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Abstract

In this paper, we study the family of renewal shot-noise processes. The Feynmann-Kac

formula is obtained based on the piecewise deterministic Markov process theory and the mar-

tingale methodology. We then derive the Laplace transforms of the conditional moments and

asymptotic moments of the processes. In general, by inverting the Laplace transforms, the

asymptotic moments and the first conditional moments can be derived explicitly, however,

other conditional moments may need to be estimated numerically. As an example, we develop

a very efficient and general algorithm of Monte Carlo exact simulation for estimating the sec-

ond conditional moments. The results can be then easily transformed to the counterparts of

discounted aggregate claims for insurance applications, and we apply the first two conditional

moments for the actuarial net premium calculation. Similarly, they can also be applied to

credit risk and reliability modelling. Numerical examples with four distribution choices for

interarrival times are provided to illustrate how the models can be implemented.
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1 Introduction

Since the beginning of the 20th century, shot-noise processes have been extensively used to model

a very wide variety of natural phenomena, with numerous applications in electronics, optics, biol-

ogy and many other fields in natural science, see early literature in Campbell (1909a,b), Schottky

(1918), Picinbono et al. (1970) and Verveen and DeFelice (1974). More recent applications ex-

tended to insurance and actuarial science in particular can be found in Klüppelberg and Mikosch

(1995), Brémaud (2000), Dassios and Jang (2003, 2005), Jang (2004), Jang and Krvavych (2004),

Torrisi (2004), Albrecher andAsmussen (2006), Macci and Torrisi (2011), Zhu (2013) and Schmidt

(2014). Mostly, they adopted the classical Poisson shot-noise process (Cox and Isham, 1980, p.88),

where the arrivals of claims are simply assumed to follow a Poisson process. However, an exponen-

tial distribution could be not appropriate for modelling claim interarrival times in practice when the

likelihood of a claim given the time elapsed since the previous one is not constant over time. There

has been a significant volume of literature that questions the appropriateness of a Poisson process in

insurance modelling (Seal, 1983; Beard et al., 1984) such as the rainfall modelling (Cox and Isham,

1980; Smith, 1980). For catastrophic events (e.g. floods, storms, hails, bushfires, earthquakes and

terrorist attacks), the assumption that resulting claims occur in terms of a Poisson process is inade-

quate as it has a deterministic intensity, i.e., it has the same claim frequency rate between the same

time interval of duration.

A natural generalisation of Poisson process is the family of renewal processes (Cox, 1962;

Cox and Miller, 1965; Karlin and Taylor, 1975; Grandell, 1991; Ross, 1996; Rolski et al., 2008),

which could offer more flexible model choices and are versatile enough to capture different styles

of claim interarrival times in reality. Using ordinary, delayed and stationary renewal processes to

derive the moments and moment generating functions of compound renewal sums with discounted

claims can be found in Léveillé and Garrido (2001a,b) and Léveillé et al. (2010). Since Andersen

(1957) proposed to use a compound renewal risk model and Gerber and Shiu (1998) introduced

the so-called discounted penalty function, the delayed and stationary renewal risk models and their

extensions for modelling insurers’ surplus processes can also be noticed in Willmot and Dickson

(2003), Gerber and Shiu (2005), Li and Garrido (2005), Willmot (2007) and Woo (2010).

In this paper, we mainly study renewal shot-noise processes, the generalised family of Poisson

shot-noise process. They are shot-noise processes driven by ordinary renewal processes, so that the

interarrival times could be any positive independent identically distributed random variables. This

paper can be considered as the generalisation of Jang (2004) from the classical Poisson process
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to a rather general renewal process for the underlying point process. However, this generalisa-

tion is technically nontrivial, since the renewal components lead our new models beyond the affine

framework in general, and several new approaches have been adopted or developed to investigate

the properties of moments. Based on the piecewise deterministic Markov process theory (Davis,

1984, 1993) and the martingale methodology (Dassios and Embrechts, 1989), we first obtain the

Feynmann-Kac formula. We then derive the Laplace transforms of the conditional moments and

asymptotic moments of the processes. In general, by inverting the Laplace transforms of these

moments, any asymptotic moments as well as the first conditional moments can be derived explic-

itly, however, other conditional moments may need to be estimated numerically. As an example,

we develop a very efficient and general algorithm of Monte Carlo exact simulation for estimating

the second conditional moments. The results then can be easily transformed to the counterparts of

discounted aggregate claims in insurance, and we apply the first two conditional moments for the

actuarial net premium calculation. Similarly, they can also be applied to credit risk and reliability

modelling. Numerical examples with four different distributions for modelling interarrival times

are provided, and the implementation details are also discussed.

This paper is structured as follows. Section 2 introduces renewal shot-noise processes and

the associated processes of discounted aggregate claims in insurance. In Section 3, based on the

piecewise deterministic Markov process theory and the martingale methodology, we present the

Feynmann-Kac formula. It is then used in Section 4 to derive the Laplace transforms of the mo-

ments of renewal shot-noise processes and discounted aggregate claims. Afterwards, in Section 5,

we apply the results of the means and variances to the actuarial context for calculating net insur-

ance premiums as well as credit risk and reliability modelling, for which we specify exponential,

gamma, inverse Gaussian and folded normal distributions for modelling interarrival times, respec-

tively. Section 6 contains concluding remarks.

2 Renewal Shot-noise Processes and Discounted Aggregate Claims

Claims arising from catastrophic events could be different from the different time interval of dura-

tion, and they could also depend on the time elapsed since the previous claim. Therefore, improved

models beyond the Poisson process to predict claims arising from catastrophic events are required.

For this purpose, let us start with a compoundmodel of insurance risk with the additional economic

assumption of a positive interest rate, and the accumulated value of aggregate claims up to time t
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in continuous time on a probability space (Ω,F ,P) is

Lt =
NtX
i=1

Xie
r(t−Ti), t ≥ 0,

where

• r > 0 is the risk-free force of interest rate;

• {Xi}i=1,2,··· are claim sizes (or jump sizes), which are assumed to be independent and iden-

tically distributed (i.i.d.) with cumulative distribution function (CDF) H(x), x > 0;

• {Ti}i=1,2,··· are the claim occurrence times (or, renewal epochs), which follows a renewal

point process Nt =
X
i

1{Ti≤t} with N0 = 0.

Ft is the associated natural filtration of Lt. Setting L0
t = e−rtLt, we have the discounted value at

time 0 of aggregate claims (or, discounted aggregate claims) up to time t, i.e.,

L0
t =

NtX
i=1

Xie
−rTi . (2.1)

As Jang (2004) and Jang and Krvavych (2004) noted the duality property between the process of

discounted aggregate claims and the shot-noise process, we now introduce a renewal shot-noise

process (or, shot-noise process driven by an ordinary renewal process)

St = S0e
−δt +

NtX
i=1

Xie
−δ(t−Ti), (2.2)

where δ is a constant. Setting S0 = 0 and δ = −r in (2.2), the processes of St and Lt become

identical. St was also discussed in Rice (1977) and was used as the stochastic intensity of a double

stochastic Poisson process (or Cox process) in Møller and Torrisi (2005) and Dassios et al. (2015).

Simulated sample paths of the renewal shot-noise process St and the underlying renewal process

Nt are provided in Figure 1, where we assume the interarrival times follow an inverse Gaussian

distribution and jump sizes follow an exponential distribution.

Note that, this process St is no longer within the usual framework of affine processes (Duffie

et al., 2000, 2003) or a Markov process due to the additional renewal components. In order to

establish a Markovian framework, we need to further include a supplementary stochastic process

Ut, the backward recurrence time (Cox, 1962, p.27) (or the time elapsed since the last jump arrived)

in the process St, i.e.,

Ut := U0 + t−
NtX
i=1

τi,
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Figure 1: Simulated paths of renewal shot-noise process St and renewal process Nt when the interarrival
times follow an inverse Gaussian distribution and jump sizes follow an exponential distribution

where U0 ≥ 0 is the initial value of Ut; {τi}i=1,2,... are interarrival times of claim arrivals, i.e.,

τi := Ti − Ti−1, i = 1, 2, ..., T0 = 0,

and they are i.i.d. with the CDF P (u), u > 0, which is assumed to be absolutely continuous with

the associated density function p(u). The idea of adding this supplementary variable Ut to make

the underlying process Markovian can be found as early as in Cox (1955). Ut increases at unit rate

till a jump arrives, then it goes back to 0. Note that, if ρ(u) is denoted as the failure rate of the

distribution, we have

P (u) = 1− exp

�
−

uZ
0

ρ(v)dv

�
, p(u) = ρ(u) exp

�
−

uZ
0

ρ(v)dv

�
,

where ρ(u) = p(u)
P̄ (u)

, and P̄ (u) := 1 − P (u) is denoted as the tail probability or the survivor

function (Cox, 1962, p.3). For notation simplification, we denote the first mean and the Laplace

transform respectively by

γ1 :=

∞Z
0

up(u)du <∞, p̂(θ) :=

∞Z
0

e−θup(u)du <∞.
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We denote themth moment of St conditional on S0 and U0 and the associated Laplace transform

with respect to time t respectively by

em(t;S0, U0; δ) := E
�
Smt | S0, U0

�
, m ∈ N+,

êm(θ;S0, U0; δ) :=

∞Z
0

e−θtE
�
Smt | S0, U0

�
dt,

and the moments of claim amounts by

µk :=

∞Z
0

xkdH(x), k = 0, 1, 2, · · · .

The Laplace transform of any given function f(t) in general is denoted by

f̂(t) := Lθ
¦
f(t)

©
:=

∞Z
0

e−θtf(t)dt.

All moments and Laplace transforms above are assumed to be finite.

3 Martingales

Let us define a process

Zt =

tZ
0

e−θu
mX
k=1

κkS
k
udu, (3.1)

where θ ≥ 0 and {κk}k=1,2,···m are all constants. The infinitesimal generator of (Zt, St, Ut, t)

acting on any function g (z, s, u, t) belonging to its domain is given by

Ag(z, s, u, t) =

 
e−θt

mX
k=1

κks
k

!
∂g

∂z
+
∂g

∂t
+
∂g

∂u
− δs∂g

∂s

+
p(u)

P̄ (u)

2
4 ∞Z

0

g(z, s+ x, 0, t)dH(x)− g(z, s, u, t)

3
5 , (3.2)

where g : (0,∞)×(0,∞)×(0,∞)×R+ → (0,∞). It is sufficient that g(z, s, u, t) is differentiable

with respect to z, s, u, t for any z, s, u, t and that

������
∞Z
0

g(·, s+ x, ·, ·)dH(x)− g(·, s, ·, ·)

������ <∞ (3.3)

for g(z, s, u, t) to belong to the domain of the (extended) generatorA. For the details on finding the

generator of (Zt, St, Ut, t) using the piecewise deterministic Markov process theory (Davis, 1984,
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1993), see Dassios and Embrechts (1989), Dassios and Jang (2003), Rolski et al. (2008), Dassios

and Zhao (2011, 2012, 2014) and many others.

Let us first provide a proposition as below which will be used very often in this paper.

Proposition 3.1. The ordinary differential equation (ODE) of A(u),

a− ξA(u) +A′(u) +
p(u)

P̄ (u)

�
b+A(0)−A(u)

�
= 0, (3.4)

has the solution

A(u) :=
a

ξ
+

b

1− p̂(ξ)
eξu

P̄ (u)

∞Z
u

e−ξvp(v)dv, (3.5)

where a,b, ξ are all constants, and ξ ≥ 0.

Now, in order to derive the mth moment of St conditional on S0 and U0 at time t = 0 in the

next section, we have to first find a suitable martingale with respect to the filtration Ft, which is

given in Theorem 3.1.

Theorem 3.1. We have a Ft-martingale

Zt + e−θt
mX
k=0

Skt Ak(Ut), (3.6)

where

Ak(u) :=
κk

θ + δk
+

mX
n=k+1

An(0)

�
n

k

�
µn−k

1− p̂(θ + δk)

e(θ+δk)u

P̄ (u)

∞Z
u

e−(θ+δk)vp(v)dv, k = 0, 1, · · · ,m−1,

(3.7)

and

Am(u) :=
κm

θ + δm
. (3.8)

Proof. To find a Ft-martingale, we assume a function in form of

g(z, s, u, t) = z + e−θt
mX
k=0

skAk(u). (3.9)

Setting Ag = 0 in (3.2), we obtain the equation

mX
k=1

κks
k − θ

mX
k=0

skAk(u) +
mX
k=0

skA′k(u)− δ
mX
k=0

kskAk(u)

+
p(u)

P̄ (u)

2
4 ∞Z

0

mX
k=0

(s+ x)kAk(0)dH(x)−
mX
k=0

skAk(u)

3
5 = 0.
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Note that, based on (s+ x)k =
kX
j=0

�
k

j

�
sjxk−j where

�
k

j

�
:=

k!

j!(k − j)!
, j = 0, 1, ..., k,

we have

0 =
mX
k=1

κks
k − θ

mX
k=0

skAk(u) +
mX
k=0

skA′k(u)− δ
mX
k=0

kskAk(u)

+
p(u)

P̄ (u)

2
4 ∞Z

0

mX
k=0

kX
j=0

�
k

j

�
sjxk−jAk(0)dH(x)−

mX
k=0

skAk(u)

3
5

=
mX
k=1

κks
k − θ

mX
k=0

skAk(u) +
mX
k=0

skA′k(u)− δ
mX
k=0

kskAk(u)

+
p(u)

P̄ (u)

2
4 mX
k=0

kX
j=0

�
k

j

�
sjµk−jAk(0)−

mX
k=0

skAk(u)

3
5 ,

where

µk−j =

∞Z
0

xk−jdH(x), j = 0, 1, 2, · · · , k.

Then, setting κ0 = 0, we can rewrite it by

mX
k=0

sk
�
κk − (θ + δk)Ak(u) +A′k(u)

�
+
p(u)

P̄ (u)

mX
k=0

2
4Ak(0)

kX
j=0

�
k

j

�
µk−js

j − skAk(u)

3
5

=
mX
k=0

ck(u)sk = 0, (3.10)

where ck(u) is the coefficient of sk, i.e.,

ck(u) := κk−(θ+δk)Ak(u)+A′k(u)+
p(u)

P̄ (u)

"
mX
n=k

An(0)

�
n

k

�
µn−k −Ak(u)

#
, k = 0, 1, ...,m.

Since (3.10) should hold for any sk where ∀k ∈ {0, 1, 2, · · · ,m}, each coefficient should be equal

to zero, i.e., we have the ODEs

ck(u) = 0, k = 0, 1, ...,m.

Using Proposition 3.1, we have the solutions

Ak(u) =
κk

θ + δk
+

mX
n=k

An(0)

�
n

k

�
µn−k

1− p̂(θ + δk)

e(θ+δk)u

P̄ (u)

∞Z
u

e−(θ+δk)vp(v)dv,
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with the boundary conditionsAk(0) = 0 for k = 0, 1, ...,m. More specifically, they are equivalent

to (3.7) for k = 0, 1, 2, · · · ,m − 1 and (3.8) for k = m. Finally, it is easy to see that, this

function (3.9) is differentiable with respect to all its arguments z, s, u, t, and also the expectation

of the associated jumps is bounded, i.e., it satisfies (3.3). Hence, it belongs to the domain of the

(extended) generator A. It is based on the piecewise deterministic Markov process theory, which

was developed by Davis (1984, Theorem 5.5, p.367), see also more details on this theory and its

conditions in the book by Davis (1993, p.69).

Proposition 3.2. We have the Feynmann-Kac formula

E

2
4 ∞Z

0

e−θt
mX
k=1

κkS
k
t dt | S0, U0

3
5 =

mX
k=0

Sk0Ak(U0). (3.11)

Proof. Using the Ft-martingale (3.6) provided in Theorem 3.1 and the martingale property, we

have the expectation conditional on S0 and U0 at time t = 0 by

E
"
Zt + e−θt

mX
k=0

Skt Ak(Ut) | S0, U0

#
=

mX
k=0

Sk0Ak(U0). (3.12)

Setting t =∞ in (3.12), (3.11) follows immediately.

Applications of the Feynmann-Kac formula in general can be found in Karatzas and Shreve

(1991). Its applications to financial mathematics can be noticed in Linetsky (1997, 2004, 2007)

and the refereed papers therein. More recently, Goovaerts et al. (2012) constructed a recursive

scheme for the Laplace transform of the transition density function of a diffusion process using the

Feynmann-Kac formula, also see Shang et al. (2011).

4 Moments

In this section, we first derive Laplace transforms of the conditional moments and asymptotic mo-

ments of renewal shot-noise processes and discounted aggregate claims, respectively. Then, by

inverting the Laplace transforms, we obtain the asymptotic moments and the first conditional mo-

ments in explicit forms. They are the main contribution of this paper. As examples, the associated

first two moments and variances are discussed in more details.
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4.1 Moments of Renewal Shot-noise Processes

Theorem 4.1. The Laplace transform (with respect to time t) of themth moment of St conditional

on S0 and U0 is given by

êm(θ;S0, U0; δ) =
mX
k=0

Sk0A
∗
k(U0), (4.1)

where the series of functions
¦
A∗k(u)

©
k=0,1,...,m

can be iteratively solved from the system of equa-

tions

A∗m(u) :=
1

θ +mδ
, (4.2)

A∗k(u) :=

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k

1− p̂(θ + δk)

e(θ+δk)u

P̄ (u)

∞Z
u

e−(θ+δk)vp(v)dv, k = m− 1,m− 2, · · · , 1, 0,(4.3)

with

A∗m(0) =
1

θ +mδ
,

A∗k(0) =
p̂(θ + δk)

1− p̂(θ + δk)

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k, k = m− 1,m− 2, · · · , 1, 0.

Proof. Firstly, we express (3.11) in terms of Laplace transforms by

mX
k=1

κkêk(θ;S0, U0; δ) =
mX
k=0

Sk0Ak(U0). (4.4)

Setting κm = 1 and κk = 0 for all k = 1, · · · ,m− 1 in (4.4), (3.7) and (3.8), we have (4.1), (4.2)

and (4.3), respectively. Further setting u = 0 in (4.3), we have

A∗k(0) =

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k

1− p̂(θ + δk)

∞Z
0

e−(θ+δk)vp(v)dv =
p̂(θ + δk)

1− p̂(θ + δk)

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k.

Based on Theorem 4.1, it is straightforward to obtain the Laplace transform for any conditional

moment of St. For example, the Laplace transforms of the first twomoments are specified as below.

Corollary 4.1. The Laplace transform of the first moment of St conditional on S0 and U0 is given

by

ê1(θ;S0, U0; δ) =
S0

θ + δ
+

µ1

1− p̂(θ)
1

θ + δ

eθU0

P̄ (U0)

∞Z
U0

e−θvp(v)dv. (4.5)

10



Proof. Set κ2 = 0 and κ1 = 1 in (3.7) and (3.8), then, we have

A∗2(u) = 0, A∗1(u) =
1

θ + δ
, A∗0(u) =

µ1

1− p̂(θ)
1

θ + δ

eθu

P̄ (u)

∞Z
u

e−θvp(v)dv.

From (4.4), the result follows.

Corollary 4.2. The Laplace transform of the second moment of St conditional on S0 and U0 is

given by

ê2 (θ;S0, U0; δ) =
S2

0

θ + 2δ
+

S0

θ + 2δ

2µ1

1− p̂(θ + δ)

e(θ+δ)U0

P̄ (U0)

∞Z
U0

e−(θ+δ)vp(v)dv

+

µ2
θ+2δ + 1

θ+2δ
2µ21p̂(θ+δ)
1−p̂(θ+δ)

1− p̂(θ)
eθU0

P̄ (U0)

∞Z
U0

e−θvp(v)dv. (4.6)

Proof. Setting κ2 = 1 and κ1 = 0 in (3.7) and (3.8), we have

A∗2(u) =
1

θ + 2δ
,

A∗1(u) =
1

θ + 2δ

2µ1

1− p̂(θ + δ)

e(θ+δ)u

P̄ (u)

∞Z
u

e−(θ+δ)vp(v)dv,

A∗0(u) =

µ2
θ+2δ + 1

θ+2δ
2µ21p̂(θ+δ)
1−p̂(θ+δ)

1− p̂(θ)
eθu

P̄ (u)

∞Z
u

e−θvp(v)dv.

From (4.4), the result follows.

The distribution converges pretty fast, and we can easily observe how the distribution converges

to its asymptotic distribution via its mean.

Corollary 4.3. We have the asymptotics of the first moment,

e1(t;S0, U0; δ) = d0 + d1e
−δt + o

�
e−δt

�
, (4.7)

where

d0 :=
µ1

δγ1
, d1 := S0 +

µ1

P̄ (U0)

e−δU0

1− p̂(−δ)

∞Z
U0

eδvp(v)dv.

Proof. The Laplace transform of the first moment of St conditional on S0 and U0 is given by (4.5).

We know that the limit limt→∞ e1(t;S0, U0; δ) exists, more precisely,

d0 := lim
t→∞

e1(t;S0, U0; δ)

= lim
θ→0

θê1(θ;S0, U0; δ)

11



=
µ1

P̄ (U0)

∞Z
U0

lim
θ→0

�
1

θ + δ

θ

1− p̂(θ)
eθ(U0−v)

�
p(v)dv

=
1

δ

1

γ1

µ1

P̄ (U0)

∞Z
U0

p(v)dv

=
µ1

δγ1
.

Define the function

g(t) := eδt
�
e1(t;S0, U0; δ)− d0

�
,

and its Laplace transform

ĝ(θ) :=

∞Z
0

e−θtg(t)dt.

Then, we have

d1 := lim
t→∞

g(t)

= lim
θ→0

θĝ(θ)

= lim
θ→0

θ

�
ê1

�
θ − δ;S0, U0; δ

�
− d0

θ − δ

�

= lim
θ→0

θ

2
41

θ
S0 +

1

θ

µ1

1− p̂(θ − δ)
e(θ−δ)U0

P̄ (U0)

∞Z
U0

e−(θ−δ)vp(v)dv

3
5

= S0 +
µ1

P̄ (U0)

∞Z
U0

lim
θ→0

�
e(θ−δ)(U0−v)

1− p̂(θ − δ)

�
p(v)dv

= S0 +
µ1

P̄ (U0)

e−δU0

1− p̂(−δ)

∞Z
U0

eδvp(v)dv.

Therefore, we have (4.7).

We can see from (4.7) that the conditional moment converges at an exponential rate with respect

to time t, and the asymptotic results could provide reasonable approximations to their moments and

distributions.

The initial value U0 is usually unknown in practice. To calculate the first two conditional

moments of St for actuarial applications, we assign the asymptotic (or limiting) distribution of

Ut to U0 for mathematical convenience, which can provide reasonable approximations and also

substantially simplify the expressions of the Laplace transforms of moments. To do so, we first

state a proposition in Cox and Miller (1965, p.347) or Cox (1962, p.61), which is a well known

result in renewal theory.

12



Proposition 4.1. The asymptotic (or limiting) distribution of Ut, denoted by Π, has the density

function

fΠ(u) :=
P̄ (u)

γ1
=

1

γ1
exp

�
−

uZ
0

ρ(v)dv

�
, u ≥ 0.

Π is in fact the limiting distribution of Ut when t→∞, and it can serve a reasonable approxi-

mation for the distribution of Ut when the underlying process has been running for a relatively long

period and is close to the stationary (asymptotic) state (Cox, 1962, Chapter 5, p.61-70).

Now, let us start with finding the asymptoticmth moment of St when U0 ∼ Π, denoted by

em(t;S0; δ) := E
�
Smt | S0

�
.

Denote the Laplace transform (with respect to time t) of themth moment of St conditional on S0

by

êm(θ;S0; δ) := E
�
êm(θ;S0, U0)

�
, U0 ∼ Π.

Proposition 4.2. If U0 ∼ Π, then, we have

E

2
4 eξU0

P̄ (U0)

∞Z
U0

e−ξvp(v)dv

3
5 =

1

γ1

1− p̂(ξ)
ξ

.

Proof.

E

2
4 eξU0

P̄ (U0)

∞Z
U0

e−ξvp(v)dv

3
5 =

∞Z
u=0

eξu

P̄ (u)

∞Z
v=u

e−ξvp(v)dvfΠ(u)du

=

∞Z
u=0

∞Z
v=u

e−ξvp(v)
eξu

γ1
dvdu

=

∞Z
v=0

vZ
u=0

e−ξvp(v)
eξu

γ1
dudv

=
1

γ1

∞Z
v=0

e−ξvp(v)

�
vZ

u=0

eξudu

�
dv

=
1

γ1

∞Z
v=0

e−ξvp(v)
eξv − 1

ξ
dv

=
1

γ1

∞Z
v=0

p(v)
1− e−ξv

ξ
dv

=
1

γ1

1− p̂(ξ)
ξ

.
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Theorem 4.2. For U0 ∼ Π, the Laplace transform of the mth moment of St conditional on S0 is

given by

êm(θ;S0; δ) =
mX
k=0

Bk(θ)S
k
0 , (4.8)

where

Bm(θ) :=
1

θ +mδ
,

Bk(θ) :=
1

γ1

1

θ + δk

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k, k = m− 1,m− 2, · · · , 1, 0. (4.9)

Proof. Using (4.1) and Proposition 4.1, we have

êm(θ;S0; δ) = E
�
êm(θ;S0, U0; δ)

�
= E

"
mX
k=0

Sk0A
∗
k(U0)

#
=

mX
k=0

Sk0E
�
A∗k(U0)

�
,

where

Bk(θ) := E [A∗k(U0)] =

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k

1− p̂(θ + δk)
E

2
4e(θ+δk)U0

P̄ (U0)

∞Z
U0

e−(θ+δk)vp(v)dv

3
5

=

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k

1− p̂(θ + δk)

1

γ1

1− p̂(θ + δk)

θ + δk

=
1

γ1

1

θ + δk

mX
n=k+1

A∗n(0)

�
n

k

�
µn−k, k = m− 1,m− 2, · · · , 1, 0.

Theorem 4.3. For U0 ∼ Π, themth asymptotic moment of St is given by

lim
t→∞

E [Smt | S0] =
1

γ1

mX
k=1

µkA
∗∗
k , (4.10)

where the constants
¦
A∗∗k

©
k=1,...,m

can be calculated iteratively from

A∗∗m :=
1

mδ
,

A∗∗k :=
p̂(δk)

1− p̂(δk)

mX
n=k+1

A∗∗n

�
n

k

�
µn−k, k = m− 1,m− 2, · · · , 1.

14



Proof. By the final value theorem, we have

lim
t→∞

E [Smt | S0] = lim
θ→0

θêm(θ;S0) =
mX
k=0

Sk0 lim
θ→0

θBk(θ) = lim
θ→0

θB0(θ),

since

lim
θ→0

θBm(θ) = 0,

lim
θ→0

θBk(θ) =
1

γ1

mX
n=k+1

�
n

k

�
µn−k lim

θ→0

θ

θ + δk
A∗n(0) = 0, k = m− 1,m− 2, · · · , 1.

Note that, according to (4.9), we have

B0(θ) =
1

γ1

1

θ

mX
n=1

A∗n(0)µn,

then,

lim
θ→0

θB0(θ) =
1

γ1

mX
n=1

µn lim
θ→0

A∗n(0) =
1

γ1

mX
k=1

µk lim
θ→0

A∗k(0) =
1

γ1

mX
k=1

µkA
∗∗
k ,

where A∗∗k = lim
θ→0

A∗k(0).

Now, let us start with finding the first moment of St conditional on S0 at time t = 0 by inverting

its Laplace transform.

Corollary 4.4. For U0 ∼ Π, the first moment of St conditional on S0 is given by

e1(t;S0; δ) = S0e
−δt +

µ1

γ1

�
1− e−δt

δ

�
, (4.11)

and the first asymptotic moment is given by

lim
t→∞

E[St | S0] =
µ1

γ1δ
. (4.12)

Proof. Using (4.6) and Proposition 4.1, and setting ξ = θ in Proposition 4.2, the Laplace transform

(with respect to time t) of the first moment of St conditional on S0 for U0 ∼ Π is given by

ê1(θ;S0; δ) =
S0

θ + δ
+

µ1

1− p̂(θ)
1

θ + δ
E

2
4 eθU0

P̄ (U0)

∞Z
U0

e−θvp(v)dv

3
5

=
S0

θ + δ
+
µ1

γ1

1

θ(θ + δ)

= S0
1

θ + δ
+
µ1

γ1

1

δ

�
1

θ
− 1

θ + δ

�
.
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Inverting it immediately gives us (4.11). Note that, we have Laplace transforms

Lθ
¦
e−δt

©
=

1

θ + δ
, Lθ {1} =

1

θ
.

Its asymptotic result in (4.12) follows by setting t→∞ in (4.11).

Unfortunately, in general, it is not possible for us to obtain other conditional moments explicitly

beyond the first moments. Therefore, we have to develop numerical methods for estimation.

Corollary 4.5. For U0 ∼ Π, the second moment of St conditional on S0 is given by

e2(t;S0; δ) = S2
0e
−2δt+

2µ1

δγ1
S0

�
e−δt − e−2δt

�
+
µ2

γ1

�
1− e−2δt

2δ

�
+
µ2

1

δγ1

p̂(δ)

1− p̂(δ)
F4(t), (4.13)

where F4(t) is a function of time t with the Laplace transform

F̂4(θ) =
1− p̂(δ)
p̂(δ)

2δ

θ(θ + 2δ)

p̂(θ + δ)

1− p̂(θ + δ)
; (4.14)

The asymptotic second moment is given by

1

γ1δ

�
µ2

2
+ µ2

1

p̂(δ)

1− p̂(δ)

�
. (4.15)

Proof. Using (4.5) and Proposition 4.1 and 4.2, the Laplace transform (with respect to time t) of

the second moment of St conditional on S0 for U0 ∼ Π is given by

ê2(θ;S0; δ)

=
S2

0

θ + 2δ
+

2µ1S0

(θ + 2δ)(θ + δ)

1

γ1
+

�
µ2

θ + 2δ
+

p̂(θ + δ)

1− p̂(θ + δ)

2µ2
1

θ + 2δ

�
1

θ

1

γ1

= S2
0

1

θ + 2δ
+

2µ1S0

γ1

1

δ

�
1

θ + δ
− 1

θ + 2δ

�
+
µ2

γ1

1

2δ

�
1

θ
− 1

θ + 2δ

�
+

2µ2
1

γ1

1

θ

p̂(θ + δ)

1− p̂(θ + δ)

1

θ + 2δ
(4.16)

= S2
0

1

θ + 2δ
+

2µ1S0

γ1

1

δ

�
1

θ + δ
− 1

θ + 2δ

�
+
µ2

γ1

1

2δ

�
1

θ
− 1

θ + 2δ

�
+
µ2

1

δγ1

p̂(δ)

1− p̂(δ)
F̂4(θ). (4.17)

The first three terms of (4.17) can be inverted analytically, then, we obtain (4.13). Based on Theo-

rem 4.10, settingm = 2, we can calculate

A∗∗2 =
1

2δ
, A∗∗1 =

p̂(δ)

1− p̂(δ)
µ1

δ
.

Substituting A∗∗1 and A∗∗2 into (4.10), we derive (4.15).
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Corollary 6.3 in Léveillé and Garrido (2001a, p.230) confirms both our results (4.12) and

(4.15). Interestingly, from a probabilistic point of view, function F4(t) in (4.14) can be nicely

interpreted as the CDF of a random time τ∗, which can be estimated by the following algorithm:

Algorithm 4.1 (Decomposition Approach). The random time τ∗ can be exactly sampled by the

following distributional decomposition:

τ∗
D
= E∗ +

IX
i=1

Ei, (4.18)

where

• E∗ is an exponential random variable of constant rate 2δ, i.e., E∗ ∼ Exp(2δ);

• I is a geometric random variable with success probability parameter 1 − p̂(δ), i.e., I ∼

Geometric
�
1− p̂(δ)

�
with the probability mass distribution

Pr
¦
I = i

©
= p̂i−1(δ)

�
1− p̂(δ)

�
, i = 1, 2, 3, · · · ;

• {Ei}i=1,2,... are i.i.d. random variables with the identical Laplace transform

f̂Ei(θ) := E
�
e−θEi

�
=
p̂(θ + δ)

p̂(δ)
. (4.19)

Proof. The Laplace transform of F4(t) specified by (4.14) can be rewritten as

F̂4(θ) =
1

θ
× 2δ

1− p̂(δ)
p̂(δ)

p̂(θ + δ)

1− p̂(θ + δ)

1

θ + 2δ

=
1

θ
× 2δ

1− p̂(δ)
p̂(δ)

1

θ + 2δ

�
1

1− p̂(θ + δ)
− 1

�

=
1

θ
× 2δ

1− p̂(δ)
p̂(δ)

1

θ + 2δ

∞X
i=1

p̂i(θ + δ)

=
1

θ
×
∞X
i=1

p̂i−1(δ)
�
1− p̂(δ)

� � p̂(θ + δ)

p̂(δ)

�i 2δ

θ + 2δ

=
1

θ
×
∞X
i=1

Pr
¦
I = i

© � p̂(θ + δ)

p̂(δ)

�i 2δ

θ + 2δ

=
1

θ
× E

"�
p̂(θ + δ)

p̂(δ)

�I# 2δ

θ + 2δ

=
1

θ
×
∞Z
0

e−θtf4(t)dt,

where f4(t) can be considered as the density function of the random time τ∗ defined by (4.18), and
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the associated CDF is given by

F4(t) := Pr {τ∗ ≤ t} = E
�
1{τ∗ ≤ t}

�
.

The Laplace transform of the CDF is given by

F̂4(θ) :=

∞Z
0

e−θtF4(t)dt =
1

θ
f̂4(θ),

where

f̂4(θ) :=

∞Z
0

e−θtf4(t)dt

=
1− p̂(δ)
p̂(δ)

p̂(θ + δ)

1− p̂(θ + δ)

2δ

θ + 2δ
(4.20)

= E
"�
p̂(θ + δ)

p̂(δ)

�I#
× 2δ

θ + 2δ

= E
�
E
�
e−θ

PI

i=1
Ei
��
× E

�
e−θE

∗�
= E

�
e
−θ
�
E∗+

PI

i=1
Ei

��
= E

�
e−θτ

∗�
.

So, we have the decomposition (4.18). Note that, E1, E2, · · · , EI have the identical Laplace trans-

form (4.19), and they are well defined random variables, since

f̂Ei(θ) =
p̂(θ + δ)

p̂(δ)
=

∞Z
0

e−θt
e−δt

p̂(δ)
p(t)dt =

∞Z
0

e−θtfEi(t)dt,

and we have the density function of Ei via the Esscher transform (Gerber and Shiu, 1994) (or,

exponential tilting) as

fEi(t) =
e−δt

p̂(δ)
p(t), (4.21)

and ∞Z
0

fEi(t)dt =

∞Z
0

e−δt

p̂(δ)
p(t)dt =

p̂(δ)

p̂(δ)
= 1.

Note that, since F4(t) can be interpreted as a CDF, we have

lim
t→∞

F4(t) = 1.
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Setting t → ∞ in (4.13), again, we obtain the asymptotic result (4.15). Alternatively, F4(t) as a

CDF could be estimated by the numerical inversion of Laplace transform (Abate and Whitt, 1992,

1995, 2006), which will be discussed in detail in Section 5.

Corollary 4.6. For U0 ∼ Π, the variance of St conditional on S0 is given by

Var [St | S0] =
µ2

γ1

�
1− e−2δt

2δ

�
− µ2

1

γ2
1

�
1− e−δt

δ

�2

+
µ2

1

δγ1

p̂(δ)

1− p̂(δ)
F4(t). (4.22)

Proof. Based on the first moment (4.11) and the second moment (4.13), we have the variance

Var [St | S0] = E
�
S2
t | S0

�
−
�
E [St | S0]

�2
.

The moments, of course, can be estimated by the direct simulation for sample paths of St: Say,

to estimate the moments of St at time T > 0, we have to simulate all interarrival times, jump sizes

within the time period [0, T ]; and moreover, as intermediate steps required, we also need to solve

all ODEs recursively between two successive jumps, in order exactly simulate the distribution of St

at an arbitrary time point T . In fact, it is a path-dependent approach. However, our decomposition

approach provides a shortcut, which avoids simulating full paths of the underlying stochastic pro-

cesses but only needs a few simple random variables as illustrated in Algorithm 4.1. Essentially,

we use a Monte Carlo alternative Laplace transform inversion.

4.2 Moments of Discounted Aggregate Claims

Denote themth moment of L0
t by

`m(t) := E
��
L0
t

�m�
,

and the associated Laplace transform by

ˆ̀
m(θ) :=

∞Z
0

e−θt`m(t)dt,

which can be obtained explicitly as below.

Theorem 4.4. For U0 ∼ Π, the Laplace transform of themth moment of L0
t is given by

ˆ̀
m(θ) =

1

γ1

1

θ +mr

mX
n=1

µnÃn, (4.23)
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where

Ãm =
1

θ
,

Ãk =
p̂
�
θ + (m− k)r

�
1− p̂

�
θ + (m− k)r

� mX
n=k+1

Ãn

�
n

k

�
µn−k, k = m− 1,m− 2, · · · , 1, 0.

Proof. Note that, by setting

S0 = 0, L0
t = e−rtSt, δ = −r,

in the process St, we recover the associated L0
t . Using this duality property, in general, we have

themth moment of L0
t by

E
��
L0
t

�m�
= e−mrtem(t; 0;−r).

Then, we have its Laplace transform

ˆ̀
m(θ) = Lθ

�
e−mrtem(t; 0;−r)

�
= êm(θ +mr; 0;−r),

where êm(θ;S0; δ) is specified by (4.8).

Based on the Laplace transform (4.23), as examples, we can compute the first two moments

and the variance as below.

Corollary 4.7. The first moment and the variance of L0
t are given by

`1(t) =
µ1

γ1

�
1− e−rt

r

�
, (4.24)

`2(t) =
µ2

γ1

�
1− e−2rt

2r

�
+

µ2
1

rγ1

p̂(r)

1− p̂(r)
F̃4(t), (4.25)

Var
�
L0
t

�
=

µ2

γ1

�
1− e−2rt

2r

�
− µ2

1

γ2
1

�
1− e−rt

r

�2

+
µ2

1

rγ1

p̂(r)

1− p̂(r)
F̃4(t), (4.26)

where F̃4(t) is the CDF of random time τ̃∗ which can be exactly simulated the same as τ∗ via

Algorithm 4.1 by replacing δ by r.

Proof. Setting

S0 = 0, L0
t = e−rtSt, δ = −r,

in (4.11), we have the mean (4.24), i.e.,

`1(t) = E
�
L0
t

�
= e−rte1(t; 0;−r).
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Similarly, for the second moment, based on (4.13), we have

`2(t) = E
h�
L0
t

�2
i

= e−2rte2(t; 0;−r),

with its Laplace transform

Lθ
¦
`2(t)

©
= Lθ

�
e−2rte2(t; 0;−r)

�
= ê2(θ + 2r; 0;−r),

where ê2(θ;S0; δ) is specified by (4.16). Then, we have the Laplace transform

Lθ
¦
`2(t)

©
=
µ2

γ1

1

2r

�
1

θ
− 1

θ + 2r

�
+

2µ2
1

γ1

1

θ + 2r

p̂(θ + r)

1− p̂(θ + r)

1

θ
,

which is exactly the same as the last two terms of (4.16) by replacing δ by r. Therefore, we have

the second moment (4.26). Finally, it is straightforward to obtain the variance (4.26).

5 Numerical Illustration with Applications

To illustrate the applicability of renewal shot-noise processes and our newly-derived results, in this

section, we offer four choices for modelling renewal interarrival times: 1) exponential (Exp), 2)

gamma, 3) inverse Gaussian (IG), and 4) folded normal (FN) distributions. The first two examples

are for actuarial application of discounted aggregate claims. Since the discounted aggregate claims

L0
t defined by (2.1) can be alternatively interpreted as the present value of aggregate losses from

a portfolio in general, we use the third and fourth examples for credit risk and reliability applica-

tions, respectively. We commonly assume S0 = 1 and δ = r = 0.05, and the jump sizes follow an

exponential distribution of unit rate, i.e., µ1 = 1, µ2 = 2 for all four cases.

For each case, we compute the first conditional moments and variances of renewal shot-noise

process and discounted aggregate claims, respectively. Except for the first case of exponential

distribution, it is often not easy to obtain explicit expression for F4(t) in (4.22) and F̃4(t) in (4.26).

We have to rely on estimating F4(t) by Monte Carlo exact simulation (ES)1 via Algorithm 4.1,

or, numerical inversion (NI) of Laplace transform such as Euler algorithm and Talbot algorithm

(Abate and Whitt, 2006, p.415-416). The detailed implementation of NI we adopted in this paper

is explained in Appendix A. However, it is well known that the algorithms for numerical inversion

are not perfect, and they are often not reliable when the underlying function has some discontinuity

or oscillation, or the function of Laplace transform involves complex special functions. Therefore,
1ES is a simulation method of drawing an unbiased associated estimator throughout the entire simulation process.
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efficient simulation becomes a crucial and more reliable alternative tool for estimation. Based on

the fact that the shape of true function F4(t) or F̃4(t) beyond the exponential case is unknown, it is

prudent for us to implement the two estimation approaches of ES and NI simultaneously in order

to validate each other.

5.1 Example: Poisson Shot-noise Process

IfNt is a Poisson process, i.e., the interarrival times follow a simple exponential distribution, then,

St is the classical Poisson shot-noise process and explicit results for variances exist. This special

case was investigated by Jang (2004), and same results can be recovered here. In fact, this provides

a benchmark case that can be used for validating the estimation methods ES and NI for computing

F4(t) and F̃4(t) in the conditional second moments and variances. If τi ∼ Exp(%), % > 0, with

the density function

p(u) = %e−%u,

we have

p̂(θ) =
%

%+ θ
, γ1 =

1

%
.

From (4.11), we have the first moment

E [St | S0] = S0e
−δt + µ1%

�
1− e−δt

δ

�
.

The first moment of discounted aggregate claims (i.e., the actuarial net premium) at present time

0 is given by

E
�
L0
t

�
= µ1%

�
1− e−rt

r

�
,

which can be also found in Léveillé and Garrido (2001a,b), Jang (2004) and Jang and Krvavych

(2004). For calculating the associated variances, from (4.20), we have

f̂4(θ) = 2δ
�

1

θ + δ
− 1

θ + 2δ

�
, F̂4(θ) =

2δ

θ

�
1

θ + δ
− 1

θ + 2δ

�
,

which can be inverted analytically, respectively, i.e.,

f4(t) = 2δ
�
e−δt − e−2δt

�
, F4(t) =

�
1− e−δt

�2
.

Hence, based on (4.22) and (4.26), we have

Var [St | S0] = µ2%

�
1− e−2δt

2δ

�
, Var

�
L0
t

�
= µ2%

�
1− e−2rt

2r

�
.
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Figure 2: Means and variances ofSt andL0
t for the exponential (Exp) case with % = 1; the associated detailed

numerical results are reported in Table 1

So, Var [St | S0] and Var
�
L0
t

�
are equal when r = δ. We plot the conditional means, the true and

estimated variances of St andL0
t for % = 1 respectively in Figure 2, with numerical results reported

in Table 1. Note that, each point in the variance plots is estimated by the exact simulation (ES)

via Algorithm 4.1 with 107 replications. For implementing Algorithm 4.1, since an exponential

distribution after the exponential tilting (4.21) is still an exponential distribution, i.e.,

f̂Ei(θ) =
p̂(θ + δ)

p̂(δ)
=

%
%+θ+δ
%
%+δ

=
%+ δ

(%+ δ) + θ
,

we have Ei ∼ Exp(%+ δ) which can be sampled directly.

5.2 Example: Gamma Shot-noise Process

For a Gamma distribution (including chi-squared distribution as a special case), i.e., τi ∼ Γ(α, β)

with density function

p(u) =
βα

Γ(α)
uα−1e−βu, u > 0,

where α, β > 0 are the shape and rate parameters, respectively, we have the mean is γ1 = α/β

and the Laplace transform

p̂(θ) =

�
β

β + θ

�α
.

With the exact simulation via Algorithm 4.1 and using the parameter setting (α, β) = (2, 2), the

associated conditional means and variances are plotted in Figure 3 and reported in Table 1. Each

point in the variance plots is estimated by the exact simulation (ES) via Algorithm 4.1 with 107
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Table 1: Means and variances of St and L0
t

Time t E[St | S0] E[L0
t ] NI-Var ES-Var True-Var E[St | S0] E[L0

t ] NI-Var ES-Var
<Exp> <Gamma>

0.2 1.1891 0.1990 0.3960 0.3942 0.3960 1.1891 0.1990 0.3652 0.3655
0.4 1.3762 0.3960 0.7842 0.7843 0.7842 1.3762 0.3960 0.6860 0.6849
0.6 1.5615 0.5911 1.1647 1.1643 1.1647 1.5615 0.5911 0.9839 0.9790
0.8 1.7450 0.7842 1.5377 1.5411 1.5377 1.7450 0.7842 1.2685 1.2591
1.0 1.9266 0.9754 1.9033 1.9107 1.9033 1.9266 0.9754 1.5443 1.5322
1.2 2.1065 1.1647 2.2616 2.2668 2.2616 2.1065 1.1647 1.8131 1.8044
1.4 2.2845 1.3521 2.6128 2.6110 2.6128 2.2845 1.3521 2.0759 2.0649
1.6 2.4608 1.5377 2.9571 2.9485 2.9571 2.4608 1.5377 2.3333 2.3222
1.8 2.6353 1.7214 3.2946 3.2861 3.2946 2.6353 1.7214 2.5855 2.5695
2.0 2.8081 1.9033 3.6254 3.6152 3.6254 2.8081 1.9033 2.8325 2.8209

<IG> <FN>
0.2 1.1891 0.1990 0.3621 0.3623 2.2371 1.2471 2.1387 2.1371
0.4 1.3762 0.3960 0.6992 0.7012 3.4619 2.4817 4.0478 4.0477
0.6 1.5615 0.5911 1.0390 1.0395 4.6745 3.7041 5.9246 5.8159
0.8 1.7450 0.7842 1.3805 1.3840 5.8751 4.9143 7.7669 7.6319
1.0 1.9266 0.9754 1.7215 1.7283 7.0637 6.1125 9.5747 9.6682
1.2 2.1065 1.1647 2.0605 2.0664 8.2405 7.2987 11.3487 11.5322
1.4 2.2845 1.3521 2.3965 2.4025 9.4056 8.4732 13.0894 13.4175
1.6 2.4608 1.5377 2.7288 2.7363 10.5591 9.6359 14.7973 14.8805
1.8 2.6353 1.7214 3.0568 3.0611 11.7011 10.7871 16.4730 16.5891
2.0 2.8081 1.9033 3.3802 3.3764 12.8317 11.9269 18.1169 18.3422

replications. For implementing Algorithm 4.1, since a gamma distribution after the exponential

tilting (4.21) is still a gamma distribution, i.e.,

f̂Ei(θ) =
p̂(θ + δ)

p̂(δ)
=

�
β

β+θ+δ

�α�
β
β+δ

�α =

�
β + δ

β + δ + θ

�α
,

we have Ei ∼ Γ(α, β + δ) which can be sampled directly.

5.3 Example: Inverse Gaussian Shot-noise Process

We can also make an immediate application to modelling credit defaults: Nt can be used for mod-

elling the arrivals of credit defaults (of e.g. corporate bonds) in a large credit portfolio, Xi is the

loss of the ith credit default, then, L0
t can be interpreted as the present value of the total loss of

this credit portfolio within the time period of [0, t]. Our results for the moments of L0
t provided

in Section 4.2. tell people the moments of the portfolio loss, which could be useful for credit risk

management and measurement. Ut is the time elapsed since the last default occurred2. For numer-

ical illustration, we assume the interarrival times between two successive credit defaults follow an
2Since the 2007 financial crisis, default rates of corporate bonds have decreased, as the world economy has emerged

from the global financial crisis (GFC) with improving market conditions. However, default rates going forward are
dependent on the progress of world economic recovery and growth, as well as oil and commodity prices, fiscal and
monetary policy and interest rate fluctuations. Hence, in specific situations like 2007-2008 GFC, the time elapsed since
the last default occurred could be an important parameter in credit default modelling. The properties of renewal shot-
noise processes and the results newly found in this paper could be also appropriate for modelling credit risk.
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Figure 3: Means and variances of St andL0
t for the gamma case with (α, β) = (2, 2); the associated detailed

numerical results are reported in Table 1

inverse Gaussian, i.e., τi ∼ IG(a, b) with density function

p(u) =
a√

2πu3
e−

(a−bu)2
2u , u, a, b > 0,

where the mean is γ1 = a/b and the shape parameter is a2, we have the Laplace transform

p̂(θ) = e−[
√

2θ+b2−b]a.

With the exact simulation via Algorithm 4.1 and using the parameter setting (a, b) = (1, 1), the

conditional means and variances of St and the present value of credit portfolio lossesL0
t are plotted

in Figure 4 and reported in Table 1. Each point in the variance plots is estimated by the exact

simulation (ES) via Algorithm 4.1 with 107 replications. For implementing Algorithm 4.1, since

an IG distribution after the exponential tilting (4.21) is still an IG distribution, i.e.,

f̂Ei(θ) =
p̂(θ + δ)

p̂(δ)
=
e
−
�√

2(θ+δ)+b2−b
�
a

e−[
√

2δ+b2−b]a
= e
−
�√

2θ+(2δ+b2)−
√

2δ+b2
�
a
,

we have Ei ∼ IG
�
a,
√

2δ + b2
�
which can be sampled directly.

5.4 Example: Folded Normal Shot-noise Process

Queues and related models are important in solving many complex reliability problems. The re-

newal shot-noise process and its variations can be considered to deal with the expected busy periods
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Figure 4: Means and variances of St and L0
t for the inverse Gaussian (IG) case with (a, b) = (1, 1); the

associated detailed numerical results are reported in Table 1

in terms of queuing system and the virtual waiting times of customers, etc. Due to the similar na-

ture of cashflow structure, our results could also be applied to reliability modelling. Nt accounts

the total number of failures of machine components up to time t. Xi is the individual cost of the ith

failure, then, L0
t can be interpreted as the present value of the total cost within the time period of

[0, t]. For reliability modelling, we take the folded normal distribution (including the half-normal

distribution as a special case) as an example for modelling the interarrival times of two successive

failures, i.e., τi ∼ FN(µ, σ) with density function

p(u) =
1√

2πσ2

�
e−

(u−µ)2

2σ2 + e−
(u+µ)2

2σ2

�
u ≥ 0,

where µ, σ > 0, we have the mean

γ1 =

r
2

π
σe−

µ2

2σ2 + µ
�
1− 2Φ

�
−µ
σ

��
,

and the Laplace transform

p̂(θ) = e
σ2

2
θ2−µθ

�
1− Φ

�
−µ
σ

+ σθ
��

+ e
σ2

2
θ2+µθ

�
1− Φ

�
µ

σ
+ σθ

��
. (5.1)

Each point in the variance plots is estimated by the exact simulation (ES) via Algorithm 4.1 with

107 replications. For implementing Algorithm 4.1, since an folded normal distribution after the

exponential tilting (4.21) is unknown, we need the acceptance/rejection (A/R) scheme of Algorithm
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Figure 5: Means and variances of St and L0
t for the folded normal (FN) case with (µ, σ) = (0, 0.2); the

associated detailed numerical results are reported in Table 1

B.1, where τi ∼ FN(µ, σ) in Step 1 can be simply sampled via

τi
D
= |µ+ σV | , V ∼ N (0, 1).

With the exact simulation via Algorithm 4.1 and using the parameter setting (µ, σ) = (0, 0.2), the

conditional means and variances of St and the present value of total cost L0
t are plotted in Figure

5 and reported in Table 1.

6 Concluding Remarks

We have mainly studied the Laplace transforms of the conditional and asymptotic moments for

renewal shot-noise processes and discounted aggregate claims. A very efficient and general sim-

ulation algorithm has been developed for estimating the second conditional moments, and it has

been compared with the alternative method of numerical inversion. For applications to the net pre-

mium calculation in insurance as well as credit risk and reliability modelling, the first conditional

moments and variances for four different distributions of interarrival times have been computed,

respectively. In fact, renewal shot-noise processes and the properties found in this paper could be

also applicable to a wide range of other fields such as queueing, financial transaction data, computer

networks, inventories and storage system, and etc., and we leave them as further research.
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Appendices

A Numerical Inversion of Laplace Transform

There are numerous different schemes available in the literature for Laplace numerical inversions. The aim

of using numerical inversion in this paper is for comparing and validating our newly-developed exact sim-

ulation algorithms. As finding optimal schemes for numerical inversions is not our main focus here at the

current stage, we thereby adopt conventional ones. For the first three cases in Section 5, i.e., exponential,

gamma and inverse Gaussian cases, which are easier, we simply apply the classical Talbot algorithm (Abate

and Whitt, 2006, Section 6, p.416). It works very well by using the existing package of MatLab codes eu-

ler_inversion_sym.m available at MathWorks. For the folded normal case, which is more complicated due

to the special function Φ(·) in the Laplace transform p̂(θ) specified in (5.1), we develop our own codes based

on the Euler algorithm (Abate and Whitt, 2006, Section 5, p.415-416) with the aid of existing C++ pack-

age RcppFaddeeva from CRAN that can deal with the function Φ(·) for complex values. Both algorithms

involve tuning (or scaling) parameters, which are simple deterministic functions of positive integerM , the

number of terms for approximating the infinite summation, that controls the associated truncation errors.

More precisely, as illustrated in Abate and Whitt (2006), for a given Laplace transform f̂ of a function f ,

i.e.,

f̂(s) ≡
∞Z
0

e−stf(t)dt,

the underlying function f can be approximated by

f(t) ≈ fn(t) ≡ 1

t

nX
k=0

ωkf̂
�αk
t

�
, t > 0, (A.1)

where the nodes αk and weights ωk are the associated tuning (or scaling) parameters, which are complex

numbers, and depend on n but not on the transform f̂ or the time argument t. These tuning parameters are

specified differently by Talbot algorithm and Euler algorithm as follows:

• For the Talbot algorithm (Abate and Whitt, 2006, Section 6, p.416), the parameters in the framework
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(A.1) are n = M , αk = δk and ωk = 2
5γk, where

δ0 =
2

5
M, δk =

2

5
kπ

�
cos

�
kπ

M

�
+ i

�
, 0 < k < M,

γ0 =
1

2
eδ0 , γk =

�
1 + i

kπ

M

�
1 + cot2

�
kπ

M

��
− i cot

�
kπ

M

��
eδk , 0 < k < M,

with i ≡
√
−1.

• For the Euler algorithm (Abate and Whitt, 2006, Section 5, p.415-416), the parameters in the frame-

work (A.1) are n = 2M , αk = βk and ωk = 10
M
3 ηk, where

βk =
ln 10

3
M + πik, ηk ≡ (−1)kξk,

ξ0 =
1

2
, ξk = 1, 1 ≤ k ≤M, ξ2M =

1

2M
,

ξ2M−k = ξ2M−k+1 + 2−M
�
M

k

�
, 0 < k < M.

In our paper, we adoptM = 64 for the first three cases andM = 6 for the folded normal case, which

determine the associated tuning parameters, respectively. From extensive numerical experiments, we do find

that the estimation results from numerical inversion algorithms could be unstable for some sets of parameters.

Indeed, it is a very typical problem for the numerical inversion approach, and it is why we shall advocate

using our newly-developed exact simulation approach as an alternative.

B Random Variate Generator for Ei

Algorithm B.1 (A/R Scheme for Ei). For exactly sampling one random variable Ei in general:

1. Generate a random variable Ee with density p(u);

2. Generate a uniformly distributed random variable V ∼ U [0, 1];

3. If V ≤ e−δEe , then, accept and set Ei = Ee; otherwise, reject and go back to Step 1.

Proof. To exactly sample a random variable Ei with the density function (4.21), we adopt the accep-

tance/rejection (A/R) scheme with the envelop density function fEe(t) = p(t). Then, we can easily find

the smallest possible constantK such that

fEi
(t)

fEe
(t)

=
e−δt

p̂(δ)
≤ K.

Hence, we haveK = 1/p̂(δ), and the acceptance level

fEi(t)

Kp(t)
= e−δt.

Note that, the probability of acceptance is 1/p̂(δ).
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