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Abstract

A central equation for the fiscal theory of the price level (FTPL) is the government

budget constraint (or ”government valuation equation”), which equates the real value of

government debt to the present value of fiscal surpluses. In the past decade, the governments

of most developed economies have paid very low interest rates, and there are many other

periods in the past in which this has been the case. In this paper, we revisit the implications

of the FTPL in a world where the rate of return on government debt may be below the

growth rate of the economy, considering different sources for the low returns: dynamic

inefficiency, the liquidity premium of government debt, or its favorable risk profile.
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1 Introduction

Models of monetary economies are plagued by the presence of multiple equilibria, which weakens

the ability to make tight predictions.1 To select among them, it has become common to appeal

to what Leeper [20] defined as “active monetary policies.” However, these rules imply local deter-

minacy, but not global uniqueness, and are therefore not universally accepted as an equilibrium

selection criterion.2

An alternative approach to price-level determinacy follows what Leeper [20] defined “active

fiscal policies,” in which the requirement that government debt follows a stable trajectory is used

to select an equilibrium. In particular, since Sims [29] and Woodford [32], this approach is known

as the “fiscal theory of the price level” (FTPL from now on). According to the FTPL, price level

determinacy follows when the present value of government (primary) surpluses does not react to

the price level in a way that ensures government budget balance; rather, government debt is a

promise to deliver “dollars” (either purely a unit of account, or the underlying currency which

by assumption can be freely printed by the government), and the value of a dollar adjusts in

equilibrium so that the present value of surpluses and the real value of debt match.

Whether the FTPL is a valid selection criterion has been controversial.3 Bassetto [2] analyzes

the issue in a game-theoretic environment, where the price level arises explicitly from the actions

of the agents in the economy and their interaction; in this more complete description of the eco-

nomic environment, the FTPL remains valid when surpluses are always positive, but it requires

adoption of more sophisticated strategies when the desired equilibrium path involves periods of

net borrowing. This distinction is particularly important in the context of our analysis, because

we find that, across a variety of models, low interest rates are compatible with a stable and pos-

itive path for debt only when the government runs primary deficits, at least on average, which

is precisely the environment in which the theory is on weakest ground.

1This issue is addressed in any graduate textbook in macroeconomics; see e.g. Sargent [27], Woodford [33],

or Ljungqvist and Sargent [21]. Woodford [32] contains an exhaustive description of the nature of equilibrium

multiplicity for a cash-in-advance economy under money-supply and interest-rate rules.
2See Cochrane [10] for a particularly stinging critique of active rules as a device to achieve uniqueness.
3Examples of criticisms appear in Buiter [5], Kocherlakota and Phelan [18], and Niepelt [25].
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Figure 1: Reproduced from Yi and Zhang [34].

In this paper, we sidestep the controversy and assume that the government can indeed commit

to a sequence of real taxes, independent of the realization of the price level, but we reassess

whether the uniqueness result of the FTPL continues to hold in economies in which the interest

rate on government debt is persistently below the growth rate of the economy. This question

is motivated by the long decline in real interest rates on government debt from the high values

of the 1980s and early 1990s. As an example, Figure 1 (reproduced from Yi and Zhang [34])

plots the experience of the G7 countries and shows that real interest rates on government debt

below the growth rate of the economy might well be the norm rather than the exception for those

countries. When interest rates fall short of the growth rate of the economy, the present value of

primary surpluses may not be well defined, posing a challenge for the FTPL.

We study three main reasons why interest rates may be low, and we show that the validity of

the FTPL is sensitive to the specific reason.

Our first experiment is the most favorable to the FTPL. It studies a stochastic economy and

analyzes what happens when real rates of return are low because of high risk premia. In this case,

an equilibrium still requires the present value of government surpluses to be (positive and) well

defined and the FTPL remains valid, although without the risk adjustment expected surpluses

may well be negative.
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Second, we entertain the possibility that the economy might be dynamically inefficient. In this

context, we show that the FTPL is no longer able to select a unique equilibrium, and multiple

price levels are consistent with an equilibrium even when taxes are set in real terms and do not

adjust. Even then, the FTPL can select a range of equilibrium prices even when monetary policy

is run as in Sargent and Wallace [28] and no prediction would be possible otherwise.

The hypothesis of dynamic inefficiency has been revived by Geerolf [15], who rebuts the neg-

ative evidence in Abel et al. [1]. Nonetheless, other authors have emphasized that the rate of

return on capital has not declined in line with that of government debt.4 Our other explana-

tions explore economies in which it is special characteristics of government debt that lower its

equilibrium rate of return compared to other assets.

Finally, we study what happens when government debt provides liquidity services, so that

it has itself some of the characteristics usually associated with money. This new economy is

described by equations which are very similar to the first one, since debt played the role of

money there too, but with the important difference that negative holdings are now ruled out.

Restricting our attention to deterministic paths, we can prove that the FTPL holds if primary

surpluses are positive (at least asymptotically), but in this case we can also show that the

interest rate will necessarily exceed the growth rate of the economy (normalized to zero in our

case). When instead primary surpluses are zero or negative, many equilibria where debt has

positive value exist, and our results mimic what happens in a dynamically inefficient economy.

This economy is similar to that analyzed by Domı́nguez and Gomis-Porqueras [14], who revisit

Leeper’s [20] analysis of active vs. passive monetary and fiscal rules and also find that the link

between Leeper’s original classification and determinacy and uniqueness of an equilibrium breaks

down when government debt plays a liquidity role.5

Concerning the conduct of fiscal policy, these results suggest three main conclusions:

• The ability of the FTPL to select a unique equilibrium when interest rates are low is not

4See e.g. Yi and Zhang [34] and Marx, Mojon, and Velde [22].
5In a related model, Cui [11] analyzes the local dynamics around a steady state with positive primary surplus

and finds that Leeper’s [20]’s classification still holds even though there is a liquidity premium; this matches with

our observation that the FTPL holds when the government always delivers surpluses.
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robust across specifications; appealing to fiscal policy to achieve a price level target is thus

fraught with even greater difficulties than those that arise in economies where returns are

such that computing present values is always possible.

• It is difficult to blame an excessively conservative fiscal policy for the recent experience

of low inflation, because, over extended periods of time, low interest rates and stable (or

increasing) government debt levels coexist only when fiscal policy entails primary deficits

on average. Moreover, the presence of multiple equilibria makes it problematic to use

comparative statics to study the effects of fiscal expansions.

• While unsuccessful at uniquely pinning down the price level, the FTPL still provides a

lower bound on prices across all the environments that we consider here, which implies

that it is not completely devoid of content.

In Section 2, we start by purely analyzing the government budget constraint, and show how

sustained primary deficits are needed to keep debt positive when interest rates fall short of

the growth rate of the economy. The following three sections derive further implications by

considering specific reasons for low interest rates: risk premia, dynamic inefficiency, or liquidity.

Section 6 summarizes the lessons we draw and suggests future directions of analysis.

2 Preliminaries

Before we embark on analyzing the validity of the FTPL in specific models that feature low

interest rates, it is useful to probe the implications of low interest rates just from analyzing the

government budget constraint, an equation that holds across all of the models we will consider.

For simplicity, we will concentrate our analysis on one-period debt. Let Bt be promised nominal

debt repayments by the government due at the beginning of period t, Rt be the nominal interest

rate, Pt be the price level, and τt be real taxes. The government budget constraint is

Bt+1

1 +Rt

= Bt − Ptτt, (1)
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where we abstract from government spending, since its presence does not affect any of our

subsequent results.6

Since the government tax base is related to the size of the economy, it is convenient to rescale

debt and taxes by real output yt. Defining xt := τt/yt, (1) can be rewritten as

Bt+1

Pt+1yt+1

=
(1 +Rt)Ptyt
Pt+1yt+1

(
Bt

Ptyt
− xt

)
. (2)

In this paper, we are interested in environments in which the real return on government debt

is below the growth rate of the economy. Consider first a deterministic economy; then, the

condition becomes simply
(1 +Rt)Ptyt
Pt+1yt+1

< α < 1. (3)

Let the (gross) growth rate be 1 + gt+1 = yt+1/yt and let the (gross) real interest rate be

1 + rt+1 = (1 +Rt)Pt/Pt+1. Iterating (2) from period 0 forward and assuming that the economy

starts with positive initial debt, this yields

Bt

PtYt
=

B0

P0Y0

t∏
s=1

(
1 + rs
1 + gs

)
−

t−1∑
s=0

xs

t∏
v=s+1

(
1 + rv
1 + gv

)

< αt
B0

P0Y0
−

t−1∑
s=0

xs

t∏
v=s+1

(
1 + rv
1 + gv

)
.

(4)

If taxes converge asymptotically to some value x̄ and government debt is to remain positive (and

bounded away from zero), equation (4) implies that x̄ < 0. This is intuitive: when the interest

rate is below the growth rate of the economy, the debt/GDP ratio shrinks to zero on its own,

and continuing primary deficits are required to prevent debt from vanishing in the limit (or even

becoming negative). If taxes do not converge to a steady state, equation (4) still implies that a

distributed sum must remain negative in order for government debt not to disappear or become

negative.

In stochastic environments, the real rate of return on government debt may or may not exceed

the growth rate of the economy, and we instead study what happens when the expected return

6When government spending is present, our results about the signs of taxes should be reinterpreted as applying

to the sign of primary surpluses instead.
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is low. More precisely, the corresponding version of condition (3) which we study is

Et

[
(1 +Rt)Ptyt
Pt+1yt+1

]
< α < 1. (5)

We then obtain

E0
Bt

PtYt
= E0

{
B0

P0Y0

t∏
s=1

(
1 + rs
1 + gs

)
−

t−1∑
s=0

xs

t∏
v=s+1

(
1 + rv
1 + gv

)}

< αt
B0

P0Y0
− E0

[
t−1∑
s=0

xs

t∏
v=s+1

(
1 + rv
1 + gv

)]
.

(6)

In order for the expected debt to GDP ratio to remain bounded away from zero in the limit, we

need

lim
t→∞

E0

[
t−1∑
s=0

xs

t∏
v=s+1

(
1 + rv
1 + gv

)]
< 0. (7)

Equation (6) is slightly more involved than (4), since the expectation about the future sum of

taxes also involves covariance terms with realized rates of return; even in this case, a suitably

distorted expectation of sums of future taxes needs to be negative to sustain a positive debt/GDP

ratio.

Without taking a specific stance on the nature of the economy at hand, pure accounting

implies that, in economies with low interest rates, the government will necessarily run recurrent

primary deficits. As discussed in Bassetto [2], this by itself has significant implications for the

FTPL, since the fiscal strategies that support a unique equilibrium are more involved when the

equilibrium features primary deficits.

Following Cochrane’s [9] analogy, when the government always runs primary surpluses, gov-

ernment debt looks like a corporate stock paying a stream of positive dividends, and the price

level can be viewed as the inverse of the value of this stock. Just as any mispricing of the stock

would not require an adjustment in the dividends paid by the corporation, any deviation in the

general level of prices would not require an adjustment in the surpluses that the government

raises to reabsorb the money created when nominal debt is repaid. However, when primary

deficits are part of the picture, the proper analogy is with a corporation which may have trouble

raising fresh funds from investors: in this case, mispricing of the stock could force the corporation
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to alter its investment plans and thus its future dividends, and likewise would be true in the case

of the government and its debt.

In Sections 4 and 5 we highlight even greater challenges that low interest rates may pose for

the FTPL, but first we consider a more benign case.

3 An Economy with High Risk Premia

We study an economy in which the presence of risk implies that households are happy saving

in the form of government debt for precautionary reasons even though its expected return falls

short of the expected growth of the economy.

We consider a pure-exchange economy with a continuum of identical infinitely-lived agents

and a government, similar to that analyzed by Cochrane [9].7

Private agents can save by buying one-period nominal government debt Bt; they are subject

to a lower bound on debt holdings Bt
Ptyt
≥ −B, which we assume never to be binding (other than

in the limit, through the transversality condition). The government sets a fixed and constant

nominal interest rate R at which debt is issued. In this and the following sections, we abstract

from any role for money, so that R measures government promises in an abstract unit of account.

However, introducing a role for money does not change any of our results, as long as money is

elastically supplied at the interest rate R; we illustrate this in Appendix B for the economy of

Section 5.

The representative consumer discounts utility at β ∈ (0, 1), pays (real) lump-sum taxes τt,

and chooses a sequence {ct, Bt}∞t=0 to solve

maxE0

∞∑
t=0

βt
c1−γt − 1

1− γ

subject to

Ptct +
Bt+1

(1 +R)
+ Ptτt = Ptyt +Bt

taking as given {yt, τt, Rt, pt}∞t=0 and the initial bond holdings B0.

7As discussed by Cochrane, the presence of cash in not essential for the results, and we continue to abstract

from it.
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Letting πt+1 = Pt+1/Pt be gross inflation from t to t+ 1 and

zt := βtc−γt

be the real stochastic discount factor, the first-order condition for the consumer reduces to

Et
[

1 +R

πt+1

· zt+1

zt

]
= 1, (8)

along with the transversality condition8

lim
s→∞

Et
[

Bt+szt+s
Pt+s(1 +R)s

]
= 0

The government uses direct lump-sum taxes and new debt to repay its existing obligations every

period, subject to the budget constraint (1). In equilibrium, the transversality condition is

necessary to ensure that consumers are willing to hold debt, which leads to an intertemporal

budget constraint (the core equation of FTPL)

Bt

Pt
= Et

∞∑
s=0

[
zt+s
zt

τt+s

]
. (9)

This economy is a textbook version of the models used to illustrate the FTPL. The present

value of future primary surpluses must be well defined in a competitive equilibrium, since the

transversality condition is necessary for household optimization. If taxes are set exogenously in

real terms, the present value pins down the price level both in period 0 and in all subsequent

periods, as long as the present value itself is positive as of time 0 (otherwise no equilibrium would

exist with B0 > 0).

The only difference with the standard treatment is the observation that equation (9) does not

rule out the possibility that (5) and (7) hold as well. In particular, while the present value of

taxes has to be positive, it is quite possible that E(τt+s) is negative in all periods. We illustrate

this possibility in Appendix A by considering a specific endowment process and fiscal policy for

which government debt is risk free in real terms, equation (5) holds, and expected taxes are

always negative.

8For a discussion of the necessity of transversality conditions in stochastic environments, see Kamihigashi [17].
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4 Dynamic Inefficiency

While the present value of government surpluses was well defined in the previous section, we

now turn to environments where this is no longer the case. In this section, we illustrate the

implications of the FTPL in dynamically inefficient economies. We work with a simple model

of overlapping-generations economies where people live for two periods, based on Sargent [27],

chapter 7. This setup is useful to obtain analytical results that readily generalize to more complex

environments in which other frictions imply dynamic inefficiency.

We consider a pure exchange economy populated by overlapping generations of constant size,

normalized to 1. Each generation lives for two periods. To further keep notation simple, we

assume that the endowment is constant over time, and we abstract from any uncertainty. The

income of each household is wy when young and wo when old. Households have preferences given

by

U(cyt , c
o
t+1), (10)

where cyt (cot ) is consumption by the young (old) in period t. The only asset in the economy is

one-period government debt, as introduced in Section 2. In period 0, there is an initial stock of

nominal debt B0. As in the previous section, the government sets a constant nominal interest

rate R. Taxes are raised in a real amount τt from the old;9 this is a transfer if τt < 0.

The budget constraint for the generation born in period t is given by

Ptc
y
t +

Bt+1

1 +R
≤ Ptw

y, (11)

Pt+1c
o
t+1 ≤ Pt+1(w

o − τt+1) +Bt+1. (12)

The old cohort in period 0 simply consumes all of its after-tax endowment and its savings:

P0c
o
0 = P0(w

o − τ0) +B0 (13)

9Our results do not depend on the way taxes are allocated across generations, as long as the allocation is fixed

over time. Of course, the range of parameters for which dynamic inefficiency arises, with its implications for the

FTPL, do depend on this allocation.
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With a constant nominal rate R, the real interest rate in the economy between periods t and

t+ 1 is

1 + rt+1 := (1 +R)
Pt
Pt+1

, (14)

the problem of maximizing (10) subject to (11) and (12) yields a (real) saving function f(1+rt+1).

We assume that U is strictly increasing in both arguments, strictly quasiconcave, continuously

differentiable, that consumption when young and old are gross substitutes, and that Inada con-

ditions apply. Under these assumptions, f is strictly increasing in the real interest rate, which

allows us to invert the function and obtain the equilibrium real interest rate as a function of sav-

ings by the young: rt+1 = r(st+1), where st+1 = cyt −wy. Since the growth rate of this economy is

normalized to zero, we are interested in the case in which f(1) > 0, or, equivalently, r(0) < 0:10

young households have a sufficient need to save for their old age that they are willing to do so

even at a zero interest rate, which allows for dynamically inefficient equilibria with positive debt

to arise. The government budget constraint in period t is given by (1).

A competitive equilibrium of this economy is given by a sequence {cyt , cot , Pt, rt, Bt+1}∞t=0 such

that the households maximize their utility subject to their budget constraints, the government

budget constraint holds in each period t, the definition of real rate (14) applies, and markets

clear, i.e.,

Ptf(1 + rt+1) = Bt+1/(1 +R). (15)

We compute competitive equilibria following Sargent [27]. Define πt+1 := Pt+1/Pt to be the

gross inflation rate between t and t+ 1. Combining equations (1), (14), and (15), an equilibrium

must satisfy the following difference equation:

f(1 + rt+1) = (1 + rt)f(1 + rt)− τt, t ≥ 1 (16)

with an initial condition

f(1 + r1) =
B0

P0

− τ0. (17)

10If preferences satisfy Inada conditions, this will necessarily happen provided the endowment when young is

sufficiently larger than the endowment when old.
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It is easier to analyze this equation in terms of the savings by the young, which gives

st+1 = (1 + r(st))st − τt t ≥ 1 (18)

and

s1 =
B0

P0

− τ0. (19)

We concentrate our attention to the case of constant taxes, τt = τ , t ≥ 0, in which the

difference equation is time invariant and clearer results can be established analytically.

Proposition 1. • If τ > 0, the difference equation (18) admits exactly two steady states,

one with positive and one with negative savings.

• If τ = 0, the difference equation (18) admits exactly two steady states, one with zero and

one with positive savings.

• If τ < 0, there generically exists an even number of steady states, all of which feature

positive saving. If τ is sufficiently close to zero, the number of steady states is two, and if

it is sufficiently negative it is zero (no steady states exist).

Proof. A steady state s̄ requires r(s̄)s̄ = τ . The Inada conditions imply lims→wy r(s) = ∞

and lims→−∞ r(s) = −1, which, in turn, means that lims→wy r(s)s = lims→−∞ r(s)s = ∞.

Furthermore,
d[r(s)s]

ds
= sr′(s) + r(s).

Thus, sr(s) is monotonically increasing when both s and r(s) are positive, and monotonically

decreasing when they are both negative. sr(s) = 0 when either s = 0 or r(s) = 0. Since r(0) < 0

and r is increasing, r(s) = 0 occurs exactly at one point, at a value ŝ > 0, which proves the

statement for the case in which τ = 0. For τ > 0, the derivative and limits above imply that there

exists exactly one steady state in (−∞, 0) and one in (ŝ,∞), which again proves the relevant

statement. Finally, for τ < 0, we know sr(s) > τ for all values of s ∈ (−∞, 0] ∪ [ŝ, wy). By

continuity, the number of steady states in the interval (0, ŝ) must be generically even.11 We can

11For a measure-zero set of values of τ , sr(s) will have a tangency point to τ , in which case an odd number of

steady states can occur. Proposition 2 applies to this case if one interprets the tangency point as two coincident

steady states.
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also remark that, again by continuity, the number of steady states for τ < 0 but sufficiently

close to zero must be exactly two (as in the case of τ = 0), and no steady state will exist if τ is

sufficiently negative, since sr(s) attains an interior minimum, which completes the proof.

To complete the characterization of the equilibria, the following proposition analyzes the

dynamics of the system away from the steady state.

Proposition 2. • If no steady state of the difference equation (18) exists, then st+1 is mono-

tonically increasing and it would eventually exceed wy, where the difference equation ceases

to be defined: hence, no competitive equilibrium exists.

• Let there be 2N steady states, ordered (s̄1, . . . , s̄2N). If the initial saving rate is s1 < s̄2,

then st converges monotonically to s̄1. If N > 1 and s1 ∈ (s̄2k, s̄2k+2), k = 1, ...N − 1, st

converges monotonically to s̄2k+1. Finally, if s1 > s̄2N , then st is monotonically increasing

and eventually exceeds wy, which implies that no equilibrium exists for such an initial

condition.

Proof. First, lims→wy r(s)s = ∞ (or lims→−∞ r(s)s = ∞), along with continuity, implies that

st+1 > st always if no steady state exists. In this case, equilibrium would require a monotonically

increasing sequence {st}∞t=1, which cannot converge, because any convergence point would have

to be a steady state. Since {st}∞t=1 is bounded by the endowment wy, a contradiction ensues,

and no equilibrium can exist.

When 2N steady states exist, the same limits imply st+1 > st when st < s̄1, st > s̄2N , or

st ∈ (s̄2k, s̄2k+1), k = 1, . . . , N − 1. Conversely, st+1 < st when st ∈ (s̄2k−1, s̄2k), k = 1, . . . , N .

Furthermore, given any steady state s̄i, we have

st+1 = st + r(st)st − τ = st + r(st)st − r(s̄i)s̄i.

For st > s̄i,

st+1 = st + r(st)st − r(s̄i)s̄i > st + r(s̄i)(st − s̄i) > s̄i

with the converse being true for st < s̄i. Hence given any initial condition s1, the sequence of

saving will never “jump over” a steady state, but rather it will monotonically converge to an
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odd-numbered steady state. The exception is the case in which s1 > s̄2N , in which the sequence

increases monotonically up to the point at which no solution exists.

Propositions 1 and 2 describe the behavior of the economy given s1; more specifically, provided

τ is not too negative, they show that a continuum of values of s1 ∈ (−∞, s̄MAX] are consistent

with a competitive equilibrium, where s̄MAX is the largest steady state of the difference equation.

The economic intuition is straightforward. In order for young households to find it optimal

to choose a lower value of s, the interest rate must be lower as well. When taxes are positive,

a unique steady state with positive saving and positive interest rates exists: above it, govern-

ment debt dynamics become explosive. However, if real debt starts below this steady state, it

decreases and eventually becomes negative. The economy converges to another, dynamically

inefficient steady state: here, the interest rate is negative, so that households borrow more from

the government when young than they will repay in their old age, and taxes are exactly sufficient

for the government to restore its asset position to lend to the subsequent generation. The ex-

istence of this second steady state is the key difference from the standard, representative-agent

economy, in which the steady-state interest rate must necessarily be positive.

While in the representative-agent economy it is impossible for debt to have positive value

when τ ≤ 0 for sure, this is not the case in the overlapping-generation economy, where dynamic

inefficiency implies that money (or unbacked debt) can have value: hence, provided τ is not too

negative, the economy can still admit positive values of debt.

In order to fully characterize the set of competitive equilibria of the economy, the last step is

to use the initial condition (19) to relate saving s1 to the initial price level, P0. We obtain

B0

P0

= τ + s1.

Assuming that the economy starts with positive values of government debt and that s̄MAX+τ > 0,

the requirement that s1 ∈ (−∞, s̄MAX] implies that there exists a continuum of equilibria indexed

by the initial price level, with12

P0 ∈ [(s̄MAX + τ)/B0,∞). (20)

12The condition s̄MAX + τ > 0 is an implicit characterization, since s̄MAX is itself a function of τ . However,

from proposition 1, we know that s̄MAX > 0, and it is straightforward to prove that it is a decreasing function of
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Equation (20) proves that the FTPL breaks down in our overlapping-generations economy: even

with a fixed nominal interest rate and a fixed amount of real taxes, a continuum of possible

price levels emerge. In Woodford [32], the FTPL explicitly appears as a way of selecting among

equilibria in monetary economies, to remedy the fact that the monetary side alone typically does

not achieve global uniqueness of an equilibrium. However, in overlapping-generations economies

in which dynamic inefficiency is possible, government debt itself is akin to money, and hence the

original multiplicity reemerges.

With a continuum of possible equilibrium price levels, we cannot rely on comparative statics

for tight predictions on the inflationary consequences of lowering τ , providing a cautionary tale

for using fiscal policy as a substitute for monetary policy to achieve a desired price target. While

uniqueness fails in our environment, equation (20) still imposes a lower bound on prices, so that

the FTPL is not completely devoid of content even in a dynamically inefficient economy.

Remark 1. A possible criticism of the analysis above is that the general specification of the

FTPL does not require that a sequence of real taxes should be independent of the initial price

level, but rather that the present value of the sequence should be. With the possibility of dynamic

inefficiency, computing present values becomes problematic, because they may not be well defined.

However, we can easily construct an example in which even this version of the FTPL fails.

Specifically, consider a sequence in which τ0 > 0 and τt = 0, t > 0. For this sequence, the

present value of taxes is always τ0, independently of the initial price level, and yet there exist a

continuum of equilibria indexed by

P0 ∈ [(s̄MAX
τ=0 + τ0)/B0,∞),

where the subscript to s̄MAX makes it explicit that it refers to the (maximal) steady state of the

economy with no taxes (since taxes will indeed be zero from period 1 onwards).

Remark 2. The two-period overlapping-generations economy and our assumptions on f imply

relatively that all deterministic equilibria feature monotone dynamics. By relaxing these assump-

τ . Hence, s̄MAX + τ > 0 will always hold for τ ≥ 0, and also for τ < 0, provided it is not too negative. Finally,

note that there is a range of negative values of τ for which steady states exist but s̄MAX + τ ≤ 0: for these values,

competitive equilibria would exist for negative initial amounts of debt, but none exists if B0 > 0.
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tions, it would be possible to obtain cycles or even chaotic dynamics. An early survey of these

possibilities appears in Woodford [31]. Furthermore, in a stochastic environment, sunspot equi-

libria would emerge. Our conclusion is robust to these more exotic environments: specifying an

exogenous path for real taxes is insufficient to pin down the initial price level, and the FTPL

breaks down.

5 Debt as a Source of Liquidity

In the previous section, government debt bears a low rate of return because households have a

large desire to save and there are no other assets that would allow them to earn a better rate of

return.13 Here, we study an economy which is dynamically efficient and in which private assets

pay a rate of return which is higher than the growth rate of the economy (normalized to zero);

government debt pays a lower rate of return instead because it plays a special liquidity role,

allowing some transactions which cannot be completed by exchanging private assets. In common

with the previous section, government debt has itself the characteristics of money, and the only

difference is the role money plays.

We develop our analysis in the context of the model developed by Lagos and Wright [19]; the

analysis would be similar if we considered a cash-in-advance model, or alternative models where

debt facilitates transactions and/or relaxes liquidity constraints.

5.1 The Basic Environment

We consider an economy populated by a continuum of identical infinitely-lived households and

a government. Each period is divided into two subperiods.

In the first subperiod (the “morning”), households disperse in bilateral anonymous markets,

where they have an opportunity to buy a good that they like with probability χ ∈ (0, 1) and they

have an opportunity to produce the good that the other party likes with the same probability.

13As is well known, similar results apply even if physical capital were present, as long as it is subject to a

sufficiently decreasing rate of return.
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Double-coincidence meetings are ruled out. In these meetings, private credit and privately-issued

assets cannot be recorded and/or recognized: only government debt can be used in exchange for

the desired good. We assume that buyers make a take-it-or-leave-it offer to the sellers, which,

given the preferences below, is equivalent to competitive pricing.14

In the second subperiod (the “evening”) a centralized market opens, where a good is traded

that all households value and can produce. In this market, a record-keeping technology is present,

and households can trade the evening good, privately-issued claims, and government debt. The

government levies taxes according to an exogenous real sequence {τt}∞t=0, repays maturing debt,

and supplies new nominally risk-free debt at a set interest rate R. In Appendix B, we add money

paying no interest, so that R is the opportunity cost of holding money vs. government debt.

Preferences of each household are given by

E0

∞∑
t=0

βt [u(qt)− nt + ct − yt] ,

where qt is the consumption of the morning good, u is strictly increasing and strictly concave

with u(0) = 0, ct is the consumption of the evening good, and nt and yt are the production of

the morning good and evening good, respectively. Production enters negatively in the utility

function because it requires labor effort. We assume that there exists q∗ ∈ (0,+∞) such that

u′(q∗) = 1. We will concentrate on equilibria where aggregates are deterministic, hence the

expected value is taken with respect to the idiosyncratic history of matches encountered by a

household.

5.2 Characterizing the Economy

Let Wt(b, a) be the value for an agent who enters the centralized market with b units of bonds

and a units of private claims, and let Vt(b, a) be the value of the same position upon entering

the decentralized market. We have

Wt(b, a) = max
c,y,b′,a′

{c− y + βEtVt+1(b
′, a′)} s.t. (21)

14Similar results would apply to different bargaining protocols.
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Ptc+
a′

1 +Rp
t

+
b′

1 +R
≤ Pt(y − τt) + a+ b, (22)

a′ ≥ −aPt, (23)

and

b′ ≥ 0. (24)

Pt is the price of goods in term of nominal claims in the centralized market, and Rp
t is the

nominal interest rate on private claims between periods t and t + 1. Equation (23) imposes a

borrowing limit on households so that they cannot engage in Ponzi schemes; equation (24) bans

naked short selling of government debt. While privately-issued claims and government bonds are

perfect substitutes when entering into the centralized market, the two assets are different in the

decentralized market, and equation (24) formalizes the constraint that only the government can

issue the latter.

The solution to maximizing (21) subject to (22), (23), and (24) yields

Wt(b, a) = Ŵt +
a+ b

Pt
, (25)

where Ŵt depends on subsequent choices, but is independent of the current state. When buyers

and sellers meet in the decentralized market, in any meeting in which buyers exchange b̃ units

of government bonds for q̃ units of goods, equation (25) implies that the sellers’ participation

constraint is

− q̃ + b̃/Pt ≥ 0. (26)

Since buyers make a take-it-or-leave-it offer, equation (26) is equivalent to a “bonds-in-advance”

constraint in which buyers can purchase the good at the linear price Pt (the same price that will

prevail in the centralized market), up to their endowment of government bonds.

Using equation (26), and exploiting the fact that all the surplus from decentralized trade is

appropriated by the buyers, the value function at the beginning of the period, before it is known

who will be a seller, who will be a buyer, and who will not trade, is given by

Vt(b, a) = Wt(b, a) + χmax
q

[u(q)− q] = Ŵt +
a+ b

Pt
+ χmax

q
[u(q)− q], (27)
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subject to

Ptq ≤ b. (28)

It is straightforward to verify that ∂Vt(b,a)
∂b

= 1
Pt

for any b > Ptq
∗ and ∂Vt(b,a)

∂b
= χu′(b/Pt) + (1 −

χ)(1/Pt) for any b < Ptq
∗, and that ∂Vt(b,a)

∂a
= 1

Pt
always. Taking this into account, the necessary

and sufficient conditions for optimality in maximizing (21) subject to (22), (23), and (24) are

given by
β(1 +Rp

t )Pt
Pt+1

= 1 (29)

and
Pt+1

β(1 +R)Pt
− 1 = χ

[
max

{
u′
(
Bt+1

Pt+1

)
, 1

}
− 1

]
. (30)

Unless households are satiated with liquidity (Bt+1/Pt+1 ≥ q∗), the rate of return on government

bonds will be lower than the one on private assets, and it could even be negative in real terms.

5.3 Does the FTPL Hold when Debt Provides Liquidity?

We can invert equation (30) to obtain the demand for real bonds as a correspondence of the real

interest rate on government debt, which yields the same equation as (15) for the overlapping-

generations economy economy, with f defined as

f(1 + rt+1) :


= 1

1+rt+1
(u′)−1

[
1

β(1+rt+1)
−(1−χ)

χ

]
for rt+1 < 1/β − 1

∈ [(u′)−1(1),∞) for rt+1 = 1/β − 1.

(31)

Since we are interested in equilibria where the real rate on government debt is below the growth

rate of the economy (zero, in our case), a necessary condition is that f(1) > 0, as in the OLG

economy, and we assume this to be the case: the demand for liquidity must be enough for house-

holds to be willing to hold government debt even at a zero real interest rate. Furthermore, no

equilibrium is possible if rt+1 > 1/β−1, since households would have an incentive to accumulate

indefinite savings at that interest rate.

With this definition of f , an equilibrium is characterized by the same difference equation as

in the previous section, which is (16) and (17) in terms of the interest rate, and (18) and (19) in

terms of real purchases of government bonds.
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While the equilibria of the two economies are described by the same difference equation, so

that several results will be similar, nonetheless some important differences must be noted:

• The domain of st is different: in an overlapping-generations economy, st can take values

in (−∞, wy), while in the liquidity economy its values must be contained in [0,∞). While

the difference at the top has no effect on the results, the inability to borrow from the

government has important implications for equilibrium selection. This is not surprising,

since we encountered in the previous section several instances in which the stable steady

state of the difference equation is negative.

• In the overlapping-generations economy, r(st) approaches infinity as st → wy; in contrast,

here r(st) is constant at 1/β − 1 when st ≥ βq∗.

• In the overlapping-generations economy, r(st) is finite at st = 0. In contrast, r(st) may

approach −1 at st = 0 if u satisfies Inada conditions.

To characterize the set of equilibria, we now study the steady states and convergence properties

of the difference equations, as we did in Propositions 1 and 2 for an OLG economy.

Proposition 3. • If τ > 0, the difference equation (18) admits exactly one steady state, with

positive savings.

• If τ = 0, the difference equation (18) admits exactly two steady states, one with zero and

one with positive savings.

• If τ < 0, there generically exists an even number of steady states, all of which feature

positive saving. If τ is sufficiently close to zero, the number of steady states is two, and if

it is sufficiently negative it is zero (no steady states exist).

Proof. As in Proposition 1, a steady state s̄ requires r(s̄)s̄ = τ , and sr(s) is monotonically

increasing when both s and r(s) are positive. We also know r := lims→0 r(s) ≥ −1, with equality

if limq→0 u
′(q) =∞, and r(s) = 1/β − 1 for s ≥ βq∗, so that lims→∞ sr(s) =∞. sr(s) = 0 when

either s = 0 or r(s) = 0. From f(1) > 0 we know r(0) < 0, so r(s) = 0 occurs exactly at one
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point, at a value ŝ > 0, which proves the statement for the case in which τ = 0. For τ > 0, the

monotonicity properties of sr(s) and its limits imply that there exists exactly one steady state,

in (ŝ,∞), which again proves the relevant statement. Finally, for τ < 0, we know sr(s) > τ for

all values of s ∈ [ŝ,∞), and at s = 0. By continuity, the number of steady states in the interval

(0, ŝ) must be generically even.15 Continuity also implies the remaining properties of the last

bullet.

Away from a steady state, the dynamics are described in the following proposition:

Proposition 4. • If no steady state of the difference equation (18) exists, then st+1 is mono-

tonically increasing and government debt eventually explodes exponentially, violating a

household’s transversality condition, which cannot happen in an equilibrium.

• If τ > 0, such that a unique steady state s̄ exists, then for s1 > s̄, {st+1}∞t=0 is monotonically

increasing and government debt eventually explodes exponentially, violating a household’s

transversality condition. For s1 < s̄, {st+1}Tt=0 is monotonically decreasing until sT+1[1 +

r(sT+1)]− τ < 0, at which point the difference equation no longer has a solution.

• Let there be 2N steady states, ordered (s̄1, . . . , s̄2N). If the initial saving rate is s1 < s̄2,

then st converges monotonically to s̄1. If N > 1 and s1 ∈ (s̄2k, s̄2k+2), k = 1, ...N − 1,

st converges monotonically to s̄2k+1. Finally, if s1 > s̄2N , then government debt eventually

explodes exponentially, violating a household’s transversality condition.

Proof. First, lims→∞ r(s)s = ∞, along with continuity, implies that st+1 > st always if no

steady state exists. In this case, equilibrium would require a monotonically increasing sequence

{st}∞t=0, which cannot converge, since any convergence point would have to be a steady state.

Once st ≥ βq∗, the difference equation becomes st+1 = st/β−τt+1, so that limt→∞ st+1/st = 1/β.

The household transversality condition requires

lim
t→∞

βtu′
(

max

{
Bt

Pt
, q∗
})

Bt

Pt
= 0.

15Footnote 11 applies here as well.
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For st ≥ βq∗, Bt+1

Pt+1
≥ q∗, hence exponential growth in st at a rate β would not be optimal from

the households’ perspective. The same reasoning applies if τ > 0 and s1 > s̄, or if τ ≤ 0 and

s1 ≥ s̄2N .

When 2N steady states exist, continuity and the boundary properties of sr(s) at s = 0

and s = ∞ imply st+1 > st when st < s̄1, st > s̄2N , or st ∈ (s̄2k, s̄2k+1), k = 1, . . . , N − 1.

Conversely, st+1 < st when st ∈ (s̄2k−1, s̄2k), k = 1, . . . , N . The rest of the proof is identical to

Proposition 2.

While in the OLG economy a continuum of initial values of s1 is consistent with an equilibrium

(provided τ was such that an equilibrium exists), for the economy with liquidity this is only true

if τ ≤ 0. When τ > 0, a unique value of s1 (the steady state s̄) is consistent with an equilibrium,

so that the FTPL applies and we can recover the price level uniquely from the condition

B0

P0

= τ + s1. (32)

However, when τ > 0, the steady state is such that s̄r(s̄) > 0, which implies r(s̄) > 0: the

real interest rate on government debt is necessarily positive (above the zero growth rate of

the economy). The FTPL would hold in this case, but it negates the premise of our paper.

This observation has important implications when evaluating the effectiveness of fiscal policy

to fight deflation. According to the standard FTPL, lowering τ will increase prices.16 Hence,

a commitment to smaller fiscal revenues will lead to an immediate jump to higher prices. This

policy prediction ceases to be true in an economy in which government debt offers liquidity

services and the real interest rate is negative. 17 As discussed in Section 2, observing positive

debt and a persistently negative interest rate in this economy is by itself evidence that households

already expect primary deficits, at least in the long run, and that government debt retains positive

value only because it also provides liquidity services.18

16In our perfect foresight economy, lowering τ corresponds to a surprise revaluation of government debt, and is

subject to Niepelt’s [25] criticism. However, the same result applies in an economy in which τ is ex ante stochastic

and we are comparing across different realizations. See Daniel [12].
17More precisely, what is relevant is whether the interest rate is negative asymptotically, since our proofs rely

on limiting dynamics of the difference equation.
18A knife-edge situation arises for time-varying paths of taxes in which τt > 0 (at least asymptotically) but

22



When τ ≤ 0, the FTPL breaks down in the same way it did in the overlapping-generations

economy. A continuum of values of s1 ∈ [0, s̄MAX] are consistent with a competitive equilibrium.

Unless the economy starts at the highest steady state s̄MAX, it converges to a lower steady state,

which involves positive debt if τ < 0 and no debt if τ = 0. Correspondingly, if the economy starts

with positive values of government debt and sMAX + τ > 0, a continuum of initial levels of prices

is consistent with an equilibrium, as described by equation (20); the same considerations about

comparative statics and the presence of a lower bound for prices that we discussed in Section 4

apply here as well. All of these results are reminiscent of the properties of equilibria with money-

supply rules in cash-in-advance economies, as in Matsuyama [23, 24] or Woodford [32]. This is

not surprising, since debt plays the same role as fiat money for this environment.19

6 Conclusion

The FTPL is not a robust equilibrium selection criterion when the interest rate is persistently

below the growth rate of the economy: whether the theory does or does not hold depends on

the specific economic forces that lead to low rates. In this paper, we have shown three broad

classes of models in which government bonds feature low returns (or low expected returns); the

situation is further complicated by the possibility that these reasons interact with each other.

As an example, government debt might have a specific liquidity role because of its favorable risk

profile; see Caballero and Farhi [6]. In turn, the greater liquidity role of debt in recessions might

limit the need for procyclical fiscal policy to support the debt’s favorable risk profile.20

In this paper, we have concentrated on stationary environments. As Figure 1 showed, the real

return on bonds has varied a great deal in the past decades, and it is possible that interest rates

taxes decay exponentially to zero. Adapting Proposition 1 in Tirole [30], one can then prove that there exists

a unique equilibrium, even though the interest rate is asymptotically negative. The FTPL would hold in this

knife-edge case. We are indebted to Gadi Barlevy for pointing this out.
19Remarks 1 and 2 apply to this section as well. In addition to the papers by Matsuyama and Woodford, the

potential for complicated dynamics is analyzed by Rocheteau and Wright [26] in an environment closer to ours.
20The role of term premia in explaining the recent experience of low interest rates is discussed in Campbell,

Sunderam, and Viceira [7] and Gourio and Ngo [16], among others.
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will exceed the growth rate again in the future. In such richer environments, the validity of the

FTPL would depend on the frequency and duration of low-rate episodes, in ways that could be

analyzed using a regime-switching model such as Chung, Davig, and Leeper [8] and Davig and

Leeper [13]. However, to the extent that policymakers are not confident about their ability to

estimate the true stochastic process of interest rates at a secular frequency, our analysis suggests

caution in relying on fiscal surprises to manage inflation.
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Appendix A A Positive Net Present Value with Negative

Expected Taxes

To discuss a specific example of Section 3, we now posit that the (log) endowment grows stochas-

tically over time according to:

ln yt − ln yt−1 = ln ∆ + εt, (33)

where εt is independent across time, with an exponential distribution with coefficient λ.

By using (33) and imposing market clearing (yt = ct), we rewrite the first-order condition (8)

at time t as

1 =β(1 + rt+1)∆
−γEt [exp{−γεt+1}]

It then follows

1 + rt+1 =
∆γ(γ + λ)

βλ
. (34)

Unlike in the previous two sections, here the level of the real interest rate is independent of

government policy, as long as an equilibrium exists. Given the real interest rate computed

above, equation (5) is satisfied if and only if

∆γ−1(γ + λ)

β(λ+ 1)
< 1. (35)

In order for the household problem to be well defined, parameters must be such that the utility

of consuming the endowment must be finite, which requires

λβ∆1−γ < (γ + λ− 1). (36)

Equations (35) and (36) are mutually compatible only if γ > 1, i.e., when agents are sufficiently

risk averse; in this case, there is a range of values for ∆ and λ such that the downside risk

(the inverse of ∆) and volatility (λ) are sufficiently elevated that (35) hold, but not as large as

yielding infinitely negative utility for the household.

Consider taxes next. It is convenient to define

xt := τt/yt,
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expressing the primary surplus as a share of total endowment. We study a tax rule in which xt

is a function x(εt) only, and government debt is risk free in real as well as in nominal terms. In

order for this to be the case, the price level Pt+1 must be time-t measurable. From equation (9),

Pt+1 =
Bt+1

x(εt+1)yt+1 + Et+1

∑∞
s=2

zt+s
zt+1

τt+s

=
Bt+1

yt+1

[
x(εt+1) + Et+1

∑∞
s=2 β

s−1
(
yt+s
yt+1

)1−γ
x(εt+s)

] . (37)

In equation (37), the assumption of i.i.d. growth and that the primary surplus/GDP ratio is

only a function of the current shock implies that Et+1

∑∞
s=2 β

s−1
[(

yt+s
yt+1

)1−γ
x(εt+s)

]
is a constant,

which we define ρ.21 It is straightforward to prove that ρ must be positive for government debt to

also be positive in the future: intuitively, the present value of future taxes must remain positive.

From equation (1), Bt+1 is predetermined (that is, time-t measurable). Hence, Pt+1 is time-t

measurable if and only if

x(εt+1) = x̄e−εt+1 − ρ. (38)

for some constant x̄ > 0. Iterating on the definition of the present value of taxes ρ, we can

recover how it is related to x̄:

ρ =Et+1

[
βx(εt+2)

(
yt+2

yt+1

)1−γ

+
∞∑
s=3

βs−1
(
yt+2

yt+1

)1−γ

x(εt+s)

]

=βEt+1

[(
x̄e−εt+2 − ρ

)(yt+2

yt+1

)1−γ

+

(
yt+2

yt+1

)1−γ

ρ

]
=
x̄β∆1−γλ

λ+ γ
.

(39)

Combining (38) and (39) and taking expected values, we obtain

Et(xt+1) =
x̄λ

λ+ 1

[
1− β∆1−γ(λ+ 1)

λ+ γ

]
< 0,

where the last inequality follows from assuming that the interest rate is low, more precisely, that

(5) and hence (35) hold. Hence, in this i.i.d. economy, when parameters are such that (5) holds

and fiscal policy stabilizes the debt/GDP ratio, expected taxes one period ahead are always

negative.

21Note however that ρ depends on the function x(.), so we need to solve for both of them jointly in what follows.
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Appendix B A Model with Government Debt and Money

We reconsider the economy of Section 5, but we now explicitly introduce money, so that money

and government bonds circulate at the same time. The environment is the same as in Section 5,

except that government debt is no longer accepted with probability one in bilateral meetings,

but only with probability ζ ∈ (0, 1). In contrast, the central bank issues “money,” which is

perfectly durable, divisible, and intrinsically useless, and yields a zero nominal return. Money

is always recognized in bilateral meetings and can therefore be used with probability one. We

again assume that buyers make a take-it-or-leave-it offer to the sellers, and they make their offer

knowing whether the seller is able to accept only money or both money and bonds in exchange

for goods.

In the centralized market, government debt is now a commitment by the government to

deliver the face value in money at maturity, justifying the assumption that it is nominal debt.

The central bank policy of setting an interest rate R implies that there is an infinitely elastic

supply of new one-period bonds vs. money, at a relative price 1/(1 +R).22

The government budget constraint is now modified to

Bt+1

1 +R
+Mt+1 = Bt +Mt − Ptτt. (40)

B.1 Characterizing the Economy

As before, denote with W and V the value functions when entering the centralized and decen-

tralized market, respectively. They now depend on money holdings m, in addition to government

debt holdings and private claims. We have

Wt(m, b, a) = max
c,y,b′,a′

{c− y + βEtVt+1(m
′, b′, a′)} s.t. (41)

Ptc+
a′

1 +Rp
t

+
b′

1 +R
+m′ ≤ Pt(y − τt) + a+ b+m, (42)

22See Bassetto and Phelan [4] for a discussion of the consequences of imposing limits to the central bank’s

ability to convert new bonds into money and vice versa.
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(23), (24), and

m′ ≥ 0. (43)

As government debt, money cannot be sold short.

The solution to the maximization problem above yields

Wt(m, b, a) = Ŵt +
a+ b+m

Pt
, (44)

where Ŵt is independent of the current state. When entering in the centralized market, private

claims and government bonds are both nominal, so they are a commitment to deliver money

in that market: hence, they are perfect substitutes for money at that stage. This implies that,

when able to accept government bonds, sellers are indifferent between receiving bonds or money.

When buyers and sellers meet in the decentralized market, let l̃ be the amount of nominal

claims that sellers receive in exchange for q̃ units of goods. Depending on the meeting, this can

take the form of money only, if the seller cannot accept government bonds, or both bonds and

money. Equation (44) then implies that the sellers’ participation constraint is

− q̃ + l̃/Pt ≥ 0. (45)

Buyers face again a linear price Pt when making their take-it-or-leave-it offer.

Using equation (26), and exploiting the fact that all the surplus from decentralized trade is

appropriated by the buyers, the value function at the beginning of the period, before it is known

who will be a seller, who will be a buyer, and who will not trade, is given by

Vt(m, b, a) =Wt(m, b, a) + χζ max
q

[u(q)− q] + χ(1− ζ) max
q̂

[u(q̂)− q̂]

=Ŵt +
a+ b

Pt
+ χζ max

q
[u(q)− q] + χ(1− ζ) max

q̂
[u(q̂)− q̂],

(46)

subject to

Ptq ≤ m+ b (47)

and

Ptq̂ ≤ m. (48)
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We thus get ∂Vt(m,b,a)
∂a

= 1
Pt

,

∂Vt(m, b, a)

∂b
=


1
Pt

if m+ b > Ptq
∗

χζu′
(
m+b
Pt

)
+ (1− χζ)(1/Pt) otherwise,

and

∂Vt(m, b, a)

∂m
=


1
Pt

if m > Ptq
∗

χ(1− ζ)u′
(
m
Pt

)
+ (1− χ(1− ζ))(1/Pt) if m ∈ (Ptq

∗ − b, Ptq∗)

χζu′
(
m+b
Pt

)
+ χ(1− ζ)u′

(
m
Pt

)
+ (1− χ)(1/Pt) otherwise.

Taking this into account, the necessary and sufficient conditions for optimality in maximizing

(41) subject to (42), (23), (24), and (43) are given by (29),

Pt+1

β(1 +R)Pt
− 1 = χζ

[
max

{
u′
(
Mt+1 +Bt+1

Pt+1

)
, 1

}
− 1

]
, (49)

and

Pt+1

βPt
−1 = χζ

[
max

{
u′
(
Mt+1 +Bt+1

Pt+1

)
, 1

}
− 1

]
+χ(1−ζ)

[
max

{
u′
(
Mt+1

Pt+1

)
, 1

}
− 1

]
. (50)

We will assume that R > 0, for otherwise money and government bonds would have the same

opportunity cost and households would only hold bonds if they are satiated with liquidity. In this

case, the rate of return on money is always lower than the rate of government bonds; equations

(49) and (50) then imply that households will never find it optimal to accumulate enough money

so as to buy q∗ with money only. Government bonds will have a lower rate of return than

private assets when liquidity is scarce even in meetings where money and bonds are traded

((Mt+1 +Bt+1)/Pt+1 ≤ q∗).

We obtain an excess demand for money relative to government bonds

Pt+1

β(1 +R)Pt
− Pt+1

βPt
= −χ(1− ζ)

[
u′
(
Mt+1

Pt+1

)
− 1

]
(51)

which means that the bonds carry a liquidity premium over money.

We invert equation (49) to obtain the demand for total liquidity (money plus bonds), which

is given by

Bt+1 +Mt+1

Pt(1 +R)
= f(1 + rt+1) :=

1

1 + rt+1

(u′)−1

[
1

β(1+rt+1)
− (1− χζ)

χζ

]
. (52)
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Using this equation and (40), we obtain a difference equation

f(1 + rt+1) = (1 + rt)f(1 + rt)−
R

1 +R

Mt+1

Pt
− τt. (53)

with an initial condition

f(1 + r1) =
B0 +M0 −RM1/(1 +R)

P0

− τ0.

Equation (53) differs from equation (16) due to the presence of seigniorage revenues. If taxes are

set so as to offset these revenues, i.e., if

τt = τ − R

1 +R

Mt+1

Pt
, (54)

the difference equation coincides with the cashless economy and the same results apply.23 In this

case, given an equilibrium path for the real interest rate {rt+1}∞t=0 which satisfies the difference

equation

f(1 + rt+1) = (1 + rt)f(1 + rt)− τ, t ≥ 1

along with the initial condition

f(1 + r1) =
B0 +M0

P0

− τ,

the additional equilibrium condition, which is equation (51), can be used to determine real (and

nominal) money balances.24

23Equation (54) assumes that the fiscal authority observes and can react to Mt+1 and Pt. These variables

are observed in the centralized (evening) market of period t, where taxes are also levied. The issue of joint

determination of macroeconomic aggregates and policy variables is at the heart of complications discussed in

Bassetto [2] and [3]. This is a side issue from the perspective of the current paper. However, for completeness,

(54) is a well-specified government strategy under the following description of the centralized market. First, the

government repays maturing bonds in money. Second, households participate in the goods market according to

some Walrasian mechanism (e.g., an auction), where money is used as numeraire. Households then purchase

new government bonds with money at the set nominal rate R. At this stage, households in the aggregate are

left with Bt + Mt − Bt+1/(1 + R) units of money. The government sets and collects nominal taxes equal to

Ptτt = Ptτ(1 +R)−R[Bt +Mt−Bt+1/(1 +R)], to be settled in money. Households are left in the aggregate with

Mt+1 = Bt +Mt −Bt+1/(1 +R)− Ptτt, and simple algebra shows that (54) holds. Finally, an auction opens for

private borrowing and lending.
24Note that knowing rt+1 is equivalent to knowing πt+1, given the nominal interest rate R and the definition

of real rate (14).
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