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On some functionals of the first passage times
in models with switching stochastic volatility

Pavel V. Gapeev∗† Oliver Brockhaus‡ Mathieu Dubois‡

We compute some functionals related to the joint generalised Laplace transforms of
the first times at which two-dimensional diffusion-type Markov processes exit half strips.
It is assumed that the state space components are driven by constantly correlated Brow-
nian motions and the dynamics of the coefficients are described by a continuous-time
Markov chain. The method of proof is based on the solutions of the equivalent boundary-
value problems for systems of elliptic-type partial differential equations for the associated
value functions. The results are illustrated on several two-dimensional continuous mean-
reverting or diverting models of switching stochastic volatility.

1. Introduction

The main aim of this paper is to derive closed-form expressions for the functionals in (2.14)-
(2.15) of the first passage times of the two-dimensional diffusion-type process (S,Q) defined
in (2.1)-(2.2). These functionals are related to the joint generalised Laplace transforms in
(2.6)-(2.7) and (2.8)-(2.9) of the first times at which the continuous process (S,Q) exits certain
regions forming half strips. It is assumed that the stochastic differential equations in (2.1)-(2.2)
for (S,Q) are driven by constantly correlated standard Brownian motions and the local drift
and diffusion coefficients of Q are switching according to the dynamics of a continuous-time
Markov chain. Note that such a model can be used for the description of dynamics of the
risky asset prices with stochastic volatility rates which play a central role in the modelling of
financial assets (see, e.g. Fouque et al. [12], Kallsen [25] and Gatheral [17] for an overview).
For simplicity of presentation, we assume that the process Q solving the equation in (2.2)
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has a linear diffusion coefficient that particularly corresponds to the Black-Karasinski or Cox-
Ingersoll-Ross models which are usually used for modelling of dynamics of interest or volatility
rates (see, e.g. Shiryaev [35; Chapter III, Section 4a] for an overview). In the latter case, the
process (S,Q) forms the Stein-Stein or Heston model of stochastic volatility.

The models of financial markets in which the parameter values are switching according to
the dynamics of continuous-time Markov chains have recently found a considerable amount of
applications. For instance, the closed-form solutions to the perpetual American lookback and
put option pricing problems were obtained by Guo [18] and Guo and Zhang [19] in an extension
of such a diffusion model in which both the drift and volatility coefficients of the underlying asset
price process are switching between two constant values, according to the change in the state of
the observable continuous-time Markov chain. Jobert and Rogers [22] considered the perpetual
American put option problem within an extension of that model to the case of several states for
the Markov chain and solved numerically the corresponding problem with finite expiry. In the
model with a two-state Markov chain and no diffusion part, Dalang and Hongler [6] presented
a complete and essentially explicit solution to a similar problem, which exhibited a surprisingly
rich structure. These results were further extended by Jiang and Pistorius [21], who studied the
perpetual American put option problem within the framework of an exponential jump-diffusion
model with observable dynamics of regime-switching behaving parameters. A similar model for
the pricing of European options, in which the underlying dividend process is given by a diffusion
process with Markov-modulated coefficients, was considered by Di Graziano and Rogers [8] (see
also other related references therein).

Mixture models such as the local stochastic volatility model allow to blend features from
different models into a single model. In such models the weight of each model is specified
initially. For example, in the case of local stochastic volatility models this is achieved through
dampening volatility of volatility, (see, e.g. Brockhaus [5; page 85] and the reference therein). In
financial markets, one observes regimes. In other words, asset dynamics may be well described
by a set of parameters initially and by another set of parameters which prevail after a random
time. Regime switching models seem more satisfactory than mixture models since they switch
between different models at random times rather than blending two models into a single largely
homogenous model with fixed proportion.

The joint distribution law of the first hitting times of constant boundaries for two constantly
correlated drifted Brownian motions was obtained by Iyengar [20]. Analytic expressions for
the Laplace transforms of the first passage times of compound Poisson processes over linear
boundaries were computed in Zacks et al. [36] in the case of positive jumps and in Perry et
al. [31]-[30] in certain cases of positive and negative jumps. Kou and Wang [26] and Sepp
[34] derived closed-form expressions for the Laplace transforms of the first hitting times over
constant boundaries for double-exponential jump-diffusion processes. Other related stopping
problems arising from the computation of the Laplace transforms of the first passage times
of more complicated spectrally positive and negative Lévy processes over constant levels were
recently considered by Mijatović and Pistorius [28]. Monte Carlo schemes for the computation of
the distribution of the first exit times of jump-diffusion processes from two-sided intervals in the
general size distribution case were developed in Fernandez et al. [11]. The Laplace transforms
of the first passage times from intervals for mean-reverting and diverting one-dimensional jump-
diffusion processes were recently computed in Gapeev and Stoev [15]. Some functionals related
to the generalised Laplace transforms of the first times at which some two-dimensional jump-
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diffusion processes exit half strips were recently computed in Gapeev and Stoev [16]. In the
present paper, we derive closed-form expressions for the functionals related to the generalised
joint Laplace transforms of the first passage times as stopping problems for two-dimensional
diffusion-type Markov processes with switching coefficients.

It is well known that optimal stopping problems for multi-dimensional continuous-time
Markov processes are analytically more difficult than the corresponding problems for the one-
dimensional ones and their solutions are very rarely found explicitly. Some necessarily multi-
dimensional optimal stopping problems arising mostly from the problems of quickest change-
point detection were studied by Bayraktar and Poor [3] and Bayraktar et al. [4] for discontinu-
ous Poisson processes, Dayanik et al. [7] for mixed jump-diffusion processes with mean-reverting
components, as well as in Gapeev and Shiryaev [13]-[14] and Johnson and Peskir [23]-[24] for
purely continuous diffusion processes. Some analytical results for such optimal stopping prob-
lems were recently obtained by Assing et al. [2]. In the present paper, we obtain closed-form
solutions to the boundary-value problems for systems of elliptic-type partial differential equa-
tions, which are equivalent to the original stopping problems in two-dimensional continuous
models of switching stochastic volatility.

The paper is organised as follows. In Section 2, we first introduce the setting and notation
of the model with a two-dimensional continuous process which has the price of a risky asset
and the (mean-reverting) volatility rate as the state space components. It is assumed that
the driving standard Brownian motions are constantly correlated and the local drift and linear
diffusion coefficients change according to the dynamics of a continuous-time Markov chain.
We define the functionals related to the generalised joint Laplace transforms of the first exit
times from half strips of the two-dimensional diffusion-type process and formulate the equivalent
boundary-value problem for an elliptic-type partial differential operator. In Section 3, we obtain
a closed-form solution to the elliptic partial differential boundary-value problem and show that
the value function represents the product of solutions of the associated ordinary problems. We
derive explicit expressions for the considered functionals in several classical models of switching
stochastic volatility. In Section 4, we show that the solutions to the boundary-value problems
provide the original functionals of the first exit times.

2 Preliminaries

In this section, we introduce the setting and notation in the problem of computation of
some functionals related to the generalised joint Laplace transforms of the first exit times in
diffusion-type models of switching stochastic volatility and formulate the associated boundary-
value problems.

2.1 The model. Let us consider a probability space (Ω,F , P ) supporting two constantly
correlated standard Brownian motions Bi = (Bi

t)t≥0 , i = 1, 2, such that 〈B1, B2〉t = ρt , for
some ρ ∈ (−1, 1) fixed, and a continuous-time Markov chain Θ = (Θt)t≥0 with two states, 0 and
1. Suppose that the processes Bi = (Bi

t)t≥0 , i = 1, 2, and Θ are independent. Assume that Θ
has the initial distribution {1−π, π} , the transition-probability matrix {(λ0e

−(λ0+λ1)t+λ1)/(λ0+
λ1), λ0(1− e−(λ0+λ1)t)/(λ0 +λ1);λ1(1− e−(λ0+λ1)t)/(λ0 +λ1), (λ1e

−(λ0+λ1)t +λ0)/(λ0 +λ1)} , and
the intensity-matrix {−λ0, λ0;λ1,−λ1} , for all t ≥ 0, and some π ∈ [0, 1] and λi > 0, i = 0, 1,
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fixed. In other words, the Markov chain Θ changes its state from j to 1− j at exponentially
distributed times of intensity λi , for every i = 0, 1, which are independent of the dynamics of
the standard Brownian motions Bi , i = 1, 2. Such a process Θ is called a telegraphic signal in
the literature (see, e.g. [27; Chapter IX, Section 4] or [10; Chapter VIII]). Assume that there
exists a process (S,Q) = (St, Qt)t≥0 which provides a (pathwise) unique solution of the system
of stochastic differential equations

dSt = St δσ
2(Qt) dt+ St εσ(Qt) dB

1
t (S0 = s) (2.1)

and

dQt =
(
(1−Θt) β0(Qt) + Θt β1(Qt)

)
dt+

(
(1−Θt) γ0 + Θt γ1

)
Qt dB

2
t (Q0 = q), (2.2)

for some s, q > 0 fixed, where δ ∈ R , ε > 0, and γj ≥ 0, j = 1, 2, are some constants, and
σ(q) > 0 and βj(q) ∈ R , j = 1, 2, are continuously differentiable functions of at most linear
growth on (0,∞) (see, e.g. [27; Chapter IV, Theorem 4.6] and [29; Chapter V, Theorem 5.2.1]
for the existence and uniqueness of solutions of such stochastic differential equations).

Observe that the process S solving the equation in (2.1) admits the representation

St = s exp

(∫ t

0

(
δ − ε2

2

)
σ2(Qu) du+

∫ t

0

εσ(Qu) dB
1
u

)
, (2.3)

for all t ≥ 0. Note that the process (Q,Θ) forms a two-dimensional (strong) Markov jump-
diffusion process, while (S,Q,Θ) provides a three-dimensional Markov jump-diffusion process.
Without loss of generality and because of the nature of the problems as well as the examples
considered below, we can further assume that the state space of the process Q is (0,∞), so
that the state space of the process (S,Q,Θ) is (0,∞)2×{0, 1} . In this case, the process S can
describe the price of a risky asset on a financial market and Q can represent its volatility rate.
Let us finally define the associated with the processes S and Q first passage (stopping) times

τ−a = inf{t ≥ 0 |St ≤ a} and τ+
b = inf{t ≥ 0 |St ≥ b}, (2.4)

as well as
ζ−g = inf{t ≥ 0 |Qt ≤ g} and ζ+

h = inf{t ≥ 0 |Qt ≥ h}, (2.5)

for some 0 < a < b < ∞ and 0 ≤ g < h < ∞ fixed. The main aim in the present paper is
to derive closed form expressions for some functionals related to the generalised joint Laplace
transforms of the random times τ−a , τ

+
b and ζ−g , ζ

+
h .

2.2 The generalised joint Laplace transforms. Let us first introduce the functionals

V 1(a; g, h) and V 2(b; g, h) given by

V 1(a; g, h) = E
[
e
−ηA

τ−a
−κA

ζ+
h I(τ−a <∞, ζ+

h < ζ−g )
]

(2.6)

= E
[
e
−(η+κ)A

τ−a e
−κ(A

ζ+
h
−A

τ−a
)
I(τ−a < ζ+

h < ζ−g )

+ e
−(η+κ)A

ζ+
h e
−η(A

τ−a
−A

ζ+
h

)
I(ζ+

h < ζ−g ≤ τ−a <∞)
]
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and

V 2(b; g, h) = E
[
e
−ηA

τ+
b
−κA

ζ+
h I(τ+

b <∞, ζ+
h < ζ−g )

]
(2.7)

= E
[
e
−(η+κ)A

τ+
b e
−κ(A

ζ+
h
−A

τ+
b

)
I(τ+

b < ζ+
h < ζ−g )

+ e
−(η+κ)A

ζ+
h e
−η(A

τ+
b
−A

ζ+
h

)
I(ζ+

h < ζ−g ≤ τ+
b <∞)

]
,

as well as the functionals V̂1(a; g, h) and V̂2(b; g, h) given by

V̂1(a; g, h) = E
[
e
−ηA

τ−a ∧ζ
+
h
−κA

τ−a ∨ζ
+
h I(τ−a <∞, ζ+

h < ζ−g )
]

(2.8)

= E
[
e
−(η+κ)A

τ−a e
−κ(A

ζ+
h
−A

τ−a
)
I(τ−a < ζ+

h < ζ−g )

+ e
−(η+κ)A

ζ+
h e
−κ(A

τ−a
−A

ζ+
h

)
I(ζ+

h < ζ−g ≤ τ−a <∞)
]

and

V̂2(b; g, h) = E
[
e
−ηA

τ+
b
∧ζ+
h
−κA

τ+
b
∨ζ+
h I(τ+

b <∞, ζ+
h < ζ−g )

]
(2.9)

= E
[
e
−(η+κ)A

τ+
b e
−κ(A

ζ+
h
−A

τ+
b

)
I(τ+

b < ζ+
h < ζ−g )

+ e
−(η+κ)A

ζ+
h e
−κ(A

τ+
b
−A

ζ+
h

)
I(ζ+

h < ζ−g ≤ τ+
b <∞)

]
,

for some η,κ > 0 fixed, where the process A = (At)t≥0 is defined by

At =

∫ t

0

σ2(Qu) du, (2.10)

for all t ≥ 0.
Since the functionals in (2.6)-(2.7) and (2.8)-(2.9) may not generally admit closed-form

expressions, we further consider some modified generalised joint Laplace transforms of the
random times τ−a , τ

+
b and ζ−g , ζ

+
h . For this purpose, let us now assume that the condition

E

[
exp

(
1

2

∫ t∧ζ−g ∧ζ+h

0

ρ2ε2αiσ
2(Qu)

1− ρ2
du

)]
<∞ (2.11)

holds, for all t ≥ 0, where αi , i = 1, 2, are some constants which are specified below. In this
case, the processes (M̃ i

t∧ζ−g ∧ζ+h
)t≥0 , i = 1, 2, with

M̃ i
t = exp

(∫ t

0

ρεαiσ(Qu)

1− ρ2
dB2

u −
∫ t

0

ρ2εαiσ(Qu)

1− ρ2
dB1

u −
1

2

∫ t

0

ρ2ε2α2
iσ

2(Qu)

1− ρ2
du

)
(2.12)

are uniformly integrable martingales. Then, it follows from [32; Chapter VIII, Proposition 1.13]

that the probability measures P̃ i , i = 1, 2, defined by

dP̃ i

dP

∣∣∣∣
F
t∧ζ−g ∧ζ

+
h

= M̃ i
t∧ζ−g ∧ζ+h

, (2.13)
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for all t ≥ 0, are locally equivalent to P on the natural filtration (Ft∧ζ−g ∧ζ+h )t≥0 generated by

the driving processes Bi , i = 1, 2.
By applying the change-of-measure arguments, let us now define the functionals V ∗1 (a; g, h)

and V ∗2 (b; g, h) by

V ∗1 (a; g, h) = E

[
e
−(η+κ)A

τ−a

M̃1
ζ+h

M̃1
τ−a

e
−κ(A

ζ+
h
−A

τ−a
)
I(τ−a < ζ+

h < ζ−g ) (2.14)

+ e
−(η+κ)A

ζ+
h e
−η(A

τ−a
−A

ζ+
h

)
I(ζ+

h < ζ−g ≤ τ−a <∞)

]
= E

[
e
−(η+κ)A

τ−a Ẽ1
[
e
−κ(A

ζ+
h
−A

τ−a
)
∣∣∣Fτ−a ] I(τ−a < ζ+

h < ζ−g )

+ e
−(η+κ)A

ζ+
h E
[
e
−η(A

τ−a
−A

ζ+
h

)
∣∣∣Fζ+h ] I(ζ+

h < ζ−g ≤ τ−a <∞)
]

and

V ∗2 (b; g, h) = E

[
e
−(η+κ)A

τ+
b

M̃2
ζ+h

M̃2
τ+b

e
−κ(A

ζ+
h
−A

τ+
b

)
I(τ+

b < ζ+
h < ζ−g ) (2.15)

+ e
−(η+κ)A

ζ+
h e
−η(A

τ+
b
−A

ζ+
h

)
I(ζ+

h < ζ−g ≤ τ+
b <∞)

]
= E

[
e
−(η+κ)A

τ+
b Ẽ2

[
e
−κ(A

ζ+
h
−A

τ+
b

)
∣∣∣Fτ+b ] I(τ−a < ζ+

h < ζ−g )

+ e
−(η+κ)A

ζ+
h E
[
e
−η(A

τ+
b
−A

ζ+
h

)
∣∣∣Fζ+h ] I(ζ+

h < ζ−g ≤ τ+
b <∞)

]
,

where Ẽi denotes the expectation taken under the probability measure P̃ i , for i = 1, 2.
Taking into account the strong Markov property, we observe that the values in (2.14)-(2.15)

take the form

V ∗1 (a; g, h) = E
[
(1−Θ0)V ∗1,0(S0, Q0) + Θ0V

∗
1,1(S0, Q0)

]
= (1− π)V ∗1,0(s, q) + πV ∗1,1(s, q) (2.16)

and

V ∗2 (b; g, h) = E
[
(1−Θ0)V ∗2,0(S0, Q0) + Θ0V

∗
2,1(S0, Q0)

]
= (1− π)V ∗2,0(s, q) + πV ∗2,1(s, q), (2.17)

for any s, q > 0 and π ∈ [0, 1] fixed. Here, the functions V ∗1,j(s, q) = V ∗1,j(s, q; a; g, h) and
V ∗2,j(s, q) = V ∗2,j(s, q; b; g, h) are defined by

V ∗1,j(s, q) = Es,q,j

[
e
−(η+κ)A

τ−a
(
(1−Θτ−a

)U∗1,0(Qτ−a
) + Θτ−a

U∗1,1(Qτ−a
)
)
I(τ−a < ζ+

h < ζ−g ) (2.18)

+ e
−(η+κ)A

ζ+
h

(
(1−Θζ+h

)W ∗
1,0(Sζ+h

, Qζ+h
) + Θζ+h

W ∗
1,1(Sζ+h

, Qζ+h
)
)
I(ζ+

h < ζ−g ≤ τ−a <∞)
]

and

V ∗2,j(s, q) = Es,q,j

[
e
−(η+κ)A

τ+
b

(
(1−Θτ+b

)U∗2,0(Qτ+b
) + Θτ+b

U∗2,1(Qτ+b
)
)
I(τ+

b < ζ+
h < ζ−g ) (2.19)

+ e
−(η+κ)A

ζ+
h

(
(1−Θζ+h

)W ∗
2,0(Sζ+h

, Qζ+h
) + Θζ+h

W ∗
2,1(Sζ+h

, Qζ+h
)
)
I(ζ+

h < ζ−g ≤ τ+
b <∞)

]
,
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where the functions W ∗
1,j(s, q) = W ∗

1,j(s, q; a) and W ∗
2,j(s, q) = W ∗

2,j(s, q; b), as well as U∗i,j(q),
i = 1, 2, j = 0, 1, are given by

W ∗
1,j(s, q) = Es,q,j

[
e
−ηA

τ−a I(τ−a <∞)
]

and W ∗
2,j(s, q) = Es,q,j

[
e
−ηA

τ+
b I(τ+

b <∞)
]
, (2.20)

as well as
U∗i,j(q) = Ẽi

q,j

[
e
−κA

ζ+
h I(ζ+

h < ζ−g )
]
, (2.21)

for η,κ > 0 fixed, and all s, q > 0 and every j = 0, 1. We denote by Ẽi
y,j and Es,y,j

the expectations with respect to the probability measures P̃ i , i = 1, 2, and P taken under
the assumption that the two-dimensional process (Q,Θ) and the three-dimensional process
(S,Q,Θ) start at (q, j) and (s, q, j) with some s, q > 0 and j = 0, 1, respectively. We finally
note that the stochastic differential equation in (2.2) for the process Y admits the representation

dQt =
(
(1−Θt) β̃i,0(Qt) + Θt β̃i,1(Qt)

)
dt+

(
(1−Θt) γ0 + Θt γ1

)
Qt dB̃

2
t (Q0 = q) (2.22)

with β̃i,j(q) = βj(q)+ρεαiσ(q)γjq , for all q > 0, and every i = 1, 2 and j = 0, 1. Here, by means
of Girsanov’s theorem for diffusion-type processes (see, e.g. [27; Chapter VII, Theorem 7.19]),

the processes B̃i,k = (B̃i,k
t )t≥0 , k = 1, 2, defined by

B̃i,1
t = B1

t and B̃i,2
t = B2

t − ρεαi
∫ t

0

σ(Qu) du (2.23)

are standard Brownian motions such that 〈B̃i,1, B̃i,2〉t = ρt , for all t ≥ 0 and every i = 1, 2.

2.3 The boundary-value problems. By means of standard arguments based on Itô’s
formula (see, e.g. [27; Chapter IV, Theorem 4.4] or [32; Chapter IV, Theorem 3.3]), it can
be shown that the infinitesimal operator Lj(S,Q) of the process (S,Q) from (2.1)-(2.2) under

the probability measure P acts on a bounded function V (s, q) from the class C2,2((0,∞)2)
according to the rule

(Lj(S,Q)V )(s, q) = δσ2(q) s ∂sV (s, q) +
ε2σ2(q)

2
s2 ∂ssV (s, q) (2.24)

+ βj(q) ∂qV (s, q) +
γ2
j q

2

2
∂qqV (s, q) + ρ εσ(q)s γjq ∂sqV (s, q),

for all s, q > 0 and every j = 0, 1. The infinitesimal operator L̃i,jQ of the process Q from (2.22)

under the probability measure P̃ i acts on a function U(q) from the class C2((0,∞)) like

(L̃i,jQ U)(q) =
(
βj(q) + ρεαiσ(q)γj q

)
U ′(q) +

γ2
j q

2

2
U ′′(q), (2.25)

for all q > 0 and every i = 1, 2, j = 0, 1.
In order to find analytic expressions for the unknown value functions from (2.18)-(2.19), let

us use the results of general theory of Markov processes (see, e.g. [9; Chapter V]). We reduce
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the problems of (2.18)-(2.19) for the functions V ∗i,j(s, q), i = 1, 2, j = 0, 1, to the equivalent

boundary-value problems for the operator Lj(S,Q) of the form

(Lj(S,Q)Vi,j − (η + κ + λj)σ
2(q)Vi,j)(s, q) = −λj Vi,1−j(s, q), for s > a or s < b, (2.26)

Vi,j(s, q) = Ui,j(q), for s ≤ a or s ≥ b and g ≤ q ≤ h, (2.27)

Vi,j(s, q) = Wi,j(s, q), for q ≤ g and q ≥ h and s ≥ a or s ≤ b, (2.28)

V1,j(a+, q) = U1,j(q) or V2,j(b−, q) = U2,j(q), for g ≤ q ≤ h, (2.29)

V1,j(s, g+) = W1,j(s, g+) and V2,j(s, h−) = W2,j(s, h−), for s ≥ a or s ≤ b, (2.30)

respectively. Here, the functions Wi,j(s, q), i = 1, 2, j = 0, 1, solve the problems for the
operator Lj(S,Q) of the form

(Lj(S,Q)Wi,j − η σ2(q)Wi,j)(s, q) = 0, for s > a or s < b, (2.31)

W1,j(s, q) = 1, for s ≤ a, and W2,j(s, q) = 1, for s ≥ b, (2.32)

W1,j(a+, q) = 1 and W2,j(b−, q) = 1, (2.33)

for all q > 0, while the function Ui,j(q) solves the boundary value problem for the operator

L̃i,jQ of the form

(L̃i,jQ Ui,j − (κ + λj)σ
2(q)Ui,j)(q) = −λj Ui,1−j(q), for g < q < h, (2.34)

Ui,j(q) = 0, for q ≤ g, and Ui,j(q) = 1, for q ≥ h, (2.35)

Ui,j(g+) = 0 and Ui,j(h−) = 1, (2.36)

for i = 1, 2 and j = 0, 1.
Observe that the continuity conditions of (2.29)-(2.30), (2.33), and (2.36) hold in the cases

in which the processes S and Q can pass continuously through the points a, b and g, h , re-
spectively. On the other hand, for instance, when βi,0(q) = γi,0 = 0 holds, for all q > 0, the
stochastic differential equation in (2.30) and (2.2) for Q does not contain the local drift and
diffusion parts, so that, the process Q remains constant until the Markov chain Θ changes its
state from 0 to 1. In this case, the function U∗i,0(q), i = 1, 2, may be discontinuous at the
boundaries g or h , and thus, the conditions of (2.30) and (2.36) may fail to hold, for j = 0.

3 Solutions to the boundary-value problems

In this section, we derive closed-form expressions for the solutions of the boundary-value
problems associated with the value functions in (2.18)-(2.21).

3.1 Solutions to the system in (2.34)-(2.36). (i) Let us first assume that γj > 0 and
λj > 0 holds, for every j = 0, 1. In this case, since the coupled system of inhomogeneous second-
order linear ordinary differential equations in (2.34) with (2.25) is equivalent to a homogeneous
fourth-order linear ordinary differential equation, we may conclude from the general theory that
the general solutions take the form

Ui,j(q) = Ci,j,1 Ui,j,1(q) + Ci,j,2 Ui,j,2(q) + Ci,j,3 Ui,j,3(q) + Ci,j,4 Ui,j,4(q), (3.1)
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where Ci,j,k , i = 1, 2, j = 0, 1, k = 1, 2, 3, 4, are some arbitrary constants. Here, the functions
Ui,j,k(q), i = 1, 2, j = 0, 1, k = 1, 2, 3, 4, represent the four fundamental positive solutions of
the system in (2.34) with (2.25). Without loss of generality, it can be assumed that Ui,j,k(q), i =
1, 2, j = 0, 1, k = 1, 2, 3, 4, are (strictly) decreasing and increasing (convex) functions satisfying
the properties Ui,j,k(0+) =∞ and Ui,j,k(∞) = +0, for k = 1, 2, as well as Ui,j,k(0+) = +0 and
Ui,j,k(∞) = ∞ , for k = 3, 4, respectively. Moreover, because of the specific structure of the
coupled system of second-order linear ordinary differential equations in (2.34) with (2.25), we
may also assume that the fundamental solutions Ui,j,k(q), j = 0, 1, k = 1, 2, 3, 4, are chosen
such that the equation

(L̃i,0Q Ui,0,k − (κ + λ0)Ui,0,k)(q) (L̃i,1Q Ui,1,k − (κ + λ1)Ui,1,k)(q) = λ0λ1 Ui,0,k(q)Ui,1,k(q) (3.2)

holds, for all g < q < h , and every i = 1, 2 and k = 1, 2, 3, 4.
Observe that, due to the fact that Ui,j,k(q), k = 1, 2, 3, 4, represent a linearly independent

system of functions, for each g < q < h , and every i = 1, 2 and j = 0, 1, we may conclude
from the structure of the system in (2.34) with (2.25) that the equalities

Ci,1−j,k
Ci,j,k

= −
(L̃i,jQ Ui,j,k − (κ + λj)Ui,j,k)(q)

λjUi,1−j,k(q)
(3.3)

hold, for every i = 1, 2, j = 0, 1, and k = 1, 2, 3, 4. Then, by applying the instantaneous-
stopping conditions of (2.36) to the function in (3.1), we obtain that the equalities

Ci,j,1 Ui,j,1(g+) + Ci,j,2 Ui,j,2(g+) + Ci,j,3 Ui,j,3(g+) + Ci,j,4 Ui,j,4(g+) = 0, (3.4)

Ci,j,1 Ui,j,1(h−) + Ci,j,2 Ui,j,2(h−) + Ci,j,3 Ui,j,3(h−) + Ci,j,4 Ui,j,4(h−) = 1 (3.5)

hold, for every i = 1, 2 and j = 0, 1. Hence, we obtain that the candidate solution for Ui,j(q)
in the system of (2.34)-(2.36) admits the representation

Ui,j(q; g, h) = Ci,j,1(g, h)Ui,j,1(q) + Ci,j,2(g, h)Ui,j,2(q) + Ci,j,3(g, h)Ui,j,3(q) + Ci,j,4(g, h)Ui,j,4(q),
(3.6)

where the constants Ci,j,k(g, h), i = 1, 2, j = 0, 1, k = 1, 2, 3, 4, are uniquely determined from
the system of linear equations in (3.3) and (3.4)-(3.5). Note that, in the case of g = 0, we see
that Ci,j,k = 0 should hold in (3.1), for i, k = 1, 2 and j = 0, 1, since otherwise Ui,j(q)→ ±∞
as q ↓ 0, that must be excluded, by virtue of the fact that the function U∗i,j(q) in (2.21) is
bounded. Therefore, we may conclude that the candidate solution has the form of (3.6), where
Ci,j,k(g, h), i = 1, 2, j = 0, 1, k = 3, 4, are uniquely determined by the system of (3.3) and
(3.4)-(3.5).

(ii) Let us now assume that γj > 0, for j = 0, 1, and λ0 > λ1 = 0. In this case, in order
to solve the system of two inhomogeneous second-order linear ordinary differential equations in
(2.34) with (2.25), let us first consider the associated homogeneous equations

γ2
j q

2

2
H ′′i,j(q) +

(
βj(q) + ρεαiσ(q)γj q

)
H ′i,j(q)− (κ + λj)σ

2(q)Hi,j(q) = 0, (3.7)

for every i = 1, 2 and j = 0, 1, the general solution of which takes the form

Hi,j(q) = Ci,j,1Hi,j,1(q) + Ci,j,2Hi,j,2(q), (3.8)
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where Ci,j,k , i, k = 1, 2, are some arbitrary constants. Here, we denote the functions Hi,j,k(q),
i, k = 1, 2, j = 0, 1, as the two positive fundamental solutions (i.e. nontrivial linearly indepen-
dent particular solutions) of the second-order ordinary differential equations in (3.7). Without
loss of generality, we may assume that Hi,j,k(q), i, k = 1, 2, j = 0, 1, are (strictly) decreasing
and increasing (convex) functions satisfying the properties Hi,j,1(0+) =∞ and Hi,j,1(∞) = +0
as well as Hi,j,2(0+) = +0 and Hi,j,2(∞) = ∞ , respectively (see, e.g. [33; Chapter V, Sec-
tion 50] for further details for the diffusion case).

Observe that the expression in (2.34) with (2.25), for j = 1, becomes a homogeneous
second-order ordinary linear differential equation of the form

γ2
j q

2

2
U ′′i,1(q) +

(
βj(q) + ρεαiσ(q)γj q

)
U ′i,1(q)− κ σ2(q)Ui,1(q) = 0, (3.9)

for g < q < h and i = 1, 2, and its general solution takes the form

Ũi,1(q) = C̃i,1,1 H̃i,1,1(q) + C̃i,1,2 H̃i,1,2(q), (3.10)

where C̃i,1,k , i, k = 1, 2, are some arbitrary constants. Here, we have H̃i,1,k(q) = Hi,1,k(q;κ),
i, k = 1, 2, where we denote by Hi,j,k(q) = Hi,j,k(q;κ + λj), i, k = 1, 2, j = 0, 1, the (positive)
fundamental solutions of the equation in (3.7). Then, by applying the instantaneous-stopping
conditions of (2.36) to the function in (3.10), we obtain that the equalities

C̃i,1,1 H̃i,1,1(g+) + C̃i,1,2 H̃i,1,2(g+) = 0 and C̃i,1,1 H̃i,1,1(h−) + C̃i,1,2 H̃i,1,2(h−) = 1 (3.11)

hold, for i = 1, 2. Solving the system of linear equations in (3.11), we obtain that the candidate
solution for Ui,1(q) in the system of (2.34)-(2.36) admits the representation

Ũi,1(q; g, h) =
H̃i,1,2(g+)H̃i,1,1(q)− H̃i,1,1(g+)H̃i,1,2(q)

H̃i,1,2(g+)H̃i,1,1(h−)− H̃i,1,1(g+)H̃i,1,2(h−)
, (3.12)

for all g < q < h and every i = 1, 2. Note that, in the case of g = 0, we see that C̃i,0,1 ≡
C̃i,0,1(0, h) = 0 should hold in (3.10), for i = 1, 2, since otherwise Ui,1(q)→ ±∞ as q ↓ 0, that
must be excluded, by virtue of the fact that the function U∗i,1(q) in (2.21) is bounded. Hence,
solving the right-hand equation in (3.11), we conclude that the candidate solution has the form

Ũi,1(q; 0, h) = H̃i,1,2(q)/H̃i,1,2(h−), (3.13)

for all 0 < q < h and every i = 1, 2.
Observe that the general solution of the inhomogeneous second-order linear ordinary differ-

ential equation in (2.34) with (2.25), for j = 0, admits the general solution

Ũi,0(q) = C̃i,0,1Hi,0,1(q) + C̃i,0,2Hi,0,2(q) + Fi,0,(q; g, h), (3.14)

where C̃i,1,k , i, k = 1, 2, are some arbitrary constants, and we set

Fi,0(q; g, h) = Hi,0,1(q)

∫
q

λ0Ũi,1(r; g, h)Hi,0,2(r)

(γ2
1r

2/2)Di,0(r)
dr (3.15)

+Hi,0,2(q)

∫ q λ0Ũi,1(r; g, h)Hi,0,1(r)

(γ2
1r

2/2)Di,0(r)
dr,
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and
Di,0(q) = Hi,0,1(q)H ′i,0,2(q)−H ′i,0,1(q)Hi,0,2(q), (3.16)

where the functions Hi,j,k(q), i, k = 1, 2, j = 0, 1, are the fundamental solutions of the equa-

tions in (3.7), and the function Ũi,1(q; g, h) is given by (3.12), for g < q < h and i = 1, 2.
Then, by applying the instantaneous-stopping conditions of (2.36) to the function in (3.14), we
obtain that the equalities

C̃i,0,1Hi,0,1(g+) + C̃i,0,2Hi,0,2(g+) + Fi,0(g+; g, h) = 0, (3.17)

C̃i,0,1Hi,0,1(h−) + C̃i,0,2Hi,0,2(h−) + Fi,0(h−; g, h) = 1 (3.18)

hold, for i = 1, 2. Solving the system of linear equations in (3.17)-(3.18), we obtain that the
candidate solution for Ui,0(q) in the system of (2.34)-(2.36) admits the representation

Ũi,0(q; g, h) = C̃i,0,1(g, h)Hi,0,1(q) + C̃i,0,2(g, h)Hi,0,2(q) + Fi,0(q; g, h) (3.19)

with

C̃i,0,1(g, h) =
Fi,0(h−; g, h)Hi,0,2(g+)− Fi,0(g+; g, h)Hi,0,2(h−)−Hi,0,2(g+)

Hi,0,1(g+)Hi,0,2(h−)−Hi,0,1(h−)Hi,0,2(g+)
, (3.20)

C̃i,0,2(g, h) =
Fi,0(g+; g, h)Hi,0,1(h−)− Fi,0(h−; g, h)Hi,0,1(g+) +Hi,0,1(g+)

Hi,0,1(g+)Hi,0,2(h−)−Hi,0,1(h−)Hi,0,2(g+)
, (3.21)

for all g < q < h and every i = 1, 2. Note that, in the case of g = 0, we see that the function
Ũi,1(q; 0, h) takes the form of (3.13) with C̃i,0,1 ≡ C̃i,0,1(0, h) = 0 should hold in (3.14), for
0 < q < h and i = 1, 2, since otherwise Ui,0(q) → ±∞ as q ↓ 0, that must be excluded, by
virtue of the fact that the function U∗i,0(q) in (2.21) is bounded. In this case, the candidate
solution has the form

Ũi,0(q; 0, h) = C̃i,0,2(0, h)Hi,0,2(q) +Gi,0(q; 0, h) (3.22)

with

Gi,0(q; 0, h) = Hi,0,2(q)

∫ q Di,0(r)

H2
i,0,2(r)

∫ r λ0Ũi,1(p; 0, h)Hi,0,2(p)

(γ2
1p

2/2)Di,0(p)
dp dr, (3.23)

where the function Hi,0,2(q), i = 1, 2, is the fundamental solutions of the equation in (3.7) such

that Hi,0,2(0+) = +0 and Hi,0,2(∞) = ∞ holds, the function Ũi,1(q; g, h) takes the form of
(3.13), and the function Di,0(q) is given by (3.16), for 0 < q < h and i = 1, 2. Hence, solving
the linear equation in (3.18), we conclude that the candidate solution for Ui,0(q) in the system
of (2.34)-(2.36) has the form

Ũi,0(q; 0, h) = (1−Gi,0(h−; 0, h))Hi,0,2(q)/Hi,0,2(h−), (3.24)

for all 0 < q < h , where Gi,0(q; 0, h) is given by (3.23), for every i = 1, 2.

(iii) Let us finally assume that γ1 > 0, βi,0(q) = γ0 = 0, for all q > 0 and every i = 1, 2,
and λj > 0, for j = 0, 1. In this case, the equation in (2.34) with (2.25), for j = 0, takes the
form

−(κ + λ0)Ui,0(q) = −λ0 Ui,1(q), (3.25)
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for g < q < h and i = 1, 2. Then, substituting Ui,0(q) = λ0Ui,1(q)/(κ + λ0) into the equation
of (2.34), for j = 1, we get

γ2
1q

2

2
U ′′i,1(q) +

(
β1(q) + ρεαiσ(q)γ1 q

)
U ′i,1(q)− κ(κ + λ0 + λ1)

κ + λ0

Ui,1(q) = 0, (3.26)

for g < q < h and i = 1, 2. Hence, the general solution of the second-order ordinary linear
differential equation takes the form

Ûi,1(q) = Ĉi,1,1 Ĥi,1,1(q) + Ĉi,1,2 Ĥi,1,2(q), (3.27)

where Ĉi,1,k , i, k = 1, 2, are some arbitrary constants. Here, we have Ĥi,1,k(q) = Hi,1,k(q; (κ(κ+
λ0 + λ1))/(κ + λ0)), i, k = 1, 2, where Hi,j,k(q) = Hi,j,k(q;κ + λ1), i, k = 1, 2, j = 0, 1, are the
fundamental solutions of the equations in (3.7). Then, by applying the instantaneous-stopping
conditions of (2.36) to the function in (3.27), we obtain that the equalities

Ĉi,1,1 Ĥi,1,1(g+) + Ĉi,1,2 Ĥi,1,2(g+) = 0 and Ĉi,1,1 Ĥi,1,1(h−) + Ĉi,1,2 Ĥi,1,2(h−) = 1 (3.28)

hold, for i = 1, 2. Solving the system of linear equations in (3.11), we obtain that the candidate
solution for Ui,1(q) in the system of (2.34)-(2.36) admits the representation

Ûi,1(q; g, h) =
Ĥi,1,2(g+)Ĥi,1,1(q)− Ĥi,1,1(g+)Ĥi,1,2(q)

Ĥi,1,2(g+)Ĥi,1,1(h−)− Ĥi,1,1(g+)Ĥi,1,2(h−)
, (3.29)

for all g < q < h and every i = 1, 2. Note that, in the case of g = 0, we see that Ĉi,1,1 ≡
Ĉi,1,1(0, h) = 0 should hold in (3.10), for i = 1, 2, since otherwise Ûi,1(q)→ ±∞ as q ↓ 0, that
must be excluded, by virtue of the fact that the function U∗i,1(q) in (2.21) is bounded. Hence,
solving the right-hand equation in (3.11), we conclude that the candidate solution has the form

Ûi,1(q; 0, h) = Ĥi,1,2(q)/Ĥi,1,2(h−), (3.30)

for all 0 < q < h and every i = 1, 2. Therefore, we may conclude from (3.25) that the candidate
solution for Ui,0(q) is given by

Ûi,0(q; g, h) = λ0Ûi,1(q; g, h)/(κ + λ0), (3.31)

for all g ≤ q < h , as well as Ui,0(h) = 1, for every i = 1, 2. Thus, the function Ui,0(q) is
discontinuous at h , that can be explained by the fact that the process Q remains constant
while the Markov chain Θ is located in the state 0.

3.2 Some examples. Let us further derive explicit expressions for the fundamental system
of solutions Hi,j,k(q), i, k = 1, 2, j = 0, 1, from (3.8) for several volatility and drift rates σ(q)
and β(q) in the stochastic differential equations of (2.1)-(2.2).

Example 3.1 Let γ > 0, λj = 0, j = 2, 3, σ(q) = ln q , and β(q) = q(β0−β1 ln q+γ2/2), for all
q > 0 and some constants β0, β1 ∈ R , so that Q is an exponential Ornstein-Uhlenbeck process
and which represents an extended Black-Karasinski model, and thus, the process (S, lnQ)
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constitutes a Stein-Stein model of stochastic volatility (see, e.g. [25; Subsection 4.1]). Then, by
performing the change of variable F (q) = ln q , it is seen from [37; Formulas 2.1.31 and 2.1.108]
that the fundamental solutions Hi,0,k(q), i, k = 1, 2, from (3.8) take the form

Hi,0,1(q) = qυi,0 ln q+χi,0 Ψ
(
πi,0, 1/2;Ri,0(q)

)
, Hi,0,2(q) = qυi,0 ln q+χi,0 Φ

(
πi,0, 1/2;Ri,0(q)

)
, (3.32)

where we set

υi,0 =
β̃i,1 −

√
β̃2
i,1 + 2γ2κ

2γ2
, χi,0 =

2β0υi,0

β̃i,1 − 2γ2υi,0
, β̃i,1 = β1 − ρεαiγ, (3.33)

πi,0 =
β0κ − γ2υi,0(β̃i,1 − 2γ2υi,0)2

2(β̃i,1 − 2γ2υi,0)3
, Ri,0(q) =

2β0υi,0
γ2χi,0

(
ln q − β0β̃i,1

(β̃i,1 − 2γ2υi,0)2

)2

, (3.34)

for i = 1, 2. Here, Ψ(x, y; z) and Φ(x, y; z) are the Tricomi’s and Kummer’s confluent hy-
pergeometric functions (see, e.g. [1; Chapter XIII]), respectively, which admit the integral
representations

Ψ(x, y; z) =
1

Γ(y)

∫ ∞
0

e−zv vx−1(1 + v)y−x−1 dv, (3.35)

for y > 0 and all z > 0, and

Φ(x, y; z) =
Γ(y)

Γ(x)Γ(y − x)

∫ 1

0

ezv vx−1(1− v)y−x−1 dv, (3.36)

for y > x > 0, and all z ∈ R . The latter function also has the series expansion

Φ(x, y; z) = 1 +
∞∑
k=1

(x)k
(y)k

zk

k!
, (3.37)

for y 6= 0,−1,−2, . . . , and the series converges under all z > 0 (see [1; Chapter XIII]), where
(u)k is the Pochhammer symbol defined as (u)k = u(u + 1) · · · (u + k − 1), and (u)0 = 1, for
u ∈ R and k ∈ N , and Γ(z) denotes the Euler’s gamma function.

Example 3.2 Let γ > 0, λj = 0, j = 2, 3, σ(q) = ln q/2, and β(q) = q(2β0 − β1 ln2 q/2 +
γ2(ln q − 1)/2)/ ln q , for all q > 0 and some constants β0, β1 ∈ R such that β0 ≥ γ2/2, so that
Q is a diffusion process with state space (1,∞), and ln2Q/4 is a Feller square root process
which represents a Cox-Ingersoll-Ross model with state space (0,∞), and thus, the process
(S, ln2Q/4) constitutes a Heston model of stochastic volatility (see, e.g. [25; Subsection 4.2]).
Then, by performing the change of variable F (q) = ln2 q/4, it is seen from [37; Formula 2.1.108]
that the fundamental solutions Hi,0,k(q), i, k = 1, 2, from (3.8) take the form

Hi,0,1(q) = q2υi,0 ln q(ln2 q/4)1−2β0/γ2 Ψ(χi,0, 2− 2β0/γ
2;Ri,0(q)), (3.38)

Hi,0,2(q) = q2υi,0 ln q(ln2 q/4)1−2β0/γ2 Φ(χi,0, 2− 2β0/γ
2;Ri,0(q)), (3.39)

where we set

χi,0 = 1− β0

γ2
− β0β̃i,1

γ2(β̃i,1 − 2γ2υi,0)
and Ri,0(q) =

2(β̃i,1 − 2γ2υi,0)

γ2

ln2 q

4
(3.40)

with υi,0 and β̃i,1 , i = 1, 2, from (3.33), and the functions Ψ(x, y; z) and Φ(x, y; z) are defined
as in (3.35)-(3.36).
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3.3 Solutions to the system in (2.31)-(2.33). Let us look for a solution of the partial
differential equation in (2.24) and (2.31) in the form

Wi,j(s, q) ≡ Wi(s) = Di,1 s
α1 +Di,2 s

α2 , (3.41)

where Di,k , i, k = 1, 2, are some arbitrary constants and αk , k = 1, 2, are given by

αk =
1

2
− δ

ε2
+ (−1)k

√(
δ

ε2
− 1

2

)2

+
2η

ε2
, (3.42)

so that α1 < 0 < 1 < α2 holds. Note that D1,2 = D2,1 = 0 should hold in (3.41), since
otherwise Wi(s)→ ±∞ , i = 1, 2, as s ↑ ∞ and s ↓ 0, respectively, that must be excluded, by
virtue of the fact that the functions W ∗

i (s), i = 1, 2, in (2.20) are bounded. Then, by applying
the instantaneous-stopping conditions of (2.33) to the function in (3.41), we obtain that the
equalities

D1,1 a
α1 = 1 and D2,2 b

α2 = 1 (3.43)

are satisfied. Hence, solving the equations in (3.43), we conclude that the candidate solutions
W1(s, q; a) = W1(s; a) and W2(s, q; b) = W2(s; b) have the form

W1(s; a) = (s/a)α1 and W2(s; b) = (s/b)α2 , (3.44)

for all s > a and s < b , respectively.

4 Main result and proof

In this section, taking into account the facts proved above, we formulate and prove the main
results of the paper. We present an analytic solution of the stopping problems of (2.18)-(2.19)
in the general case of switching stochastic volatility model of γj > 0 and λj > 0, j = 0, 1,
for the case of a single structural volatility change λ0 > λ1 = 0, as well as for the constant
volatility case β0(q) = γ0 = 0, for all q > 0.

Theorem 4.1 Suppose that the coefficients σ(q) > 0 and β(q) ∈ R of the diffusion-type process
(S,Q) defined by (2.1)-(2.2) are continuously differentiable functions of at most linear growth,
for all q > 0. Assume that the condition of (2.11) holds, for all t ≥ 0, with αi , i = 1, 2, given
by (3.42). Then, the functionals V ∗1,j(s, q) = V ∗1,j(s, q; a; g, h) and V ∗2,j(s, q) = V ∗2,j(s, q; b; g, h)
from (2.18)-(2.19) of the associated with (S,Q) random times τ−a , τ

+
b and ζ−g , ζ

+
h from (2.4)-

(2.5) admit the representations:

V ∗1,j(s, q; b; g, h) = U1,j(q; g, h)W1,j(s; a) and V ∗2,j(s, q; b; g, h) = U2,j(q; g, h)W2,j(s; b) (4.1)

for all s > a or s < b and g < y < h, and any 0 < a < b < ∞ and 0 ≤ g < h < ∞
fixed, where the functions W1,j(s; a) and W2,j(s; b), j = 0, 1, are given by (3.44), as well as
Ui,j(q; g, h), i = 1, 2, are specified as follows:

(i) if γj > 0 and λj > 0, j = 0, 1, then the functions Ui,j(q; g, h), i = 1, 2, j = 0, 1, are
given by (3.6), with Ci,j,k(g, h), i = 1, 2, j = 0, 1, k = 1, 2, 3, 4, being a unique solution the
linear system of algebraic equations in (3.3) and (3.4)-(3.5);
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(ii) if γj > 0, j = 0, 1, and λ0 > λ1 = 0, then the functions Ui,j(q; g, h), i = 1, 2, j = 0, 1,
are given by either (3.12)-(3.13) or (3.19)-(3.24), respectively;

(iii) if β0(q) = γ0 = 0, for q > 0, i = 1, 2, and λj > 0, j = 0, 1, then the functions
Ui,j(q; g, h), i = 1, 2, j = 0, 1, are given by either (3.29)-(3.30) or (3.31), respectively.

Since all the parts of the assertions formulated above are proved using essentially similar
arguments, we only give a proof for the two-dimensional stopping problem related to the value
function V ∗1,j(s, q; a; g, h) in (2.18).

Proof In order to verify the assertion stated above, it remains to show that the functions
defined in the right-hand side of (4.1) coincides with the value function in (2.18). For this,
let us denote by V1(s, q, j) = V1,j(s, q) the right-hand side of the first expression in (4.1), as
well as the notations U1(q, j) = U1,j(q) and W1(s, j) = W1,j(s) for U1,j(q; g, h) and W1,j(s; a),
respectively. Then, using the fact that the function V1(s, q, j) is C2,2,0((a,∞)× (g, h)×{0, 1}),
and taking into account the independence of the processes Bi , i = 1, 2, and Θ, by applying
Itô’s formula to e−(λ+κ)AtV1(St, Qt,Θt), we obtain that the expression

e
−(η+κ)A

τ−a ∧ζ
−
g ∧ζ

+
h
∧tV1(Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
,Θτ−a ∧ζ−g ∧ζ+h ∧t

) = V1(s, q, j) +Mτ−a ∧ζ−g ∧ζ+h ∧t
(4.2)

+

∫ τ−a ∧ζ−g ∧ζ+h ∧t

0

e−(η+κ)Au
(
(LΘu

(S,Q)V1 − (η + κ + λΘu)σ2(Qu)V1)(Su, Qu,Θu) + λΘuV1(Su, Qu, 1−Θu)
)
du

holds for all s > a and g < q < h , and the stopping times τ−a and ζ−g , ζ
+
h from (2.4)-(2.5).

Here, the process M = (Mt)t≥0 defined by

Mt =

∫ t

0

e−(η+κ)Au ∂sV1(Su, Qu,Θu)Su σ(Qu) dB
1
u (4.3)

+

∫ t

0

e−(η+κ)Au ∂qV1(Su, Qu,Θu)
(
(1−Θu) γ0 + Θu γ1

)
Qu dB

2
u

+

∫ t

0

e−(η+κ)Au
(
V1(Su, Qu, 1)− V1(Su, Qu, 0)

)
dNu

with N = (Nt)t≥0 given by:

Nt = Θt −
∫ t

0

(
λ0 (1−Θu) + λ1 Θu

)
du (4.4)

is a local martingale under Ps,q,j .
By virtue of straightforward calculations and the arguments from the previous section, it is

verified that the function V1(s, q, j) solves the system of elliptic partial differential equations
in (2.26) with (2.24) and satisfies the boundary conditions of (2.27)-(2.30). Observe that the
process (Mτ−a ∧ζ−g ∧ζ+h ∧t

)t≥0 is a uniformly integrable martingale, since the derivatives and the

coefficients in (4.3) are bounded functions. Then, taking the expectation with respect to Ps,y,j
in (4.2), by means of the optional sampling theorem (see, e.g. [27; Chapter III, Theorem 3.6]
or [32; Chapter II, Theorem 3.2]), we get

Es,q,j

[
e
−(η+κ)A

τ−a ∧ζ
−
g ∧ζ

+
h
∧t V1(Sτ−a ∧ζ−g ∧ζ+h ∧t

, Qτ−a ∧ζ−g ∧ζ+h ∧t
,Θτ−a ∧ζ−g ∧ζ+h ∧t

)
]

(4.5)

= V1(s, q, j) + Es,q,j
[
Mτ−a ∧ζ−g ∧ζ+h ∧t

]
= V1(s, q, j)

15



for all s > a and g < q < h , and every j = 0, 1. Therefore, letting t go to infin-
ity and using the instantaneous-stopping conditions in (2.27)-(2.30) as well as the fact that
V1(Sτ−a ∧ζ−g ∧ζ+h

, Qτ−a ∧ζ−g ∧ζ+h
,Θτ−a ∧ζ−g ∧ζ+h

) = 0 on {τ−a ∧ ζ−g ∧ ζ+
h = ∞} (Ps,q,j -a.s.), we can apply

the Lebesgue dominated convergence theorem for (4.5) to obtain the equalities

Es,q,j

[
e
−(η+κ)A

τ−a U1(Qτ−a
,Θτ−a

) I(τ−a < ζ−g ∧ ζ+
h ) (4.6)

+ e
−(η+κ)A

ζ−g ∧ζ
+
h W1(Sζ−g ∧ζ+h

,Θζ−g ∧ζ+h
) I(ζ−g ∧ ζ+

h ≤ τ−a )
]

= Es,q,j

[
e
−(η+κ)A

τ−a ∧ζ
−
g ∧ζ

+
h V1(Sτ−a ∧ζ−g ∧ζ+h

, Qτ−a ∧ζ−g ∧ζ+h
,Θτ−a ∧ζ−g ∧ζ+h

)
]

= V1(s, q, j)

for all s > a and g < q < h , and every j = 0, 1, which directly implies the desired assertion.
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