;,» Which is based
on the average of the default probabilities based on the different fundamental
volatility measures. The distinction between CS and CSpros, 1 described
in more detail in Section 2.5.

Table 8 reports regression results of equation (6). We retain the same set of controls
and explanatory variables to allow comparability of explanatory power between equa-
tions (5) and (6). We include a set of month fixed effects and as such do not report a
regression intercept. Model (1) shows that theoretical spreads based on a simple

OAVG
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Fig. 3 Variable Importance: Credit Spreads (Constrained). Panels A, B, and C of this figure present the
distribution of the variable importance scores of the models reported in Table 9, columns (1), (2), and (3),
respectively. We form 100 bootstrap samples and estimate the minimum cost tree for each of these samples.
We report the minimum, 25th percentile, median, 75th percentile and maximum of the variable importance
scores for each variable
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measure of historical equity volatility can explain 65% of the variation in credit spreads,
and the regression coefficient on CS@QSE is 0.629. A regression coefficient that is less
than one may suggest that our measure of theoretical credit spread is larger than the
actual market spread. This is not the case, as our regression model includes an intercept
(via time fixed effects). In unreported analysis, if we exclude fixed effects and other
control variables, we find that the regression coefficient on CSﬁ?SE is statistically
greater than 1, consistent with the well-known result that some structural models tend
to under forecast credit spreads (e.g., Eom et al. 2004; Huang and Huang 2012).
Before assessing the incremental improvement in explanatory power from alterna-
tive measures of asset volatility, we first use our secondary credit market data to apply a
haircut to the book value of debt used as an approximation for the market value of
assets. While fixed and floating rate debt is usually issued at par, changes in the credit
risk of the issuer over time will create situations where the market value of debt differs
from its book value. Thus our estimate of market value of assets may be too high (low)
for issuers whose credit quality has worsened (improved) since debt issuance. A direct
consequence is that any implied spread will be too low (high). To help mitigate this
error, we take a fraction of the book value of debt as our approximation for the market
value of debt using the change in the spread from when the representative bond first
appears in our data set to the current period. Specifically, we multiply the book value of

debt by W Thus our estimate of the market value of debt adjusts the reported

book value by the change in credit spreads, AOAS, measured from when the represen-
tative bond was first recorded in the Barclays bond dataset to the current period. For
coupon bearing debt, this simply allows market value of debt to fall (rise) as credit
spreads increase (decrease). Model (2) of Table 8 shows that, once we incorporate this
haircut, we observe a noticeable change in explanatory power. The R? in model (2)
increases to 70.9% from 65.0% for model (1).

Models (3) to (11) in Table 8 consider various combinations of our theoretical
spreads. Models (6) to (11) add the three different fundamental credit spread measures.
Across the three measures (models (9) to (11)), we see evidence of the joint role of
market- and fundamental-based measures of asset volatility. In fact, fundamental-based
credit spreads are statistically significant across all specifications.

The last four rows of Table 8 contain summary information based on estimating the
unconstrained regression equation (5) for the same sample of 51,546 bond-months. The
sample we use in Table 8 is smaller than that in Table 5, as we require an initial out-of-
sample period to empirically calibrate our distance to default to a physical bankruptcy
probability. Across all of the models in Table 8, we see that the constrained regression
specification results in a statistically and economically significant increase in the ability
to explain cross-sectional variation in spread levels. (Vuong 1989 Z-statistics reject the
null hypothesis that the unconstrained regression, i.e. equation (5), has the same
explanatory power as the constrained regression, i.e. equation (6), for a constant sample
of 51,546 bond-months.) The regression specifications are identical, except for how we
combine leverage and volatility. The constrained specification combines leverage and
volatility consistent with the Merton model, and this generates a significant improve-
ment in explanatory power.

Table 9 presents the results from a CART regression analysis of OAS, where we include
theoretical credit spreads, as opposed to the raw volatility measures. Column (1) presents
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the base model, which includes CSo. When we add the fundamental credit spreads
measures to the base model, CSg,, CSU]QR, CSomss CSopmran s CSorumonens CSoor arown
and CS g, crown» N cOlumn (2) the test sample R increases from 0.7713 to 0.7950. This
increase is significant at the 5% level. The R of the model further increases to 82.12 when
Rating is added.

The variable with highest variable importance across all models is the market-based
credit spread, CS(,:I (Panel B). The variable importance of fundamental theoretical
credit spreads ranges from 1.33 (CSy,,,) to 94.33 (CSq,, crowny) and averages 59.16
when rating is not included. When rating is included, the variable importance of
fundamental theoretical credit spreads slightly decreases to an average of 56.35.
Fundamental credit spreads play a less prominent role as primary splitters. (Their
average importance as primary splitters is 8.13 (7.34) in the model that includes
(doesn’t include) credit rating.) Variables that are highly correlated with primary
splitters are most likely to be selected as successful surrogates. Therefore the difference
between the total variable importance of fundamental credit spreads and their impor-
tance as primary splitters is consistent with their relatively high correlation with CSge .
Figure 3 illustrates the distribution of variable importance scores for the 100
bootstrapped samples. It clearly illustrates a striking difference between the importance
scores of theoretical spreads and the remaining independent variables. In fact, with the
exception of CSg,,,,, theoretical credit spreads display importance scores that are
significantly higher than the remaining variables in the model.

3.3 Return prediction

The empirical analysis in section 3.1 showed the similarity in relative impor-
tance of market- and fundamental-based measures of volatility for the purposes
of forecasting bankruptcy (out of sample). The empirical analysis in section 3.2
showed that, while market and fundamental-based measures were both useful
for explaining cross-sectional variation in credit spreads, there was a clear
difference in their relative importance (with market-based measures seeming to
be more important). As noted in section 3.2, this raises the possibility the
market is not paying sufficient attention to fundamental-based measures of asset
volatility. We now explore this directly.

We first need to define a measure of mispricing by comparing the difference between
the actual credit spread in the secondary markets with our theoretical credit spreads. If it
is the case that our measures of theoretical credit spreads contain superior forecasts of
default than that implicit in the actual credit spread, then we would expect the actual
credit spread to converge toward the theoretical credit spread. Alternatively, the
difference between actual and theoretical credit spreads should be positively associated
with future credit excess returns. We build two measures to capture the percentage

deviation of credit spreads from their theoretical levels. We denote these measures as
CRVMarket and CRVFundamental~ CRVMarket is Computed as In (%) and CRVFundamental
Al

as n( =25 ). CRVpupdamentar is designed to take into account all fundamental
CSproBayG
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volatility measures. In untabulated robustness tests, we run our analysis with an

alternative CRV ryngamenias Measure defined as In (Cg:\i(j)‘ The two CRVieundamental

measures exhibit a Pearson (Spearman) correlation of 0.9790 (0.9787) and, unsurpris-
ingly, produce similar results. To the extent that the credit market has not fully
incorporated fundamental volatility information and will do so with a lag, there should
be a positive association between CRVr,,gumenias @nd future credit returns.

We conduct standard cross-sectional return predictability regressions and examine
whether CRV accounting can forecast returns (over and above CRV market). Specifi-
cally, we run the following cross-sectional regression model using the Fama and
Macbeth (1973) approach as described by Correia et al. (2012).

RETi,t+k =ao;+ BCRV Market,zCRVMurket,it + /GCRV Fundamema[JCRVFundamental,it
+ Brioms MOMS iy + Buon, MOMLi; + By BTM iy + Bz SIZE

+ Bep £/ Pit + Bppra BETAy + €ir. (7)

RET; ; 4« 1s the credit return for month t + k. MOMS;, is the equity return for issuer i for
the most recent month (i.e., the month prior to the start of the credit return accumulation
period). MOML,, is an exponentially weighted (three-month half-life) cumulative return
over the 11 months prior to the computation of MOMS;,. We use an exponential
weighting, instead of equal weighting, because we are interested in capturing
the delayed response of credit markets to recent information in equity markets.
BTM;, is book-to-price computed as the ratio of book value of equity
(Compustat mnemonic CEQ from the recent fiscal quarter, relative to market
capitalization corresponding to that fiscal period’s end date). SIZE;, is the log of
market capitalization at the start of the credit return accumulation period. E/P;
is the earnings-to-price ratio calculated as the ratio of net income (NIQ) from
the recent four fiscal quarters, relative to market capitalization corresponding to
that fiscal period’s end date. BETA;; is the equity market beta, estimated from a
rolling regression of 60 months of data requiring at least 36 months of
nonmissing return data.

‘We estimate this regression k times every month, with k reflecting the number of months
into the future we are forecasting. The relevant test is whether Bcry Fundamentar, =0, and
finding Bcry Fundamentar, > 0 1S consistent with actual credit spreads reverting to theoretical
credit spreads. We expect to see a positive relation between credit returns and MOMS;,,
MOML,, E/P;, BETA,, and BTM;; and a negative relation between credit returns and SIZE;,.

We report the results from the estimation of equation (7) using risk- and
value-weighted least squares in Table 10 Panels A and B, respectively. In Panel
A, the weight of each observation is as defined as —In(OAS;,), which naturally
places less weight on riskier firms. In Panel B, the weight is defined as the
amount outstanding of that bond as a percentage of the total amount outstand-
ing for all the bonds in the sample.

The Pearson (Spearman) correlation between CRVry,,gumentar,ic @0d CRV parker. is
(untabulated) is 0.364 (0.373). Across both weighting schemes (risk and value) and return
horizons (k = 1,...,6), we find a positive and significant coefficient on CRV rgamentar, i The
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M. Correia et al.

coefficient on CRV)z4er, i 1S positive and significant, when the variable is included by itself
(unreported), but insignificant when CRV riamentar, i 13 added to the model. MOMS and
MOML exhibit positive and significant coefficients for shorter return horizons but insignif-
icant ones for longer return horizons. Consistent with our priors, fundamental-based mea-
sures of asset volatility help forecast bankruptcy but have a more moderate role in explaining
credit spreads, suggesting that the market is not fully appreciating the information content of
financial statement information when forming views on expected default.

3.4 Extensions and robustness tests
3.4.1 CDS data

In Table 11, we report regression estimates of a modified version of equation (5) (Panel A)
and equation (6) (Panel B) where we use credit spreads from CDS contracts rather than
bonds. As with our previous spread level regressions, we include a set of month fixed effects
and as such do not report a regression intercept. A benefit of this approach is that the CDS
credit spread is a cleaner representation of credit risk, but a disadvantage is the shorter period
for which this data is available (2004 to 2012 only). Because we are examining cross-
sectional variation in five-year CDS spreads, CDS5Y;, we no longer need to control for
issue specific characteristics such as Age; and Duration. All five-year CDS contracts have
the same seniority, the same time since issuance (we only examine on-the-run contracts), and
the same tenor (five years). Thus we estimate the following models.

Vi
CDS5Y;, = ayln ()Tt) + i Exrety + asn(Ey) + aaPs i + asSkewy + acKurty

it

K
+ azRating;, + 3, cy7CS,,, + Eir; (8)
k=1

CDS5Y; = oy Exrety + cnln(Ey) + as3Ps i + asSkew;, + asKurt, + asRating;,
K
+ X y6CSoy, + Eir- )
k=1

Our sample size decreases from 75,548 bond-months examined in Table 5 to 27,564
CDS-months examined in Table 11 Panel A and from 51,546 in Table 8 to 19,005 in
Table 11, Panel B. Despite the smaller sample size, we find similar results with this
alternative sample. Models (1) to (5) examine the different volatility measures one at a time.
All variables are positive and coefficient, with the exception of oggps, whose coefficient is
positive but not significant. o and ojor remain significant when added to a model that also
includes of and op, but of ceases to be significant when oF; is replaced by o.

Panel B presents the results from the constrained analysis. Models (1) to (3) show that
theoretical spreads based on equity market information can explain up to 49% of the cross-
sectional variation in credit spreads. Models (4) and (5) show that combining measures of
asset volatility generates theoretical spreads that can explain a greater fraction of the cross-
sectional variation in credit spreads. (The R? increases to 54% for model (5).) Strikingly, our
measure of theoretical spread using fundamental volatility alone, and specifically, CS;,,
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CSq, and CSprop,» can explain from 45.7 to 50.0% of the cross-sectional variation in
credit spreads (see models (6) to (8)). Finally, including both market- and accounting-based
measures of asset volatility yields theoretical spreads that can explain even more of the cross-
sectional variation in credit spreads: a maximum R? of 55.2% across models (9) to (11).
Similar to the analysis in Table 8, at the bottom of Panel B of Table 11, we also report the R?
of the equivalent unconstrained regression on the CDS sample (equation (7)). Across all
specifications, with the exception of model (1), we see statistically significant increases in
explanatory power when we constrain asset volatility and leverage, consistent with the
Merton model, as compared to including these variables linearly and independently. In other
words, the Vuong test rejects the null hypotheses that the constrained and unconstrained
models have similar R%.

3.4.2 Alternative specifications

Research has examined the relative importance of fundamental- and market-based
variables to predict defaults (e.g., Altman 1968; Beaver et al. 2005; Bharath and
Shumway 2008; Campbell et al. 2008) and explain cross-sectional variation in credit
spreads (e.g., Das et al. 2009). While our focus is on the relative usefulness of
fundamental- and market-based measures of volatility within a structural model frame-
work, we also examine the relative usefulness of fundamental- and market-based
variables in a reduced form analysis similar to this past research. It is important to
remember a key result from Table 8, which showed a marked improvement in explan-
atory power of cross-sectional credit spread regressions when measures of leverage and
volatility are combined in a manner consistent with the structural models. Thus we view
the analysis in this section as a robustness analysis and not the focus of the paper.

In untabulated analysis, we expand the bankruptcy forecasting model to control for
average accounting profitability over the previous four quarters, cash holdings, market-
to-book ratio, and price, following Campbell et al. (2008). We choose not to include
these variables in our main specification, which only includes (albeit linearly) the main
determinants of probability of default as per the Merton model. Specifically, we add the
following variables to the analysis reported in Table 2 (variables are defined and labelled
consistently with Campbell et al. 2008): (i) NIMTAAVG, a geometrically weighted
average level of net income scaled by market value of total assets, which places higher
weight on more recent quarters; (i)) CASHMTA, cash and short-term investments scaled
by the market value of assets; (iii) MB, the market-to-book ratio; and (iv) PRICE, the
natural logarithm of the firm’s stock price. The sample size does not change significantly
as a result of the inclusion of these additional control variables. Our measures of
fundamental volatility continue to be significant, both when included individually and
together with implied volatility and debt volatility.

We also re-estimate the unconstrained and constrained credit-spread regressions
adding the control variables of Campbell and Taksler (2003). In particular, we control
for operating income and long-term debt to total assets. Consistent with our main
analysis, we continue to find that o is significant both when included individually and
when considered incrementally to debt volatility and historical equity volatility. In the
constrained analysis, all credit spreads based on fundamental volatility remain both
individually and incrementally significant.
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We further repeat the analysis in Table 2 (bankruptcy prediction) and Table 5 (credit
spreads regression: (1) including the skewness and kurtosis of equity returns, (2)
including the average skewness and kurtosis of quarterly RNOA, (3) replacing Ps by
the level of RNOA (we cannot control for both variables simultaneously in the
regression because they display high correlations), and (4) replacing Ps by a loss
indicator. Our inferences are unaffected by these alternative specifications.

4 Conclusion

We examine whether and how fundamental measures of volatility are incremental to
market-based measures of volatility in (i) predicting bankruptcies (out of sample), (ii)
explaining cross-sectional variation in credit spreads, and (iii) explaining future credit
excess returns. For a large sample of U.S. firms, we find that a variety of fundamental-
based measures of asset volatility help forecast bankruptcies and, to a lesser extent, help
explain cross-sectional variation in credit spreads. Our finding of similar relative
importance of market-based and fundamental-based measures to forecast bankruptcy
but a dominance of market-based measures to explain credit spread suggests that the
market is not fully incorporating fundamental-based measures of asset volatility into
credit spreads. Our predictive analysis of future credit excess returns confirms these
priors.

Our paper is a comprehensive analysis of many measures of asset volatility, using a
variety of econometric methods to show the importance of detailed fundamental
analysis from the perspective of a credit investor. Credit markets are very large — as
of December 2016, there were over $12 trillion of outstanding corporate debt from
companies in the developed world. This is a huge asset class and one that has been
relatively unexplored to date. The information that we use is taken directly from general
purpose research reports, and the financial reporting system underlying these state-
ments has an objective of providing relevant, reliable information not only to equity
investors but also to credit investors. We hope that future research can extend our
analysis to focus on other important—and measurable—aspects of default risk. Notable
examples would include improved measures of financial leverage (on- and off-balance-
sheet contractual commitments) and operating leverage (e.g., Penman 2014).
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Appendix I: Variable definitions

Table 12 Compustat/CRSP mnemonics in parentheses

Variable

Description

Panel A: Volatility measures

Op

01

Op

RNOA

NOA

OIQR

OFEPS

OMARGIN

OTURNOVER

001 GROWTH

OSALES GROWTH

Historical equity volatility, the annualized standard deviation of realized daily stock
returns over the previous 252 days.

Implied volatility, the average of implied Black and Scholes volatility estimates for
at-the-money 91-day call and put options (source: Option Metrics Ivy DB standard-
ized database).

Debt volatility, the annualized standard deviation of total monthly bond returns,
computed over the previous 12 months (computed based on Barclays Capital total
return).

Weighted historical volatility, /w202 + (1-w) 203 + 2w (1-w)pp ;0r0p, where w
and pp g are defined as in Panel B.

Weighted implied volatility,
w20? + (1-w) 203 + 2w(1-w)pp g o10p, where w and pp,  are defined as in
Panel B.

Average standard deviation of quarterly RNOA. The standard deviations of RNOA for
fiscal quarters 1, 2, 3, and 4 are computed over the previous 20 years (requiring a
minimum of 10 quarters of data). The resulting quarter-specific volatilities are then
averaged across the four fiscal quarters.

Return on net operating assets, defined as operating income after depreciation (OIADP)
scaled by average of the opening and closing balance of net operating assets (NOA).

Net operating assets, defined as the sum of common equity, preferred stock, long-term
debt, debt in current liabilities, and minority interests minus cash and short term
investments, CEQ + PSTK + DLTT + DLC + MIB-CHE.

An estimate of the interquantile range of the distribution of RNOA (i.e. P75 — P5s). Please
refer to Appendix 111 and Panel C for a detailed description of the variables used in the
estimation of P75 and P»s.

The weighted-average volatility of analyst EPS forecasts for the following 12 months
(computed based on the IBES summary files, requiring a minimum of 10 analyst
forecasts).

Average standard deviation of quarterly operating margin (OIADPQ/SALEQ). The
standard deviations of operating margin for fiscal quarters 1, 2, 3, and 4 are computed
over the previous 20 years (requiring a minimum of 10 quarters of data). The
resulting quarter-specific volatilities are then averaged across the four fiscal quarters.

Average standard deviation of asset turnover (SALEQ/ATQ). The standard deviations of
asset turnover for fiscal quarters 1, 2, 3, and 4 are computed over the previous
20 years (requiring a minimum of 10 quarters of data). The resulting quarter-specific
volatilities are then averaged across the four fiscal quarters.

Average standard deviation of operating income (OIADPQ) growth. Operating income
growth is defined as the percentage change in operating income, relative to the same
quarter of the previous fiscal year. The standard deviations of operating income
growth for fiscal quarters 1, 2, 3, and 4 are computed over the previous 20 years
(requiring a minimum of 10 quarters of data). The resulting quarter-specific volatil-
ities are then averaged across the four fiscal quarters.

Average standard deviation of sales (SALEQ) growth. Sales growth is defined as the
percentage change in operating income, relative to the same quarter of the previous
fiscal year. The standard deviations of sales growth for fiscal quarters 1, 2, 3, and 4
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Table 12 (continued)

Variable Description

are computed over the previous 20 years (requiring a minimum of 10 quarters of
data). The resulting quarter-specific volatilities are then averaged across the four fiscal
quarters.

OAVG A summary measure of fundamental volatility. We first standardize each fundamental
volatility measure, 0F, 01Qr, OFEPSs OMARGIN> OTURNOVER> OOI GROWTH>
OsaLEGrROowTH, and match its moments to the moments of weighted historical
volatility, o%y. For firm quarter observations where one or more of the fundamental
volatility measures is missing, we compute the mean of the nonmissing fundamental
volatility measures.

PROB .y The average of the probability of default measures based on the empirical mapping of
distance to default estimates based on the different fundamental volatility measures
(OF O1QR> OFEPS: OMARGIN» OTURNOVER> 001 GROWTH> OSALEGROWTH)- We first

ln%\h‘F u—é—é)t
calculate seven different distance to default measures as follows: —————— We
then estimate seven expanding-window discrete hazard-model regressioﬁs, where the
dependent variable is equal to one if the firm files for bankruptcy in the following
year and zero otherwise. The independent variable in each regression is distance to
default based on each asset volatility measure. Based on these regressions, we obtain
seven bankruptcy probability measures. For firm quarter observations where one of
the probability of default measures is missing, we compute the mean of the
nonmissing fundamental volatility measures.

Panel B: Credit spreads and other variables used in the estimation of asset volatility and theoretical
credit spreads

OAS Option-adjusted spread, the difference between a bond’s yield and the yield of a duration
matched treasury issue, adjusted for the portion of that difference that is due to
embedded options (source: Barclays Capital bond data).

Duration Option-adjusted duration (source: Barclays Capital bond data).

Age Number of years from the date of issuance to the end of the current month, calculated as
(current date-issue date)/365.

Rating Barclays Capital index rating, converted to a numeric scale. Rating ranges from 1 (index
rating AAA) to 21 (index rating C).

Exret Excess returns, the difference between equity returns and value weighted market returns
over the last 12 months.

STD Book value of short-term debt (DLCQ).

LTD Book value of long term debt (DLTTQ).

X Book value of short-term debt (S7D) + 0.5* book value of long-term debt (L7D).

E Market capitalization, calculated as |'PRC’|**SHROUT’/1000. For firms with multiple

classes of shares, we add the market value of each class of shares (source: CRSP
monthly file).

m , market capitalization scaled by the sum of market capitalization and the
book value of debt (where book value of debt is defined as the sum of short-term
debt, STD, and long-term debt, L7D).

Correlation between the firm’s monthly equity return and the market-value weighted
return calculated over the prior five years (computed based on the CRSP monthly
file).

PE.D Average correlation of monthly equity and bond returns, calculated over the prior
12 months for all bonds in the same decile of OAS (computed based on the equity
returns from the CRSP monthly file and total bond returns from Barcap). We shrink
our estimate of correlation to the average correlation for a given level of credit risk to

S
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Table 12 (continued)

Variable Description

mitigate noise in our estimate of historical correlations e.g., Lok and Richardson
2011).

i The drift in asset value, defined as p=rp+ 3RP, where r¢ is the one-year swap rate,
available at St. Louis Fed website; RP is the market risk premium, which we set equal
to 4%; and [ is the asset beta of the firm. 3 is defined as the coefficient from the
rolling regression of the firm’s monthly asset returns over the previous 24 months on
the average asset returns calculated across all firms, requiring at least 12 months of
available data. We compute asset returns by weighting the respective equity and credit
return each month by the respective weight of equity (w) and credit (1 — w) in the
capital structure of the firm.

5 The payout ratio, calculated as the sum of interest payments to debtholders over the
previous four quarters (calculated using INTPNY), the dividend payments to
equityholders (the product of the annual dividend DVI and the number of shares
outstanding, CSHOC, both obtained from the “Security daily” module of
Compustat/CRSP merged database) and purchases of common and preferred stock
over the previous four quarters (calculated using PRSTKCY), scaled by the firm’s
total assets (E+ STD + LTD).

v Sum of the market capitalization of equity plus and the book value of short-term debt
(STD) and long-term debt (LTD).

VAl % , where AOAS is the difference between the current option-adjusted

spread (OAS) and the option-adjusted spread for the first month the bond is in the
sample.

Ps An estimate of the 5th percentile of the distribution of RNOA. Please refer to Appendix
1T and Panel C for a detailed description of the variables used in the estimation of Ps.

Skew An estimate of the skewness of the distribution of RNOA: ((P75— Pso) — (Pso—
P,5))/IOR, where IQR is defined as P75 — P,s. Please refer to Appendix IIT and Panel
C for a detailed description of the variables used in the estimation of skewness.

Kurt An estimate of the kurtosis of the distribution of RNOA: ((Pg7.5— Pe¢>.5) — (P375—
P125))/IOR, where IQR is defined as P;5 — P,s. Please refer to Appendix III and Panel
C for a detailed description of the variables used in the estimation of kurtosis.

Panel C: P5 estimation

ACC Accruals scaled by the average of the opening and closing balance of NOA, with
accruals calculated as AACT-ACHE-(ALCT-ADLC-ATXP)-DP, where ACT are
current assets, CHE cash and short-term investments, LCT current liabilities, DLC
debt in current liabilities, TXP taxes payable, and DP depreciation and amortization.

LOSS An indicator variable equal to 1 if RNOA<O, 0 otherwise.

PAYER An indicator variable equal to 1 if Payout>0, 0 otherwise.

PAYOUT Dividends paid, DVPSX F, scaled by the average opening and closing balances of
RNOA.

Panel D: Credit spreads

CSEAsE CSEASE — —1[1-(1-R)CODF] , where CODF =N |N!(CPD) + AVr2V/T| and
CPD=1-(1—-PD)" and PD is the empirically fittéd physical probability of default,
resulting from the estimation of the following logistic regression

Iny+ u*é*%)t

E(PD) = f ——o7r— | - Please refer to Appendix IT for more details on the

calculation of theoretical credit spreads.
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Table 12 (continued)

Variable Description

CSO‘K ln%\vlur p*f)jzi t
Similar to CSg‘:SE, except that E(PD) = f —7 | where oy are the
different

measures of volatility described in Panel A, t is the option-adjusted duration, and the
remaining parameters are defined as in Panel B. Please refer to Appendix II for more
details on the calculation of theoretical credit spreads.

CSPROBav CSprosye = —%[1-(1-R)CODF], where CODF = N|N"'(CPD) + AV12V/T| and
CPD=1-(1-PROB,yc)" and PROB,y is defined, as in Panel A, as the average of
the empirically fitted physical probabilities of default, resulting from the estimation of

2

]nVTM‘+ H*B*UT" t
a set of logistic regressions E(PD;) = f — 7 |» where oy are the

different fundamental volatility measures (i.e., O, Oiqr, OFEPS; OMARGINS
OTURNOVERs 001 GROWTHs OSALEGROWTH)-
Panel E: Returns

RET; Excess return for representative bond of firm 7 in month ¢ (source: Barclays Capital bond
data).

BETA,;, Equity market beta estimated from a rolling regression of 60 months of data requiring at
least 36 months of nonmissing return data.

BTM,, Book-to-market ratio measured at the most recent fiscal quarter-end (CEQQ/-
PRRC*CSHOQ)

CRV Market;, Credit relative value, computed as /n <C%Ai" > where CSU% i is the theoretical (implied)

ALt

credit spread for firm i in month ¢ calculated using o).

OAS;

CRV Fundamental;, Credit relative value, computed as /n (W
AVG it

), where CSprop,q ;; is the theoretical

(implied) credit spread for firm i in month ¢ calculated using PROBy .
MOMS,, Stock return for firm 7 in month 7.

MOML;, Three-month half-life weighted average of stock return for the 11 months ending in the
beginning of month .

SIZE;, Logarithm of market capitalization, calculated at the end of the month as
PRC*SHROUT from CRSP monthly file.

Net income (NIQ) from the most recent four quarters divided by the market capitali-
zation at the fiscal-period end date.

E
Pi

Appendix II: Theoretical credit spreads

In this appendix, we describe the calculation of theoretical credit spreads. We first
combine our measures of the dollar distance to default, In (X—‘I) and the respective
measures of asset volatility, oy, to construct a measure of expected distance to default.

2

The expected distance to default measure also includes a drift term (uit—én— %) t. Wi

is defined as 1y ; + RP;, where 1y ; is the one-year swap rate, RP;, is the market risk
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premium, which we set equal to 4%, and f3 is the asset beta of the firm, the coefficient
from a rolling regression of the firm’s monthly asset returns over the previous
24 months on the average asset returns, requiring at least 12 months of available data.
Following Feldhutter and Schaefer (2013), the payout ratio, J, is calculated as the sum
of interest payments to debtholders over the previous four quarters (based on INTNY),
the dividend payments to equityholders (the product of the annual dividend DVI and
the number of shares outstanding CSHOC) and purchases of common and preferred
stock over the previous four quarters (based on PRSTKCY), scaled by the firm’s total
assets (E+ STD + LTD). This distance to default is then empirically mapped to our
bankruptcy data using a discrete-time hazard model to generate a forecast of physical
bankruptcy probability, labelled as E(PD‘i‘t). We estimate this physical bankruptcy
probability for each of our asset volatility measures, according to equation (A.1) below:

v[o o-iit
I~ 4 [ py—di—— ) ¢
nXil + (Hn t 2

E(PDK
( O-k‘it\/f

W= (A1)

We next convert each physical bankruptcy probability into a risk-neutral measure,
following the approach described by Kealhofer (2003) and Arora et al. (2005). We first
compute the cumulative physical bankruptcy probability, CPDY, from E(PD}) by
cumulating survival probabilities over the relevant number of periods. In particular,
CPDﬁ = 1—(1—E (PDﬁ)) T. We then convert this cumulative physical bankruptcy

probability, CPDi, to a cumulative risk-neutral bankruptcy probability, CODF h We
use a normal distribution to convert physical probabilities of bankruptcy to risk-neutral
probabilities, following the approach of Crouhy et al. (2000); Kealhofer (2003); and

Arora et al. (2005):
CODFX =N [N'l [CPDK] + A\/:ﬁ\/ﬂ . (A.2)

The cumulative physical bankruptcy probability is first converted into a point in the
cumulative normal distribution. A risk premium is then added. The risk premium is the
product of (i) the issuer’s sensitivity to the market price of risk, as measured by the
correlation between the underlying issuer-level asset returns and the market index
return, \/r_izt; (ii) the market price of risk (i.e., the market Sharpe ratio, measured by
A); and (iii) the duration of the credit risk exposure, T. The risk modified physical
bankruptcy probability is then mapped back to risk neutral space. We set the market
Sharpe ratio, A, equal to 0.5, consistent with the values observed by Kealhofer (2003).

We set \/f‘jt equal to the correlation between monthly firm stock returns and monthly
market returns using a rolling 60-month window. We impose a floor (ceiling) on the
estimated correlation at 0.1 (0.7). Finally, we estimate implied (or theoretical) credit
spreads as follows:

CSk = —%ln[l—(l— )CODFY]. (A.3)
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R;; is expected recovery rate conditional on bankruptcy, which we set equal to
0.4 for all firms. While we assume R;; to be a constant, recovery rates may exhibit
systematic time-variation (Bruche and Gonzales-Aguado 2010). While this could
affect the gap between theoretical and observed credit spreads, we have no reason
to believe it will present a concern to our analysis, given that we do not examine
this gap directly.

Appendix III: Quantile regression approach

In this appendix, we describe the quantile regression approach discussed in Section 2.4.
We use this approach to estimate the quantiles and conditional moments of the RNOA
distribution. For each year t, we estimate the following equation using quarterly data
from 1963 to t:

= Bg, + BYRNOA-1 + BILOSSi—1 + B3, (LOSSi1 x RNOAj-1)+

ANT, (RNOA;
QUANTG(RNOAW) ga™ " AcCy, + BY PAYERw. + BY PAYOUT..

(A4)

Our model resembles the one of Hou et al. (2012), with the exception that we
forecast return on net operating assets (RNOA), instead of return on equity (ROE), and
therefore do not include leverage as an explanatory variable and scale all variables by
the average balance of net operating assets (NOA), rather than by the average balance
of book equity. All variables used in the estimation are described in Appendix I. We
compute these variables at the end of each quarter, using the most recent four quarters
of data.

In unreported analyses, we find the expected relations between our included explan-
atory variables and future profitability. Specifically, the median quantile regression
generates the following results: (i) [3?0 is 0.94 consistent with mean reversion in
accounting rates of return (e.g., Penman 1991; Fama and French 2000); (ii) [5;0 is
—0.01 consistent with loss makers having lower levels of future profitability (e.g., Hou
et al. 2012); (iii) Bgo is —0.14 consistent with faster mean reversion in profitability for
loss making firms (e.g., Beaver et al. 2012); (iv) [520 is —0.02 consistent with the well-
documented negative relation between accruals and future firm performance (e.g.,
Sloan 1996; Richardson et al. 2006); (v) Bgo is 0.02 consistent with dividend-paying
firms having higher levels of future profitability (e.g., Hou et al. 2012); and (vi) [320 is
0.26 also consistent with firms with higher dividend payout having higher levels of
profitability (e.g., Hou et al. 2012).

We combine the values of the independent variables in year t with the vector of
coefficients, B{=Bg,, ---, Pa to obtain out-of-sample estimates of the percentiles for the

year t + 1. In particular, we obtain a vector of coefficient estimates, 3, for each
percentile and sample quarter. Based on this vector, we estimate the expected value of
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each of the 100 percentiles as E(qit L1 |Xit) = B?Xit, where X;; includes RNOA;,
LOSS;, LOSS;; X RNOA;,, ACC;, PAYER;,, PAYOUT;,.

For purposes of estimation of the vector of coefficient estimates, we delete extreme
observations of dependent and independent variables. In particular, we delete all
observations with [RNOA;|>2, RNOA;;-|>2, |ACC;;—[>2, |PAYOUT;;_[>1,
[PAYOUT;, - {|<0. We retain all values of these variables, irrespective of extreme values,
when we generate the expected quantile values.

Our measure of left-tail fundamental risk is the predicted value of the 5th percentile,

Ps = E(Sit; 11Xit). We also include in our analysis a measure of skewness (Skew) and
kurtosis (Kurt) of the distribution, defined as Skew=((P75— Ps0) — (Pso— P>5))/IQR,
and  Kurt=((Pg75— Pe2.s) = (P375— P12.5))/IQR,  where  IQR=P75—P,s and

Pq = E(Qit+l ‘Xit)~

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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