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Abstract

In order to better understand the potential for both policy and technological improvements to aid carbon
abatement, long-term historical information on the time-path of transition from more traditional to cleaner
fuels is useful. This is a relatively understudied element of the fuel switching literature in both developed
and emerging economies. This research adds to this literature by examing the adoption time-path of network
gas as a heating fuel. We merge a unique dataset on gas network roll-out over time, with other geo-coded
data and employ an instrumental variables technique in order to simultaneously model supply and demand.
Results indicate a non-linear relationship between the proportion of households using gas as their primary
means of central heating and the length of time the network has been in place in each area. Proximity to
the gas network, peat bogs, and areas which have banned the consumption of bituminous coal also affect
gas connections. Variations in socioeconomic and dwelling characteristics at area level can also help explain
connections to the gas network. Simulations are then performed to examine how network expansion might
affect connections and carbon emissions.
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1 Introduction

Policy interest in residential fuel choice and consumption has a long history (e.g. Halvorsen, 1975; Houthakker,
1951). In recent years policy focus has centred on associated health outcomes and economic growth in developing
countries and more generally on the contribution to greenhouse gas emissions. With approximately one quarter
of the EU’s total primary energy requirement in the residential buildings1, the sector is a focal point given the
EU’s ambition to reduce greenhouse gas emissions (European Commission, 2014). Fuel switching away from
carbon intensive fuels, such as peat and coal to less carbon intensive fuels, such as gas or renewables is one way
the residential sector can reduce emissions yet satisfy energy service demands.

A body of research within development economics focuses on the so-called ‘energy ladder’, in which house-
holds transition from traditional heating and cooking fuels, such as biomass or wood, to fuels such as gas or
electricity as their income levels increase (Hosier and Dowd, 1987). As households will continue to use tradi-
tional fuels such as firewood along with modern fuels, switching back in response to relative prices and other
factors (Wickramasinghe, 2011; Van der Kroon et al., 2013) some have argued that a multiple fuel model is more
appropriate (Masera et al., 2000). Among the key determinants of fuel choice among households in developing
countries are fuel prices, income, and education, as well as security of supply considerations for fuels such as gas
and electricity (Alem et al., 2016; Behera et al., 2016; Mensah and Adu, 2015; Zhang and Hassen, 2017).

Residential fuel choice2 and fuel switching, are also a research focus in developed economies. For example,
there has been a particular interest in recent years into the decision to adopt renewable or more efficient resi-
dential heating systems (Mahapatra and Gustavsson, 2008; Sopha and Klockner, 2011; Michelsen and Madlener,
2012). Across numerous studies and countries there is a general consensus on the range of factors which deter-
mine residential fuel choice. These are described in detail in Section 2 below. Our research adds to both this
literature and the literature examining the acquisition of energy using assets3.

Our focus in this paper is on the adoption of gas central heating in Ireland. Ireland provides a very interesting
lens through which to examine the diffusion of an energy-using asset over time. A cultural legacy of solid fuel
usage, driven by plentiful local endowments of peat, created a reluctance to switch to more modern heating
systems. This contrasts with a strong policy push in recent years to encourage greater usage of renewable en-
ergy, and recent legislation prohibiting the sale and use of bituminous coal for domestic heating in urban areas.
Access to network gas has been available in some locations in Ireland for more than century, however, network
connections can still be relatively low in some locations adjacent to the gas network.

We are particularly concerned with understanding more about the adoption time-path of network gas as a
domestic heating fuel. There may be several reasons why a time-lag in the adoption of more efficient heating
methods, once available, exists. The range of factors include financial barriers, spatial proximity to alternative
energy sources, cultural legacies resulting in preferences for certain fuels, misinformation or a lack of information
on alternatives, or uncertainty about future energy prices. Heterogeneity of preferences in the population can
also explain variations in the timing of adoption, even in cases where the new technology is qualitatively better
than the existing one.

1See http://ec.europa.eu/eurostat/web/energy/data/energy-balances for details.
2The term ‘residential fuel choice’ is used interchangeably with ‘residential heating system’, as some of the literature focuses on

particular heating technologies, e.g. heat pumps, rather than the fuel types.
3This is also described in Section 2. For a prominent recent example see Gertler et al. (2016).
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The time-lag in adoption is a relatively under researched aspect of fuel switching, which generally consider
network access as a binary variable at a point in time. Our focus is enabled by access to a rare dataset com-
prising detailed information on the location and timing of the expansion of each individual segment of the of
Irish gas network over 100 years. This is linked to information on the location of every residential dwelling in
the country and combined with spatial cross-sectional data on area-level fuel choice along with information on
dwelling attributes and the socio-demographic characteristics of households. Suppliers are likely to extend the
gas network to areas of high density, or those with a higher probability of adoption, and only those households
in close proximity to the gas infrastructure can adopt. Not taking account of this could potentially bias our
estimates. To account for this simultaneity, we estimate a two-stage least squares specification, allowing us to
identify the time-path of network roll-out in the second-stage gas adoption equation.

Results indicate a non-linear relationship between the length of time the network has been in place and the
proportion of gas users in each area. Each year the network has been in place is associated with a 3 percentage
point increase in gas connections on average, and this effect decreases over time. Variation in distance to the
network is a significant determinant of connections, even for areas in close proximity to the network. Proximity
to peat sources, such as bogs is negatively associated with gas connections, while a ban on the sale and burning
of bituminous coal which was in place in various urban locations in Ireland in 2011, is positively associated with
gas adoption. Our econometric approach allows us to also provide some scenario analysis which simulates gas
network expansions yet to be undertaken and the potential impact of these on uptake and the associated changes
in CO2 emissions.

The layout of the remainder of the paper is as follows. The next section places our research in an international
context. Following this in Section 3 we provide some background on the historical development of residential
fuel usage in Ireland, including the growth in network gas usage. Section 4 outlines the model and estimation
strategy we propose, which is followed by an overview of the data used. Estimation results and a scenario analysis
simulating gas network expansion are presented in Sections 6 and 7. Section 8 outlines a range of robustness
checks undertaken. Section 9 concludes and provides some insights for policy.

2 Related literature

As mentioned above, of primary relevance to this research is the literature concerning fuel choice and switching.
In addition to this, we also draw on other research examining the acquisition of energy using assets. With regard
to the former, the key determinants are considered in turn in the following paragraphs.

Building attributes, particularly property age and type affect fuel choice. Michelsen and Madlener (2016) find
that older homes are less likely to switch to renewable heating systems, possibly reflecting unsuitable existing
heating infrastructure. The inhabitants of older properties are more likely to use oil, firewood and coal, whereas
those in more recently built properties are more likely to use gas or heat pumps (Laureti and Secondi, 2012;
Michelsen and Madlener, 2012), though Lillemo et al. (2013) find that dwelling size and type impact on heating
system choice but not the property’s age. Larger sized properties are more likely to use gas for heating instead
of solid fuels (Lillemo et al., 2013; Michelsen and Madlener, 2012). Determinants of fuel or heating systems in
newly built properties generally differs to that for the existing housing stock. Michelsen and Madlener (2012)
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conclude that choice of a heating system in newly built homes is highly influenced by the occupants’ environ-
mental preferences.

Occupants’ socio-economic characteristics also impact on fuel choice, with income, age, education and eco-
nomic status being particularly relevant. A number of studies find that lower incomes are associated with oil
and solid fuels, which are more emissions intensive (Fu et al., 2014; Laureti and Secondi, 2012; Özcan et al.,
2013) though there are many other studies that find only a minor income effect or none (e.g. Braun, 2010;
Lillemo et al., 2013; Couture et al., 2012). The effects of higher education and economic status on fuel choice
are generally similar to those associated with income. In the case of age Özcan et al. (2013) find that household
heads aged 50 and above are more likely to choose gas, oil and electricity compared to coal and other solid fuels
for reasons of ease of use and for health concerns. On the contrary, Decker and Menrad (2015) find that neither
age, education nor income are important variables in explaining choice of residential heating systems in Germany.

Inertia, peer effects and motivational impacts have also been found to impact on fuel choice. Households are
often reluctant to adopt more energy efficient options, even if it is financially advantageous for them to do so.
This energy-efficiency gap also characterises the reluctance to adopt other types of energy efficient appliances
that offer seemingly positive benefit (Allcott and Greenstone, 2012; Blumstein et al., 1980; Jaffe and Stavins,
1994). The influence of peers is an important determinant of decisions relating to heating system choice (Decker
and Menrad, 2015; Michelsen and Madlener, 2013). Other important motivational factors include attitude to
particular heating systems or fuels, personal comfort and external threats, the later of which refers to either an
apprehension relating to dependency on fossil fuels or climate related environmental concerns.

Regional or cultural differences, including the local availability of particular fuels such as firewood, can impact
on fuel choice (Braun, 2010; Fu et al., 2014; Laureti and Secondi, 2012). While weather is frequently included
as a covariate in modelling energy consumption it also has an impact on fuel choice, similar to a regional effect.
In a number of cases 30-year mean weather data is found to have a strong influence on fuel choice, with higher
temperature locations less likely to use oil or solid fuels (Fu et al., 2014; Mansur et al., 2008).

Fuel prices and heating system capital costs have substantial impacts on home heating decisions. The capital
cost of heating system equipment can act as a barrier in fuel choice decisions due to budget constraints, however,
it is difficult to capture empirical evidence in revealed behaviour data. Michelsen and Madlener (2016) find that
capital costs rather than fuel prices are an important motivational factor in such decisions. In a number of
stated preference studies capital costs are an important attribute or potential barrier associated with residential
heating system choice decisions (Rouvinen and Matero, 2013; Scarpa and Willis, 2010). There are relatively high
implicit discount rates associated with electricity and oil based heating systems compared to district heating,
geothermal or wood-based systems. Fuel prices are certainly important considerations in household fuel choice
decisions in developing countries (Alem et al., 2016; Mensah and Adu, 2015; Zhang and Hassen, 2017) but there
is mixed evidence in developed countries. In the stated-preference studies fuel prices have a significant impact
(Rouvinen and Matero, 2013; Scarpa and Willis, 2010) but only a small number of other empirical studies include
fuel prices as a potential determinant of fuel choice. Mansur et al. (2008) find clear own-price and cross-price
effects on fuel choice decisions, while Couture et al. (2012) find a price effect associated with firewood, the only
fuel price they consider. Numerous papers examining determinants of household fuel choice do not include fuel
prices as explanatory variables, though that may reflect difficulty of acquiring such information for cross-sectional
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datasets (e.g Fu et al., 2014; Michelsen and Madlener, 2012; Özcan et al., 2013; Laureti and Secondi, 2012).

Access to the natural gas network is also an important factor that affects residential fuel choice, though
the issue has received relatively little attention in the literature. Mansur et al. (2008) find that US households
with network access make different consumption choices compared to those without access. They are unable to
determine if those differences in consumption choices are solely due to network access and consequently anal-
yse fuel choice (and conditional demand) separately for households with and without network access. Couture
et al. (2012) take a different approach and include network access as a covariate within a multinomial logit
model of fuel choice in the Midi-Pyrénées region of France. Grid access increases the likelihood that a property
uses gas as the primary source of energy by 8 percentage points, with oil being the fuel that is displaced to
the greatest extent. In Ireland Fu et al. (2014) find that the likelihood of solid fuels being the primary residen-
tial heating source declines by 4 percentage points in areas within a threshold distance of the natural gas network.

In addition to the literature on fuel choice decisions there is a parallel literature on the acquisition of energy-
using assets, e.g. a residential heating system, that is also relevant. One side of that literature has its origin in
Bass diffusion models (Bass, 1969) where adoption is modelled as a sigmoidal function over time, with adoption
slow at first, then accelerating before reaching a plateau. Applications include modelling households’ adoption
of heat pumps and photo-voltaic panels as a function of age, education, information, and financial incentives
(Hlavinka et al., 2016; Islam, 2014). Energy asset acquisition is also studied in the context of energy consump-
tion with Dubin and McFadden (1984) among the first to highlight that asset ownership is endogenous in an
energy demand model. Recent applications include Davis and Kilian (2011) who model natural gas demand
in the US and also Mansur et al. (2008), which models fuel choice rather than heating system choice in the
context of modelling household fuel consumption. Gertler et al. (2016) have modelled the effect of households’
income growth on asset acquisition in the face of credit constraints. Examining refrigerator acquisitions in a
developing country, they find that credit constrained households are more likely to purchase energy assets once
their income passes a threshold level and furthermore that the threshold level varies depending on the timing of
acquisition. This suggests that the impact of network gas availability on heating system or fuel choice is non-
linear and cannot be adequately captured with a dummy variable indicating availability of a network connection.

3 Background: Residential fuel usage in Ireland

Ireland has a long history of solid fuel usage, and in particular peat usage in the residential sector. Mokyr (2013)
cites reports from the 1830’s describing the geographical ubiquity of peat and the intensity of its usage. While
certain places, such as South Antrim and Limerick had depleted their reserves by this point, it was so plentiful
throughout the rest of the country that it was taken for granted, and “people living as little as 4 miles away
from a source of turf already considered themselves inconvenienced”. Peat continued to be the primary source
of fuel for home heating until relatively recently and the geographical relationship between the location of solid
fuel resources and its usage persists (Fu et al., 2014). Peat is still commonly harvested from peat bogs by the
public and also sold as peat briquettes.

As recently as 1990, the proportion of households using solid fuel as their primary means of space heating
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was as high as 60%. This had fallen to 16% by 20144. However, 62% of households continue to use a stove,
range or open fire as a secondary heating source, and the majority of these use solid fuel5.

Comparable residential fuel usage trends in kilo tonnes of oil equivalent from 1990-2014 are demonstrated
in Fig. 1. The falling share of solid fuel is evident, which has been replaced by a rise in gas, oil and electricity
usage primarily. Renewable energy has not yet established itself directly in domestic heating, however renewable
sources accounted for 14.5% of energy inputs to electricity generation by 2014 (SEAI, 2015).

Figure 1: Residential fuel shares in Mtoe 1990-2014
Source: Data from http://statistics.seai.ie/

In terms of CO2 emissions, even though final energy use in the domestic sector increased by 26% between
1990 and 2011, energy-related CO2 emissions fell by 2.7%, reflecting the decreasing share of solid fuel usage and
the improved efficiency of oil and gas central heating boilers (SEAI, 2013).

3.1 Gas usage

Rogan et al. (2012) provide a comprehensive summary of gas network expansion and usage trends in Ireland
between 1990 and 2008. The gas transmission infrastructure had extended to a number of large towns and cities
by 1990, however 90% of gas customers were still resident in the two largest cities of Dublin and Cork. That
decade saw an expansion of the transmission infrastructure outward from Dublin, along both northeast and
southeast coasts and west to the fast-growing commuter towns in the greater Dublin area. The mid-2000s saw

4http://statistics.seai.ie/
5Solid fuel in this case meaning peat, coal or wooden logs. 67% of those with open fires use solid fuel, and 36% of those with a

stove or range continue to use solid fuel. See CSO (2016) for further details.
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an extension westwards linking Dublin with Galway, from here it was further extended to the northwest by the
late 2000s. This extension resulted in a constant annual customer growth rate of 9% over the period 1990-2008.
There is significant spatial variation however, and by 2014, natural gas customers were still as low as 5% in some
western areas (CSO, 2016).

Over this period consumption increased by 470% (Rogan et al., 2012). This was mainly through a growing
customer base, changes in the dwelling stock, and changing intensity of usage. Weather effects are also im-
portant. From a microeconometric point of view, Conniffe (1996) and Harold et al. (2015) also find weather a
strong predictor of seasonal demand. This research also ties in with international research of gas consumption
and more general space heating, which find that dwelling characteristics and the socioeconomic characteristics
of inhabitants have a significant impact on demand (Rehdanz, 2007; Meier and Rehdanz, 2010; Wyatt, 2013).

The following section outlines our methodology and some empirical considerations one must consider when
modelling adoption at area level.

4 Methods

The utility consumers receive from adopting gas central heating is likely to be a function of a range of fac-
tors such as the relative price of gas compared with alternatives, along with their socioeconomic and dwelling
characteristics. Physical constraints on adoption exist and will relate to each household’s proximity to the gas
infrastructure. The key price variable at a spatial level is the connection cost. This is a function of distance to
the network and is captured by a variable which measures the average distance of all dwellings in each area to
the nearest point on the network. Unfortunately relative fuel price data does not exist at a cross-sectional level.
However, provided this does not vary across areas for a given period it will be included in our intercept, and as
discussed above relative fuel prices may play less of a role than other factors in developed economics.

Economic theory suggests that households will adopt mains gas central heating if the benefits derived from
adoption exceed the costs and there is an expected utility increase from doing so. However, innovations take time
to diffuse, and households regularly make suboptimal choices. This can be related a range of factors, such as
uncertainty about the relative costs or benefits of adoption, indifference, heterogeneity in consumer preferences
or lack of access to financing.

In order to estimate the determinants of gas connections at a local area level, it is necessary to consider
demand and supply simultaneously. Suppliers are likely to extend the gas network to areas with a higher prob-
ability of adoption, and only those households in close proximity to the gas infrastructure can adopt. Previous
research has indicated that dwellings with piped gas in Ireland have higher incomes, partly due to their urban
location (Watson et al., 2003). This endogeneity could potentially lead to our coefficients being biased if we
simply estimate a demand equation. Therefore, we first estimate a supply equation in a two-stage least square
regression. The choice of instrument and identification are described in detail in Section 4.3 and instrument
validity in Section 8.1.

We assume that the proportion of gas users in any area j will be a function of the aggregate socioeconomic
characteristics of that area Xj , aggregate dwelling characteristics Dj , spatial factors which will vary by location
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Sj and the length of time the gas network has been located in an area t− t0j . This can be summarised as follows:

∑Nj

j=1 Gijt

Nj
= f(Xj ;Dj ;Sj ; t− t0j ) (1)

Where Gijt is a binary variable equal to one if household i in area j uses gas at time t and equal to zero
otherwise. Nj is the number of households in each area.

4.1 Supply equation

As adoption might have a non-linear relationship with the length of time the network has been in place, we
estimate two supply equations. In the first equation, the dependent variable is the length of time the network
has been in place in each area, the second dependent variable is the squared length of time the network has been
in place in each area.

Our first-stage supply equations are summarised below:

Tj = α+ βZZj + βXXj + βDDj + βSSj + ε (2)

T 2
j = λ+ γZZj + γXXj + γDDj + γSSj + δ (3)

We regress time and time squared on our instrument set Zj consisting of household count, household count
squared, area and area squared.

This generates predicted values for time and time squared which we can use to identify the effect of these
factors in our second-stage demand equation. All other variables from the second stage are also included in the
first stage regression. We implement a two-stage, generalised method of moments specification (GMM), with
common intercepts (α, λ) and errors (ε, δ).

4.2 Demand equation

The dependent variable in this regression is the proportion of households in each area that use gas as their
primary source of central heating. When completing the 2011 Census, households were asked to select from a
range of options the one that best describes their primary means of central heating. This is summarised in Table
1 in section 5.1.

The demand equation takes the estimated time and time squared from the supply equations, along with a
range of socioeconomic and dwelling characteristics, some spatial variables representing the proximity to the gas
network, proximity to alternate fuel sources and policy variables prohibiting the sale and burning of bituminous
coal.

∑Nj

j=1 Gijt

Nj
= ν + δT̂ T̂j + δ

T̂ 2 T̂
2
j + δXXj + +δDDj + δSSj + µ (4)
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We include a range of socioeconomic factors at area level, which might influence the decision to adopt gas
central heating. These are related to economic status, age, education levels and tenure type. Dwelling charac-
teristics include house type, a measure of energy efficiency (Building Energy Rating - BER), and dwelling age.
All of these variables are expressed as proportions for each Small-Area.

4.3 Identification

As described above, we use household count, area size and their squared terms in our first-stage supply regression
to generate predicted values for time and time squared in the second stage demand regression. This is because
the network operator is likely to expand the network first to those areas with a higher probability of adoption.
This might bias our results unless accounted for.

The rationale behind this instrument is that the total costs of extending the network to an area should be
inversely related to the number of customers in an area. If diminishing economies of scale exist, a negative rela-
tionship will also exist with the square of the number of customers. In addition to this, the density of households
will also be an important factor in driving network extensions6. This instrument captures the key element being
the utilities’ decision to extend the network to certain areas based on local economies of scale. This empirical
strategy draws from Lyons (2014) in his estimation of the timing and determinants of local broadband adoption
in Ireland.

As the network has been developed over a long period of time (approx 100 years) using population data from
2011 is not a perfect measure. However we do not have historical series for population at Small-Area level, and
the geographic spread of population in the current period is likely to be highly correlated with past periods.

On the demand side, the key factor driving adoption will be the cost and availability of the network connec-
tion, this is captured by our supply-side instruments and the variable measuring distance to the network. One
could argue that uptake may also be affected by neighbourhood spillovers, for example if a household observes a
number of neighbours connecting to the network and then decides to connect. Further, imperfect information,
neighbourhood effects or other factors may affect the timing of adoption. This underlines the importance of
examining the time lag in adoption. While we can measure the magnitude of the time-lag and how is varies by
area, our data do not allow us to unpick the underlying reasons behind it.

4.4 Instrument validity

Regarding instrument relevance, Baum et al. (2007) suggest using Kleibergen-Paap rk statistic to test for un-
deridentification when using a robust covariance estimator, and the corresponding Wald F statistic when testing
for weak identification. In both cases the results of these tests fail to reject the null hypothesis that our in-
struments are underidentified and weakly identified, as per table B1. This is likely to be the case because we
are including interactions of endogenous variables (linear and quadratic terms) in our estimations and these are
highly correlated. Wooldridge (2010) suggests that when this is the case, one should check whether the most
general linear version of the model is identified and if this is not the case, proceed with caution. In our case

6By including count and area we implicitly account for density while also accounting for scale. Robustness tests are also conducted
using household density and the results hold
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both the linear and quadratic endogenous variables are strongly identified when estimated separately, Table B1,
and we proceed on that basis.

The result from the Hansen J test of overidentifying restrictions suggests that we do not reject the null hy-
pothesis that the overidentifying restrictions are valid for the 100 year sample. At a 5% level we would reject the
null for the 20 year sample. However, some doubt has been cast on the ability of this test to provide information
on the validity of the moment conditions implied by the underlying economic model (Deaton, 2010; Parente and
Silva, 2012). Parente and Silva (2012) in particular suggest that this should more accurately be considered a
test of instrument coherence, as opposed to validity.

5 Data

The data in this paper come from a range of sources. The proportion of natural gas users within each area,
along with area proportions of socio-demographic and dwelling characteristics were obtained from the Central
Statistics Office (CSO) Census of Population, Small-Area Population Statistics 2011. Gas Networks Ireland
(GNI) provided detailed GIS maps, including the timing and geographic location of the high-pressure (HP),
medium pressure (MP) and low pressure (LP) gas network. The Environmental Protection Agency’s (EPA)
website provide GIS maps of soil types in Ireland, from this we calculated the average distance to bogs for all
dwellings in each location. The EPA also provide information on the timing and location of smoky-coal bans in
Irish urban areas7. For descriptive statistics of all variables used in estimations, please see Appendix B.

The analysis is conducted at Small-Area level. This is the most disaggregated unit for which one can obtain
publicly available Census data in Ireland. These range in population from 8 - 549 dwellings. There are over
18,000 Small-Areas in Ireland. Our sample consists of 9,638 Small-Areas which are all in close proximity to the
gas network.

5.1 Dependent variable

The dependent variable is the proportion of gas users within each Small-Area. This was self-reported by house-
holds as per Table 1. Natural gas usage accounted for almost a third of all primary central heating in the
national population in 2011. We explore how this varies by recalculating the proportions of each fuel used as the
average distance of all dwellings in a Small-Area get closer to the gas network. The average proportion of gas
users jumps to 57.5% in areas within 1000m of the network (our sample), and increases as the average distance
to the network falls. The main fuel displaced is oil, and electricity is increasing used as an alternative. This
reflects the greater proportion of electric heating in urban apartment buildings close to the gas network.

7This can be accessed at http://gis.epa.ie/
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Table 1: Census 2011 primary central heating proportions

What is the main type of fuel used
by the central heating in your ac-
commodation?

National pop-
ulation

Within
1000m

Within
500m

Within
100m

Within
50m

Within
10m

No central heating 1.6% 1.3% 1.3% 1.3% 1.3% 2.8%
Oil 43.1% 23.9% 22.3% 18.2% 16.2% 3.2%
Natural Gas 33.4% 57.5% 59.2% 64.0% 67.1% 69.7%
Electricity 8.5% 11.5% 11.7% 11.8% 11.1% 19.5%
Coal (including anthracite) 4.8% 2.5% 2.4% 2.0% 1.8% 1.5%
Peat (including turf) 4.8% 0.8% 0.7% 0.4% 0.2% 0.1%
Liquid Petroleum Gas (LPG) 0.6% 0.3% 0.3% 0.2% 0.2% 0.2%
Wood (including wood pellets) 1.3% 0.3% 0.3% 0.2% 0.2% 0.1%
Other 0.5% 0.3% 0.3% 0.2% 0.2% 0.3%
Not Stated 1.4% 1.6% 1.6% 1.7% 1.7% 2.7%
Notes: Author’s calculations based on CSO Census 2011 data
Data presented for national population and for varying distances from gas network

However, even within these areas, considerable variation exists in the proportion of users. Figure 2 illustrates
that even for areas in which the average distance of all households to the nearest point on the low or medium
pressure network is less than 100m., a significant proportion do not use gas as their primary means of heating.
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Gas proportion per CSO Small-Area 2011
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Figure 2: Proportion of households using gas as their primary fuel
in close proximity to the low pressure gas network
Source: Author’s calculation using Census 2011 data

This is illustrated geographically in Figure 3. As examples we choose four metropolitan areas in Ireland, all
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of which have access to the gas network. Outside of Dublin, Cork has both the greatest number and highest
proportion of households using natural gas as their primary means of central heating, however there is still sig-
nificant local variation. Galway has a relatively low proportion of gas users in most areas, reflecting the recent
extension of the network to this city.

Figure 3: Spatial variation in gas connections at Small-Area level in four
Irish metropolitan areas
Source: Author’s calculation using Census 2011 data

5.2 Gas network

The location of the gas infrastructure in Ireland is displayed in Fig 4. As described in Section 3.1, the network
location was concentrated mainly in larger cities such as Dublin and Cork until relatively recently. The high-
pressure network was expanded to link Limerick and Galway in the early 2000s.
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Figure 4: Location of Irish gas network infrastructure 2011
Source: Data provided by Gas Networks Ireland - please see the disclaimer at the
end of this document

Detailed network maps, which also contain the date each individual segment was laid, were obtained for each
segment of the gas network. From this we calculate when the gas network was put in place for each Small-Area.

5.2.1 Mean distance to LP or MP network

This distance variable was generated by calculating the distance of every domestic residence in the CSO 2011
Census to the nearest point on the LP or MP gas network (Krah et al., 2016). We then aggregated by Small-
Area, to calculate the average distance for each area. This variable will reflect the relative ease of connection
for various areas. This can vary even within close proximity to the network - as can be seen from Figure 5.
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Figure 5: Variation in household density and location in close proximity to the low
pressure gas network. Notes: The black dots denote residential dwellings from the
2011 Census. The red shaded areas represent proportions of gas users per area. The
yellow lines are the low-pressure network. Source: Data provided by CSO Population
Census; Gas Networks Ireland - please see the disclaimer at the end of this document

5.2.2 Date network was laid

Each segment of the gas network8 has a date identifier marking the day that portion of the network was laid.
Using GIS software, we map each network segment to any Small-Area it is fully within or intersects at any point,
illustrated in Figure 6. This generates a distribution of date variables for each Small-Area. As the 2011 Census
(from which we take our gas proportions data) took place on April 10th 2011, we consider this as time t. From
this we calculate the length of time in years since each segment was laid as t − t0j , where t0j is the date each
segment was laid. This generates a distribution of year-length variables for each Small-Area. As a proxy for the
length of time gas was available to households in each area we choose maximum time length, i.e. the date the
first segment was laid in each area. However we also run estimations with various other time variables, such as
the average time and latest time gas became available in each area9.

8The low pressure network contains 135,195 separate segments, the medium pressure network contains 123,048 segments.
9We are missing a date identifier on approximately 20% of the MP and LP networks. This may introduce some error into the

estimation but we have reduced it substantially through aggregation. When we aggregate to area level, there remains only 3%
of Small-Areas for which we have no date identifier. Robustness checks are also performed which test the sensitivity of results to
missing date identifiers.
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Figure 6: Example of Small-Area boundaries and gas network
Source: Data provided by CSO Population Census; Gas Networks Ireland - please
see the disclaimer at the end of this document

5.3 Spatial fuel source and policy variables

From Census 2011 4.8% of households in Ireland use peat as their primary heating source, however a sizeable
proportion also have an open fire or peat burning stove as a secondary source. As can be seen from Figure 7,
this pattern is highly correlated with the location of peat bogs. Using GIS software we calculate the distance of
every household to the nearest raised and blanket bog. Again, we aggregate these variables to Small-Area level,
allowing us to determine the relative proximity of dwellings in each area to different bog types.
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Figure 7: Location of peat bogs and areas where peat burning is the primary means
of central heating. Source: Data provided by CSO Population Census; EPA GIS
portal

A ban on the marketing, sale and distribution of bituminous fuel (or “smoky coal ban”) was introduced in
Dublin in 199010. This was in response to severe instances of winter smog. This ban was extended to an increas-
ing number of towns with a population in excess of 15,000 people between 1990 and 2013, and a prohibition on
burning was introduced in addition to the ban on marketing, sale and distribution. By 2011 this was in place
in 19 towns in Ireland. Information on the location of these bans allow us to overlay this onto our Small-Areas.
Dummy variables are then created for these areas. While we cannot infer a causal relationship between this
policy and gas usage, we can examine the correlation, holding other factors constant.

5.4 Census and other data

Supplementing the spatial and temporal data on fuel sources and policy variables, we include a range of so-
cioeconomic, demographic and dwelling variables from the Census in our estimations. These variables are all
at Small-Area level and thus will reflect the aggregate characteristics of each area. We also include information
on the energy efficiency of dwellings. This data was estimated using the SEAI BER database and the Census
of population 2011. For more information see Curtis et al. (2015). We use the proportion of low-rated (E,F,G)
dwellings in each area.

10See http://www.environ.ie/environment/air-quality/coal/smoky-coal-ban
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6 Results

We estimate a generalised method of moments (GMM) instrumental variables specification, with household
count, area and their squared terms as instruments. The length of time the network has been in place might
affect the proportion of users in a non-linear manner. For example, to run mains gas to certain housing estates
adjacent to the existing network GNI require a minimum proportion of households within that area to adopt
immediately11. This would result in a large initial uptake which mitigates over time. Alternatively for one-off
connections, certain households might be slow to switch to mains gas when it first becomes available, due to
sunk costs related to their current heating system. This might result in a slow initial uptake, followed by more
rapid switching. To accommodate this, we specify two first stage regressions, with time and time squared as
the dependent variables. Standard errors are robust to heteroskedasticity. Areas are weighted by population in
all specifications. We restrict our analysis to areas in which the average distance of all dwellings is less than
1km from the nearest point on the low or medium pressure gas network. Other areas are not relevant for our
analysis, as it would not be feasible for households within them to connect to mains gas12. We report the results
from our first stage supply equations first, followed by the second stage demand equation.

6.1 Supply equations

These equations are primarily used to identify the length of time the network has been in place in our demand
equation. The instruments are all significant and have the expected signs. The gas network was located first
in areas of high density. We include all other covariates from our second stage in the first stage regressions, as
there is no efficiency loss from doing this. However, as many of them, particularly those related to socioeconomic
characteristics, reflect current factors and the gas network was constructed over many years, their interpretation
is subject to caution. The results are reported in Section B of the appendix.

One variable of interest though is the proportion of houses built in various time periods in each area. This
will reflect changes in the housing stock over time. As one might expect the coefficients on these terms are
highest for those areas with high proportions of pre 1945 dwellings, decreases for areas with higher proportions
of building constructed between 1945-1980, and rises again for buildings constructed between 1980-2000. This ef-
fect is indicative of the outward sprawl of network infrastructure from areas of historically high density over time.

6.2 Demand equation

Predicted values for length of time and length of time squared are generated from the first stage estimation.
The proportion of gas connections in each area is then regressed on these and other variables. We report results
for both the whole 100 year sample and the more recent 20 year sample in Table 2. The results indicate that
each additional year the network has been in place results in a 3.2 percentage point increase in the proportion of
households within that area who use gas as their primary fuel. This effect mitigates over time, as indicated by

11See for details http://www.cer.ie/document-detail/Gas-Networks-Ireland-Connections-Policy-Review/1007
12We test the sensitivity of this parameter to various distances from 100m upwards.
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the negative effect on the squared term. We can graphically illustrate the time-path to adoption including both
linear and squared terms, as per the left-hand panel of Figure 8. Both of these effects are highly statistically
significant. On average, for all areas in our estimation there is an increasing adoption up to about 25 years in
the full sample. The limiting factor is due to certain areas having had access to the gas network for up to a
century, but which still do not have a very high proportion of connections. When the analysis is restricted to
more recent periods the rate of adoption appears to be much faster. This is graphed in the right-hand panel
of Figure 8. When the sample is restricted to the previous 20 years, each additional year is associated with
approximately a 12 percentage point increase in gas customers, again this effect appears to reduce over time.
This is broadly in line with Rogan et al. (2012), who reported an annual increase of 9% between 1980 and 2010.
On average, penetration rates are reaching about 50% after 8-10 years.
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Figure 8: Proportion of gas adopters at Small-Area level over time

The results for both 100 year and 20 year sample are broadly similar for most of the remaining variables. We
will discuss both together, unless otherwise stated, with the 20 year results in parenthesis. The coefficient on
the variable representing distance to the gas network is significant at the 1 percent level. Even in areas that are
relatively close to the network, distance still matters. Interpreting this result implies that a 1 percent increase
in average distance to the network is associated with a 12 (13) percentage point reduction in the proportion of
users in an area. This reflects the cost of domestic connections. For houses within 15m of the network connection
costs are e220, with a charge of e45 for each additional metre beyond this13.

13https://www.gasnetworks.ie/home/get-connected/connection-costs/
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The distance to a cut bogs (this includes both raised and blanket bogs) has a positive coefficient, indicating
that the further away an area is from a cut bog, all else being equal, the higher the proportion of gas users in
that area. The coefficient on uncut blanket bogs is negative, but not significant14. This is likely to be the case
because the current proportion of households using solid fuel in an area will reflect past incentives in that area.
Therefore proximity to cut bogs might be a better indicator of fuel usage as this will reflect areas where peat
has been harvested over many years. The ban on the sale and burning of bituminous fuel appears to also have
had an effect. All else being equal, these areas have a 6 (11) percentage point higher proportion of gas users.
We can not infer causality however.

Considering the socioeconomic and dwelling variables next, our reading of the coefficients changes. For each
set of variables, we interpret the effect relative to the reference category. All of these variables are area propor-
tions. The employment status variable indicates that, all else equal, compared to areas with higher proportions
of people in employment, all other categories have reduced gas connections, although not all coefficients are
statistically significant. Taking the “EconUnemployed” variable as an example, our interpretation is that all else
equal, a 10 percent increase in the proportion unemployed, relative to the reference category (those in employ-
ment), is associated with a 4.27 (6.59) percentage point decrease in the proportion using natural gas.

Areas with high proportions of young families and elderly people are also associated with greater gas con-
nections, compared to those with high proportions of 25-44 year olds. Considering tenure type next, those areas
with higher proportions of outright homeowners and private renters are less likely to have gas connections than
those with high proportions of mortgage holders. However, local authority areas have higher proportions of gas
connections.

Areas with high proportions of houses, as opposed to flats or bedsits (studio apartments) are more likely
to use gas. This reflects the large proportion of electrical heating in apartment complexes in Ireland. The
proportion of low-rated BER dwellings in an area is strongly negatively associated with gas connections15.
Finally, when looking at the 100 year sample we can see that both very new (post 2000) and very old (pre
1960) constructed houses are more likely to have high proportions of gas connections. This likely reflects the
urban location of a high proportion of the older building stock. The coefficients differ slightly for the 20 year
sample, with more recent network expansions extending to a higher proportion of dwellings built from 1960-1980.

There is a high degree of collinearity between some of the socioeconomic and demographic variables. For
example, areas with high proportions of retired people also have high proportions of people aged over 65, and
have a high proportion of owner occupiers without any remaining mortgage obligations. While each of these
variables is compared with the reference category in each class, caution is advisable in interpreting some of these
coefficients. For example, the results indicate that areas with greater proportions of retired households are less
likely to have high connections to the gas network than areas with greater proportions employed. However,
areas with greater proportions aged over 65 are more likely to have high gas connections than areas with greater
proportions of 25-44 year olds. This result seems contradictory, but is driven by the reference category changing

14A number of blanket bogs are located in the Wicklow mountains, in close proximity to Dublin, which has the largest concentration
of gas users. This is likely to be driving the negative coefficient of this variable.

15While not reported in the tables, additional analyses were conducted using the proportion of AB and CD rated properties.
Higher proportions of AB properties are strongly associated with more gas connections, while the effect of high proportions of CD
properties is weakly positive.
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in each case, and a small number of areas, with very high gas connections, which also have households aged over
65 on average, that are not in retirement.

Table 2: Second stage demand equation

Dep Var: Proportion of gas users by SA in 2011

100 year sample 20 year sample
Variable category Variable Coefficient Robust SE Coefficient Robust SE

Spatial fuel and policy variables Maxlengthyears hat 0.032*** (0.004) 0.119*** (0.022)
Maxlengthyears squared hat -0.001*** (0.000) -0.006*** (0.002)
log(distance to cut bog) 0.019*** (0.004) 0.038*** (0.006)
log(distance to bkt bog) -0.006 (0.005) -0.020*** (0.005)
log(mean distance to gas network) -0.120*** (0.006) -0.129*** (0.007)
Coalban dummy 0.063*** (0.011) 0.106*** (0.016)

Socioeconomic EconWorking [REF] [REF]
EconLooking for first job -0.289 (0.313) 0.076 (0.243)
EconUnemployed -0.427*** (0.123) -0.659*** (0.128)
EconStudent -0.398*** (0.130) -0.240** (0.103)
EconHome -0.303* (0.155) -0.438*** (0.127)
EconRetired -0.774*** (0.198) -0.564*** (0.144)
EconDisabled -0.710*** (0.175) -0.438*** (0.121)
EconOther -0.150 (0.198) -0.415 (0.275)
Age 25-44 [REF] [REF]
Age 0-14 0.560*** (0.117) 0.405*** (0.084)
Age 15-24 0.188 (0.156) 0.106 (0.118)
Age 45-64 -0.293*** (0.099) -0.039 (0.109)
Age 65 plus 1.046*** (0.239) 0.458*** (0.165)

Socioeconomic EduSecondary [REF] [REF]
EduPrimary 0.187** (0.082) 0.400*** (0.076)
EduTechnical -0.124 (0.100) -0.225*** (0.086)
EduDegreeplus 0.253*** (0.059) 0.198*** (0.042)
EduRefused -0.029 (0.128) -0.041 (0.086)
TenOwnmortgage [REF] [REF]
TenOwnNomortgage -0.351*** (0.064) -0.536*** (0.069)
TenRentland -0.153*** (0.044) 0.001 (0.046)
TenRentlocal 0.119** (0.049) 0.073** (0.031)
TenRenvol -0.009 (0.081) 0.078 (0.078)
TenRentfree -0.252 (0.203) 0.177 (0.271)

Dwelling DwellBungalow [REF] [REF]
DwellFlat -0.219*** (0.026) -0.166*** (0.020)
DwellBedsit -0.192 (0.358) -0.847*** (0.120)
DwellOther -0.317** (0.133) 0.285 (0.181)
Proportion EFG -0.499*** (0.036) -0.602*** (0.034)
AgePost2006 [REF] [REF]
AgePre1945 0.446*** (0.075) 0.713*** (0.108)
Age 1945-60 0.363*** (0.056) 0.577*** (0.072)
Age 1960-80 -0.126*** (0.033) 0.235** (0.101)
Age 1980-2000 -0.126*** (0.025) 0.156* (0.082)
constant 0.840*** (0.097) 0.592*** (0.108)

Diagnostics N 9638 7965
F( 34, 9603), ( 34, 7930) 461.38 (0.00) 416.62 (0.00)
Overid - Hansen J 1.341 (0.512) 6.836 0.0328

Notes: Results from IV-GMM specification. Cluster-robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.
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7 Scenario analysis - gas network expansion

The model may be used as a tool to predict residential uptake of future gas network expansion as well as as-
sess the associated impact on greenhouse gas emissions. Network expansion is still ongoing with a number of
provincial towns earmarked for connection. Wexford town, which is located in the south-east of the country,
is one town where the network has recently expanded and is a useful case study for model simulations. The
town comprises 74 Small Areas, which are the observation unit in the estimated model. Based on the 2011
population census there are 17,684 people living in these Small Areas within a housing stock of 8,437 residen-
tial units. These areas include a spectrum of building types, as well as socio-demographic characteristics of
the occupants. Houses are the most frequent residential unit, with a mean across the 74 small areas of 87%,
though this varies from a minimum of 19% to a maximum of 100% across Small Areas. The mean share of older
pre-1945 properties is 17% ranging from a minimum of 0% to a maximum of 79%, which reflects both the older
central parts of town and more recently build areas on the periphery. While the property type, and age may
present different engineering challenges connecting to the gas network an important additional consideration
is the property’s occupants. The model incorporated four socio-demographic variables covering the head of
household’s socio-economic status, age and education, as well as details on property tenure. The proportion of
households with a working head of household varies between 22% and 70% across Small Areas; those with a
university degree range from 6-42% with similarly broad variations in age. Approximately 25–32% of properties
are either owner-occupied (with/without a mortgage) or rented from a private landlord while 10% are rented
from a public landlord. The maximum proportion of each of those tenure categories is between 63-73%, while
the minimum varies between 0–6%. The adoption of gas as a fuel is likely to differ substantially given the
wide variation both in building characteristics and their occupants. The estimated model is an ideal tool to
predict gas connections by Small Area with the passage of time, which should aid in planning network expansion.

To complete the simulation we make a number of assumptions. First, we use the model estimates based on
gas network connections in the past 20 years, as this is likely to have more relevance for predicting network
connections over a short-term horizon. To calculate the impact on emissions, data on the fuel used prior to gas
connection (i.e. coal, oil, etc.) as well as the quantity consumed is required. Mean household fuel consumption
by heating source type are based on figures reported in Leahy and Lyons (2010). The pre-switching fuel type
assumption is based on an analysis of the composition of fuels consumed in Small Areas with network gas con-
nections at 5% increments in share of gas network connections.

The projected network connections are reported in Table 3. With the model’s estimated inflection point
occurring at approximately 10 years, implying that the level of connections reaches a plateau after that time,
we do not report predictions beyond 10 years. Within 2 years the mean share of connections is 19%, which is
relatively high but as the Small Areas differ in size the mean share is not equal to the proportion of all households
connected. The level of connections differs considerably with the connection share being as low as 1% or as high
as 21% in some Small Areas. The level of connections increases quite rapidly over the first 8 years reaching
a plateau just below 60% mean share of gas connections by Small Area, though the share of connections is
substantially lower in some places with 12% of Small Areas not exceeding a 50% connection rate. The switch to
gas is primarily from oil (mostly kerosene) and also solid fuels such as coal. The projected reduction in emissions
associated with fuel switching is also reported in Table 3. Emissions reductions reaches 70 ktCO2 per annum
after ten years, which is approximately 1% of emissions from the entire Irish residential sector in 201516. Based

16http://www.epa.ie/climate/emissionsinventoriesandprojections/nationalemissionsinventories/
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on these projections the further gasification of residential heating represents a major opportunity to substantially
reduce greenhouse gas emissions in the coming years.

Table 3: Projected proportions of gas network connections

Small Areas % Households Minimum % Maximum % change emissions
After: connected tCO2/year
2 years 74 0.19 0.01 0.21 -23,065
4 years 74 0.36 0.17 0.38 -44,617
6 years 74 0.48 0.29 0.50 -61,651
8 years 74 0.55 0.36 0.57 -67,614
10 years 74 0.57 0.38 0.59 -70,815

8 Robustness and sensitivity analysis

This section explores a range of alternative model specifications. For reasons of brevity the focus is on our
baseline 100 year sample, but results hold for both unless otherwise stated. Reported second stage demand
equation results are reported in the Appendix.

8.1 Alternative model specifications

The first set of additional estimations examine alternative model specifications. Column 1 in Table C1 presents
results where household density and household density squared are used instead of household count and house-
hold count squared for the instruments. The results remain quite stable compared to our main estimation. This
is likely because by instrumenting with household count, area and their square terms in the main estimation we
implicity account for density.

Another source of concern with our main estimations is that we do not explicitly account for household
income. Information on incomes is not available at Small-Area level and although we capture a wide range of
socioeconomic factors correlated with income some bias may exist due to its omission. To account for this we
estimate two additional models which include proxies for income. Column 2 presents results using the Trutz
Haase HP Deprivation Index (Haase and Pratschke, 2012) for each Small-Area. This is a composite measure
created by combining a range of Census variables, some of which we had included in our main specification.
To avoid potential multicollinearity we omit these variables from this set of results (employment status, age,
education and tenure type). Column 3 includes a variable which captures average relative employment com-
pensation for each county from 1995-2011. Standard errors are clustered at county level for these estimations.
In both cases these variables are significant and have the expected sign. Coefficients on the predicted length of
time variables remain stable in both estimations. The statistical significance reduces for some of the distance
variables in Column 3 - otherwise results remain quite stable. While the Trutz Haasee is a useful measure in its
own right, it is essentially an aggregation of variables already included in our model and does not provide much
additional information. Including county level relative income is a useful measure, and given that counties are
administrative boundaries (as opposed to Small-Areas) clustering the standard errors at this level would make
sense to control for any factors that affect groups of observations uniformly within each county. However, we are
less confident about the accuracy of this specification as when clustering at county level the number of clusters
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are insufficient to calculate a robust covariance matrix.

To account for this in Column 4 we provide a further robustness check in which we cluster standard errors at
Electoral Division (ED) level 17. This allows for a calculation of a robust covariance matrix. However EDs are
an arbitrary aggregation of Small-Areas used for Census purposes and it is not clear why intra-group correlation
would exist at this level. Given the main results are quite stable across all additional models estimated our main
reported models remain our preferred specification.

8.2 Sensitivity analysis on missing gas segment date identifiers

As previously described a date identifier is missing for 20% of the LP and MP network segments. While we
mitigate this problem through aggregation at the Small-Area level, measurement error may still bias our results.
To account for this we conduct sensitivity analysis on various sub-sets of the data. Columns 1-4 of Table C2
present results where we set an acceptable threshold of missing date identifiers for each Small-Area at 0%, 5%,
10% and 20%. Taking Column 1 for example we omit any Small Area with a missing date identifier. This is
quite restrictive and reduces our sample to 5072 Small-Areas. As we move across the columns the sample size
increases and results converge towards our main estimates. However, in all cases they are quite stable. Our
main model remains the preferred specification as it provides a conservative estimate of the effect of time on gas
heating adoption.

8.3 Sensitivity analysis on average distance from gas network

For the main estimations we examine uptake of gas central heating in Small-Areas in which the average distance
of all dwellings is within 1000m of the gas network infrastructure. This threshold is chosen as it would be pro-
hibitively expensive to connect over distances much longer than this. Another issue is that a small proportion
of dwellings use LPG and while this is considered separately by the CSO and should not be included in our
dependent variable, some households may have answered this question incorrectly - particularly if they state
they are using natural gas but are far from the network. Results of a range of sensitivity checks are reported
in Table C3. As one might expect, results are quite unstable at distances far from the network. Households
in these locations would have no realistic chance of connecting. As the threshold moves closer to the network
results converge towards the main estimations. Again, our main model remains the preferred specification and
it provides a conservative estimate of the effect of time on gas heating adoption.

9 Conclusion

We have examined the determinants of gas central heating adoption at Small-Area level in Ireland, simulta-
neously modelling supply and demand in order to account for potential endogeneity in network infrastructure
roll-out and adoption. We explicitly model the time-path in diffusion, which is important in order to better
understand the potential for both policy and technological improvements to aid carbon abatement. Ireland is
interesting from an international perspective as we have a legacy and culture of peat usage for home heating.

17There are approx 3400 EDs in Ireland.
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The gas network has been in place in the two largest cities for a century, but only recently extended to other
parts of the country. Our unique time and location coded data allow us to examine adoption over an extended
period.

On average the results show that over the past century, each year the network has been in place is associated
with a 3% rise in connections. When more recent periods are examined, the connection rate is much higher,
about 12% rise per year over the past twenty years. There appears to be a non-linearity in these estimates and
this effect diminishes over time. Proximity to the network is also an important determinant of connections, and
reflects the cost of connection for all dwellings in that area.

The widespread availability of peat as a source of fuel has clearly inhibited the transition to cleaner fuels.
As peat usage is highly correlated geographically with the location of peat bogs, it is useful to see how gas
network roll-out interacts with the proximity of other fuel sources in determining gas central heating adoption.
Proximity to previously cut peat bogs is negatively associated with gas connections. Recent policy developments
such as the ban on the sale and consumption of bituminous coal is associated with a 6 percentage point higher
proportion of gas connections in these areas, all else being equal. We can’t attribute causality here however, as
this ban was first introduced in urban areas, which would already have had higher proportions of gas connections
before the bans were introduced.

In the context of future network gas expansion the analysis provides a number of useful lessons. As noted
above, domestic gas network connections are neither uniform nor instantaneous following network expansion.
However, connections do occur relatively rapidly reaching a plateau within 10 years. There is also considerable
heterogeneity by socio-demographic characteristics and building attributes across Small Areas in terms of net-
work connections. This information is useful for network planners in deciding where to next extend the network,
and also for commercial suppliers of gas in determining why certain areas in close proximity to the network
have low levels of connections. Areas that are more socially deprived, with fewer ‘working’ households or lower
levels of education, having lower rates of network gas connection. Network expansion in such areas may be
unprofitable or have longer pay-back periods. If gas network expansion is considered socially desirable in such
areas public subvention may be necessary.

One reason why gas network expansion could be considered a public policy objective is because it can con-
tribute to the de-carbonisation of the residential sector. The case study simulation demonstrates the short term
benefits of network expansion for greenhouse gas emission reductions associated with fuel switching. Expansion
of the natural gas network is also consistent with the longer term ambitions of reducing EU greenhouse gas
emissions by 2050 by over 80% (European Commission, 2011), as longer term ambitions to inject biomethane
into the natural gas network has the potential to reduce emissions by 74% compared to natural gas (O’Shea
et al., 2017).

To fully examine the factors influencing the choice of home-heating system, we would ideally have had access
to individual household level data, as even aggregating to Small-Area level can mask important heterogeneity.
Also, aside from the network roll-out data, we only have data for one point in time. A panel dataset on how
gas proportions and various characteristics change over time, would have given us greater ability to identify
effects. Similarly, the inclusion of other spatially coded information, such as relative prices of alternate fuels,
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or the location of kerosene suppliers, for example, would have significantly benefited this paper. These are all
limitations of the research. However, our ability to examine time-trends in adoption is quite novel and makes a
unique contribution to the wider fuel switching literature.

Disclaimer
“Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained
in this document concerning location and technical designation of the gas distribution and transmission network
(“the Information”). Any representations and warranties express or implied, are excluded to the fullest extent
permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct,
indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection
with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone
1850 427 747 or e-mail digatgasnetworks.ie. The actual position of the gas/electricity distribution and transmis-
sion network must be verified on site before any mechanical excavating takes place. If any mechanical excavation
is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution
and transmission network must be completed in accordance with the current edition of the Health and Safety
Authority publication, “Code of Practice For Avoiding Danger From Underground Services” which is available
from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie.”
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10 Appendix

A Descriptive statistics for all variables included in estimations

Table A1: Descriptive Statistics

Variable category Variable Obs Mean Std. Dev. Min Max

Gas variables Gas 9,638 0.565 0.328 0 1
Max length years 9,638 14.523 13.134 0 111
log(mean distance to gas network) 9,638 3.252 1.074 0.732 6.906

Peat proximity log(distance to bkt bog) 9,638 8.772 1.167 -3.037 10.638
log(distance to cut bog) 9,638 9.315 0.639 6.147 10.786

Coalban areas Coalban dummy 9,638 0.829 0.377 0 1

Density Household count 9,638 94.853 22.256 21 252
Area km 9,638 3.691 13.026 0.0163 417.358

Socioeconomic EconWorking 9,638 0.516 0.141 0 0.942
EconLooking for first job 9,638 0.010 0.012 0 0.489
EconUnemployed 9,638 0.110 0.064 0 0.440
EconStudent 9,638 0.117 0.083 0 0.980
EconHome 9,638 0.084 0.036 0 0.297
EconRetired 9,638 0.116 0.090 0 0.727
EconDisabled 9,638 0.042 0.037 0 0.494
EconOther 9,638 0.003 0.016 0 0.595

Age 0-14 9,638 0.195 0.090 0 0.594
Age 15-24 9,638 0.353 0.140 0 0.873
Age 25-44 9,638 0.133 0.077 0 0.987
Age 45-64 9,638 0.209 0.090 0 0.662
Age 65 plus 9,638 0.110 0.094 0 0.780
EduPrimary 9,638 0.128 0.109 0 0.722
EduSecondary 9,638 0.344 0.105 0 1
EduTechnical 9,638 0.183 0.063 0 0.5
EduDegreeplus 9,638 0.296 0.179 0 1
EduRefused 9,638 0.049 0.054 0 1
TenOwnmortgage 9,638 0.347 0.192 0 0.953
TenOwnnomortgage 9,638 0.275 0.196 0 0.808
TenRentland 9,638 0.249 0.215 0 0.985
TenRentlocal 9,638 0.091 0.165 0 0.987
TenRenvol 9,638 0.011 0.043 0 0.688
TenRentfree 9,638 0.011 0.020 0 0.890

Dwelling DwellBungalow 9,638 0.798 0.292 0 1
DwellFlat 9,638 0.176 0.280 0 1
DwellBedsit 9,638 0.006 0.025 0 0.746
DwellOther 9,638 0.021 0.031 0 0.982
Proportion EFG 9,638 0.326 0.292 0 1
AgePre1945 9,638 0.138 0.221 0 0.988
Age 1945-60 9,638 0.088 0.171 0 0.954
Age 1960-80 9,638 0.214 0.275 0 1
Age 1980-2000 9,638 0.247 0.268 0 0.990
AgePost2006 9,638 0.248 0.318 0 1
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B Results from first stage supply equation

Table B1: First stage supply equation

Dep Var: Max length in years since network in place

Variable Linear Quadratic
Coefficient Robust SE Coefficient Robust SE

Household count 0.102*** (0.028) 6.332*** (1.790)
Household count sq -0.000** (0.000) -0.022*** (0.008)
Areakm 0.162*** (0.016) 2.773** (1.079)
Areakm sq -0.000*** (0.000) -0.000** (0.000)
log(distance to cut bog) 0.972*** (0.087) 44.660*** (6.365)
log(distance to bkt bog) 0.399*** (0.140) 8.285 (10.992)
log(mean distance to gas network) -3.899*** (0.129) -91.128*** (9.847)
Coalban dummy 2.319*** (0.216) 98.124*** (15.353)
EconWorking [REF] [REF]
EconLooking for first job -6.700 (16.052) -181.729 (1166.800)
EconUnemployed -7.628** (3.704) -542.257* (301.803)
EconStudent -6.209 (4.497) -423.807 (359.568)
EconHome 9.683* (5.359) 382.041 (442.248)
EconRetired -4.277 (6.972) -708.001 (560.839)
EconDisabled 2.635 (5.257) -614.494 (413.031)
EconOther 9.977 (8.273) 241.815 (686.109)
Age 25-44 [REF] [REF]
Age 0-14 3.929 (3.868) 23.942 (331.530)
Age 15-24 16.346*** (5.366) 706.930 (430.658)
Age 45-64 6.820** (3.219) -2.660 (269.857)
Age 65 plus 14.968** (7.520) 1291.967** (639.143)
EduSecondary [REF] [REF]
EduPrimary -2.259 (2.866) -147.458 (237.319)
EduTechnical -5.784* (3.271) -331.153 (264.163)
EduDegreeplus 5.392*** (1.917) 283.807* (158.999)
EduRefused 9.252** (3.887) 589.154* (338.634)
TenOwnmortgage [REF] [REF]
TenOwnnomortgage -0.600 (2.191) -45.547 (184.580)
TenRentland 2.843** (1.381) 90.053 (114.931)
TenRentlocal 3.347** (1.415) 279.572** (113.928)
TenRenvol 0.160 (2.666) 93.094 (202.774)
TenRentfree 11.902* (6.710) 321.387 (517.277)
DwellHouse [REF] [REF]
DwellFlat 0.513 (0.859) 21.788 (72.837)
DwellBedsit 8.401 (10.856) 1315.792 (1011.618)
DwellOther 8.870* (4.635) 151.917 (369.691)
Proportion EFG 0.160 (1.163) 66.561 (95.703)
AgePost2000 [REF] [REF]
AgePre1945 9.851*** (1.721) 652.140*** (145.094)
Age 1945-60 4.592*** (1.577) 359.113*** (125.876)
Age 1960-80 5.355*** (0.943) 227.464*** (76.441)
Age 1980-2000 6.254*** (0.615) 235.929*** (48.380)
constant -5.484* (3.266) -662.089** (262.435)

N 9638 9638
Weak id (Kleibergen-Paap rk Wald F)a 63.2 7.72
Weak id (Kleibergen-Paap rk Wald F)b 95.18 20.73
Underid (Kleibergen-Paap rk LM)a 0.001 0.001
Underid (Kleibergen-Paap rk LM)b 203.642 30.82

Notes: Results from IV-GMM specification. Cluster-robust standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.
(a) Linear and quadratic first stage estimated jointly. (b) Linear and quadratic first stage estimated separately
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C Robustness and sensitivity analysis

Table C1: Results of alternative specifications

Variable (1) (2) (3) (4)
Maxlengthyears hat 0.030*** 0.028*** 0.030*** 0.031***
Maxlengthyears squared hat -0.000*** -0.000*** -0.001*** -0.001***
log(distance to cut bog) 0.014*** 0.019*** 0.014 0.018***
log(distance to bkt bog) -0.007* -0.010*** -0.013 -0.007
log(mean distance to gas network) -0.115*** -0.132*** -0.119*** -0.120***
Coalban dummy 0.051*** 0.066*** 0.055** 0.062***
EconWorking [REF] [REF] [REF]
EconLooking for first job -0.258 -0.312 -0.333
EconUnemployed -0.342*** -0.380* -0.417***
EconStudent -0.344*** -0.359** -0.413***
EconHome -0.334*** -0.282 -0.326*
EconRetired -0.665*** -0.671*** -0.758***
EconDisabled -0.598*** -0.512*** -0.700***
EconOther -0.173 -0.071 -0.147
Age 25-44
Age 0-14 0.568*** 0.493* 0.585***
Age 15-24 0.122 0.176 0.203
Age 45-64 -0.269*** -0.283* -0.273**
Age 65 plus 0.878*** 1.002*** 1.026***
EduSecondary [REF] [REF] [REF]
EduPrimary 0.207*** 0.099 0.198*
EduTechnical -0.076 -0.130 -0.117
EduDegreeplus 0.224*** 0.216** 0.243***
EduRefused -0.090 -0.020 -0.046
TenOwnmortgage
TenOwnnomortgage -0.350*** -0.304*** -0.347***
TenRentland -0.156*** -0.086 -0.151***
TenRentlocal 0.079** 0.164** 0.110**
TenRenvol -0.038 -0.001 -0.009
TenRentfree -0.263* -0.220 -0.251
DwellBungalow [REF] [REF] [REF] [REF]
DwellFlat -0.223*** -0.275*** -0.277*** -0.219***
DwellBedsit -0.415** -0.550*** -0.290 -0.259
DwellOther -0.322*** -0.443*** -0.426*** -0.327**
Proportion EFG -0.505*** -0.569*** -0.477*** -0.496***
AgePost2006 [REF] [REF] [REF] [REF]
AgePre1945 0.360*** 0.177*** 0.399*** 0.422***
Age 1945-60 0.312*** 0.116*** 0.307*** 0.348***
Age 1960-80 -0.150*** -0.425*** -0.175*** -0.134***
Age 1980-2000 -0.149*** -0.271*** -0.148*** -0.133***
Deprivation index 0.009**
Average employment compensation 0.359**
constant 0.880*** 0.984*** 0.608** 0.858***
N 9638 9642 9638 9638
Notes: Results from IV-GMM specification. Cluster-robust standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1. 31



Table C2: Sensitivity analysis on missing gas segment date identifiers

Variable (1) (2) (3) (4)
Percentage missing 0 5 10 20
Maxlengthyears hat 0.041*** 0.038*** 0.036*** 0.035***
Maxlengthyears squared hat -0.001** -0.001*** -0.001*** -0.001***
log(distance to cut bog) 0.022*** 0.021*** 0.023*** 0.022***
log(distance to bkt bog) -0.016 -0.014* -0.013 -0.014**
log(mean distance to gas network) -0.115*** -0.114*** -0.117*** -0.116***
Coalban dummy 0.078*** 0.075*** 0.071*** 0.063***
EconWorking [REF] [REF] [REF] [REF]
EconLooking for first job -0.061 -0.012 0.104 0.016
EconUnemployed -0.084 -0.100 -0.147 -0.237*
EconStudent -0.073 -0.134 -0.171 -0.182
EconHome -0.113 -0.088 -0.140 -0.159
EconRetired -0.692 -0.938*** -0.891** -0.643**
EconDisabled -0.624* -0.764*** -0.565** -0.612***
EconOther -0.218 -0.199 -0.275 -0.232
Age 25-44
Age 0-14 -0.076 0.118 0.217 0.304*
Age 15-24 -0.125 -0.045 -0.016 -0.031
Age 45-64 -0.619*** -0.472*** -0.487*** -0.453***
Age 65 plus 0.595 1.044*** 0.962** 0.796***
EduSecondary [REF] [REF] [REF] [REF]
EduPrimary 0.048 0.146 0.161 0.172
EduTechnical -0.252 -0.177 -0.152 -0.169
EduDegreeplus 0.066 0.092 0.127 0.172**
EduRefused -0.651*** -0.511*** -0.360** -0.300**
TenOwnmortgage
TenOwnnomortgage -0.292*** -0.364*** -0.321*** -0.337***
TenRentland -0.188** -0.160** -0.169** -0.156***
TenRentlocal 0.084 0.020 0.014 0.044
TenRenvol 0.138 0.103 0.085 0.025
TenRentfree 0.158 -0.034 -0.015 -0.076
DwellBungalow [REF] [REF] [REF] [REF]
DwellFlat -0.258*** -0.238*** -0.232*** -0.234***
DwellBedsit -0.533 -0.600 -0.591 -0.619*
DwellOther -0.554** -0.471** -0.312 -0.341**
Proportion EFG -0.435*** -0.414*** -0.424*** -0.410***
AgePost2006 [REF] [REF] [REF] [REF]
AgePre1945 0.444*** 0.382*** 0.379*** 0.344***
Age 1945-60 0.344*** 0.285*** 0.301*** 0.301***
Age 1960-80 -0.178*** -0.172*** -0.164*** -0.164***
Age 1980-2000 -0.190*** -0.217*** -0.188*** -0.194***
constant 1.182*** 1.066*** 1.011*** 0.982***
N 5072 5572 6215 7129
Notes: Results from IV-GMM specification. Cluster-robust standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1.
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Table C3: Sensitivity analysis on average distance from gas network

Variable (1) (2) (3) (4) (5) (6)
Distance from network 50km 30km 20km 10km 5km 1km
Maxlengthyears hat -0.006 0.033*** 0.052*** 0.055*** 0.060*** 0.032***
Maxlengthyears squared hat -0.000 -0.001*** -0.001*** -0.001*** -0.001*** -0.001***
log(distance to cut bog) 0.023*** 0.016*** 0.016*** 0.020*** 0.024*** 0.019***
log(distance to bkt bog) -0.009*** -0.005 -0.008** -0.006 -0.010 -0.006
log(mean distance to gas network) -0.089*** -0.049*** -0.032** -0.046*** -0.052*** -0.120***
Coalban dummy 0.158*** 0.102*** 0.088*** 0.090*** 0.072*** 0.063***
EconWorking [REF] [REF] [REF] [REF] [REF] [REF]
EconLooking for first job -0.273 -0.126 -0.063 -0.012 0.025 -0.289
EconUnemployed -0.399*** -0.426*** -0.446*** -0.670*** -0.708*** -0.427***
EconStudent -0.463*** -0.481*** -0.494*** -0.570*** -0.515** -0.398***
EconHome -0.323*** -0.382*** -0.367** -0.362 -0.449 -0.303*
EconRetired -0.835*** -1.093*** -1.244*** -1.488*** -1.345*** -0.774***
EconDisabled -0.547*** -0.923*** -1.183*** -1.449*** -1.426*** -0.710***
EconOther 0.053 -0.068 -0.140 -0.353 -0.349 -0.150
Age 25-44
Age 0-14 0.449*** 0.356*** 0.231 0.325 0.438* 0.560***
Age 15-24 0.225** 0.118 0.060 0.191 0.162 0.188
Age 45-64 -0.117 -0.351*** -0.518*** -0.603*** -0.578*** -0.293***
Age 65 plus 0.977*** 1.224*** 1.387*** 1.584*** 1.540*** 1.046***
EduSecondary [REF] [REF] [REF] [REF] [REF] [REF]
EduPrimary 0.314*** 0.287*** 0.282*** 0.266* 0.219 0.187**
EduTechnical -0.227*** -0.230*** -0.293*** -0.315* -0.240 -0.124
EduDegreeplus 0.202*** 0.244*** 0.251*** 0.270*** 0.279** 0.253***
EduRefused 0.042 0.015 -0.009 0.084 0.107 -0.029
TenOwnmortgage
TenOwnnomortgage -0.291*** -0.312*** -0.345*** -0.307*** -0.316** -0.351***
TenRentland -0.099*** -0.147*** -0.179*** -0.218*** -0.209** -0.153***
TenRentlocal 0.181*** 0.199*** 0.197*** 0.256*** 0.262** 0.119**
TenRenvol -0.015 0.046 0.085 0.085 0.076 -0.009
TenRentfree -0.349*** -0.496*** -0.562*** -0.501* -0.498 -0.252
DwellBungalow [REF] [REF] [REF] [REF] [REF] [REF]
DwellFlat -0.225*** -0.226*** -0.248*** -0.224*** -0.206*** -0.219***
DwellBedsit -0.402* 0.130 0.527 0.825 0.739 -0.192
DwellOther -0.060 -0.312** -0.449*** -0.464** -0.470* -0.317**
Proportion EFG -0.422*** -0.383*** -0.345*** -0.362*** -0.403*** -0.499***
AgePost2006 [REF] [REF] [REF] [REF] [REF] [REF]
AgePre1945 0.462*** 0.488*** 0.498*** 0.671*** 0.702*** 0.446***
Age 1945-60 0.347*** 0.413*** 0.439*** 0.515*** 0.539*** 0.363***
Age 1960-80 -0.068*** -0.098** -0.120** -0.078 -0.073 -0.126***
Age 1980-2000 -0.058** -0.113*** -0.139*** -0.106** -0.107* -0.126***
constant 0.933*** 0.690*** 0.658*** 0.647*** 0.591*** 0.840***
N 16626 15250 14171 12346 10936 9638
Notes: Results from IV-GMM specification. Cluster-robust standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1.
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