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Introduction  

Statistics’ increasing significance in modern government since the 19th century (Porter 1986; 

Desrosières 2010), combined with the development of data collection and processing techniques 

for large-scale datasets (Campbell-Kelly 1990) have contributed to the importance of survey 

research in social science since the second half of the 20th century. Notable examples of such 

studies are the Roper Poll, the General Social Survey, the American National Election Studies, 

and the Current Population Survey (Converse 2009). Concurrently, dedicated institutions were 

created to archive and disseminate such datasets for secondary analysis. Examples of these social 

science data archives (Shankar, Eschenfelder, and Downey 2016) include the Inter-University 

Consortium for Political and Social Research (), created in 1962, the UK Data Archive in 1967, 

the Norwegian Data Archive in 1971, and the Consortium of European Social Science Data 

Archives (CESSDA) in 1976. Similar to cyberinfrastructures (Atkins 2003) or knowledge 

infrastructures (Edwards 2010), these institutions organize the large-scale dissemination and 

long-term preservation of data (Edwards et al. 2009; Ribes and Finholt 2009) in social science.  

 

To fulfil these goals, these institutions must cope with all the imperfections inherent to research 

datasets, either resulting from researchers’ mistakes or idiosyncrasies, or from coordination 

problems between the different actors involved in data collection and analysis (such as market 

research firms, research assistants, etc.). To compensate for such inherent flaws, the data archive 

at the center of this article hires dedicated workers called “data processors,” or “data curators,” 

whose work consists of reformatting and “cleaning” the deposited datasets before archiving them 

for use by researchers for secondary analysis.  
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In this article, I investigate how these data processors work, how they contribute to data sharing, 

and how their work is simultaneously visible and invisible to other parties. I base this analysis on 

ethnographic fieldwork conducted at a major US data archive that specializes in quantitative 

social science data
1
. This empirical work consisted of participant observation at the processing 

unit of this data archive, where I worked as a part-time intern for six months in 2014. Through 

this position, I received the same training as newly-hired data processors: I worked under the 

supervision of a senior processor, had my own work station, and learned by processing existing 

datasets. This participant observation was complemented by fifteen semi-structured interviews, 

conducted in 2014, with the eight data processors working at the processing unit at the time, and 

with seven employees having different roles across the archive: the director of the archive, the 

director of acquisition, the process improvement specialist, a metadata librarian, and various 

managers of the processing unit. 

  

Based on this investigation, this article presents two main results. First, it contributes to the 

literature on invisible technicians in scientific work (Barley and Bechky 1994; Timmermans 

2003) by showing that the same organization of labor that makes technical work invisible to 

other parties involved in the research process can also make it completely visible to others, such 

as managers and other employees of the archive. The data processors studied here, in addition to 

having all their (few) interactions outside the archive strictly framed, also have to make all their 

processing activity on datasets completely explicit to their peers and managers inside the archive, 

who will make sure they process datasets according to procedures and eventually produce a 

                                                 
1
 The institution and all the staff members have been anonymized in this article. 
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standardized dataset. Second, this article contributes to the social study of scientific data sharing. 

If the conception that researchers have of what counts as data has a direct influence on their data 

sharing practices (Wynholds et al. 2012; Wallis, Rolando, and Borgman 2013; Borgman 2015), it 

is similarly the case for data archive. I show that the organization of data processing labor at the 

data archive directly stems from archive managers’ conception of a valid dataset—that is, a 

dataset that must look “pristine” at the end of its processing. This goal of achieving 

“pristineness” for datasets is translated in an organization of processing work that makes the 

processors’ activity invisible outside the archive, while making it completely visible inside the 

archive to peers and managers. This conception of data, and how it shapes data processing, 

eventually obscures the processors’ social function of intermediary and their contribution to data 

sharing. 

 

This article first reviews existing research on invisible work in science and on scientific data 

sharing. Then it details the data processing pipeline from the deposit of a dataset to its 

publication on the archive website. Next, the article explains how the work procedures of this 

pipeline keep the work of processors invisible to those outside the archive: it describes the 

warnings in the processing manual against being too creative; all the procedures that processors 

must follow in the rare cases when they have to contact depositors; and the failed attempt to 

make internal data processing notes public. In the third part, the article shows that despite 

different ways of working, processors must follow guidelines that make their work completely 

explicit to their colleagues, in preparation for the final quality control before publication. This 

visibility was implemented at a time when the institution wanted to fight idiosyncratic ways of 

working, but now it lowers the incentive to innovate at the workplace. In the fourth part, I 
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critically examine the notion of pristineness and show how it perpetuates a misleading 

conception of data as “raw.” This article concludes by showing that as long as the institution will 

rely on such erroneous conception of data to organize data processing, it will reproduce the 

invisibility of data processing staff instead of acknowledging how critical their intermediary 

function is to data sharing.   

Technical work in science and its role towards data sharing 

Social studies of science have shown that despite its objective pretensions, scientific work 

depends in large part on social contingency (Lynch 1982) and tacit knowledge (Collins 1974), 

parameters close to “magic” (Cambrosio and Keating 1988). These instances of “shop work and 

shop talk” (Garfinkel, Lynch, and Livingstone 1981) are not simply what happens between 

formal procedures, they constitute the “craft” necessary to manipulate scientific instruments 

(deSolla Price 1984). Following this impulse, many studies have precisely shown the important 

contribution of technicians to the research process: beyond preparing tools and equipment, their 

work requires interpretation and creativity (Shapin 1989), up to the point of developing skills 

similar to scientists (Timmermans 2003). However, this skillset is almost never enough to revert 

the hierarchy between the different layers of professional status in science (Barley and Bechky 

1994), and their work remains invisible in the history of science.  

 

Data processors working in data archives are among the invisible workers of science: their 

activity, between the deposit and reuse of datasets, remains largely unknown from other actors 

involved in the social science research process. However, their work differs from laboratory 

technicians inasmuch as they do not work at the “empirical interface” (Barley and Bechky 1994) 

of scientific work. Rather, they are situated in the “intermediary zone” of the archive, between 
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data collection and future secondary analysis. They are not part of any data collection, nor data 

reuse, and only rarely are they in direct contact with researchers. Their work is therefore closer to 

data managers (Baker and Millerand 2010; Millerand 2012; Dagiral and Peerbaye 2012), who 

perform tasks such as post-hoc data entry, verification, or metadata writing.  

 

This article contributes to this scholarship by pushing further the relation between the concept of 

invisibility and visibility of technical work in science. The relational perspective promoted by 

Star and Ruhleder (1996) to study information infrastructures (Bowker et al. 2010) has shown 

that what counts as “work” varies depending on the indicator: slavery is the most extreme 

example of work made invisible (Star and Strauss 1999), while the entrance of domestic work in 

national statistics is an example of a change of classification that makes work visible (Bowker 

and Star 1999). The case study of processing in data archives shows that technical scientific 

work can simultaneously be invisible and visible. Data processing is organized, on the first hand, 

around procedures that make processors’ work completely invisible outside the archive: strict 

work procedures are applied in the data archive to frame any contacts from processors with 

researchers outside the archive, as well as removing any traces of processors’ agency from the 

final published dataset. On the other hand, the same procedures make the work of processors 

completely visible to other processors and the management team, who can then verify that 

processors’ work in a similar fashion and produce similar outputs.  

 

The second contribution of this article is to explain how the data archive justifies the necessity of 

this processing work—something that I relate to the conception of “pristineness” promoted at the 

archive and used to judge if datasets are ready to be shared. Existing research on data sharing has 
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extensively studied the relation between the multiple (and often competing) definitions that 

researchers have of what counts as data and their data sharing practices (Wynholds et al. 2012; 

Wallis, Rolando, and Borgman 2013). By asking “when are data?” Borgman (2015) shows that 

definitions of data are inherently related to institutional contexts, dynamics of epistemic 

communities, and different uses of data in the research process—all resulting in highly 

contrasted data sharing practices between sciences, social sciences, and humanities. I extend here 

this research on what “counts as data” and apply it to the context of data archive.  

 

The data processing unit studied here relies on the criteria of “pristineness” to assess if a dataset, 

after its processing, possesses the required characteristics to be published for archiving or reuse. 

The work of data processing therefore revolves around this organizing principle: keeping the 

work of data processors inside the archive, and conducting peer review of their processing work, 

both intended to remove all traces of data processing to restore a presumed original state of the 

data. However, this notion of “pristine data” can very easily be deconstructed: echoing recent 

debates on the oxymoronic nature of the concept of “raw data” (Bowker 2005) (Gitelman 2013) 

(Denis and Goëta 2017), presenting data as a pristine product conceals all the work needed to 

process and prepare such data for publication by the archive. Using such term, and translating it 

into the work process described below, therefore reduces the importance of the role of data 

processors in making data circulate between production and reuse (Leonelli 2016), and 

eventually keep processors’ contribution to data sharing invisible.  
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1. The data processing pipeline: making data “pristine”  

The table below formalizes the current journey of a dataset within the data archive, from the 

moment it is deposited by a principal investigator (PI) to its final publication on the website. 

Each step engages different actors, techniques, and actions, summarized below:  

 

Table 1. Reconstitution of the “pipeline” for data processing by the author 

 

The deposit step (Step 1) is the entrance point of the data inside the archive, typically occurring 

through researchers depositing datasets they want to archive. After an archive manager briefly 

reviews the data to see if it fits the selection criteria of the institution, the study is dispatched 

(Step 2) to a processor. They receive their assignment by a notification on the dedicated internal 

secure workspace through internal email. The data processing can start.  

 

The Review and Process step (Step 3) aims to identify and to “fix” the problems that datasets 

contain. Called “undocumented” or “wild code,” these problems consist of irregularities and 

formatting issues, including “any value that is not a valid code or is not properly documented.”
2
 

For example, in a dataset (say, in SPSS), some variable labels or value labels might be missing, 

incomplete, or containing suspicious characters. Many discrepancies can quickly be “eyeballed,” 

such as a missing document that should have been submitted along with the datasets, or the 

discrepancies between the numbers of questions in the questionnaires versus in the datasets. This 

“cleaning” step is also partially automated through custom-made scripts, which provide a faster 

                                                 
2
 Extract from the processing manual.  



 8 

assessment of the state of the dataset (providing, for example, a summary of “unlabeled 

variables” or “variables without any valid cases”) and flag areas of the dataset that require fixing.  

 

Once this step is done, the next part of data processing (Step 5, Metadata and Formatting)
3
 is to 

prepare the data for online publication on the website, through the creation of metadata and 

documentation. For the former: once a processing staff member has “cleaned” the data of its 

potential flaws, they have to generate versions of the dataset in the multiple statistical packages 

(SPSS, SAS, STATA, etc.) that the institution provides. For the latter: the archive maintains a 

thesaurus of social science topics and domains used to categorize datasets, which helps their 

retrieval on the website. Processors therefore have to enter these metadata for the dataset they are 

processing, such as the scope of the study, the methodology, related publications, etc. Processors 

also create codebooks and edit documents (such as questionnaires) to be published online along 

with the datasets (cf. Step 7 on the Table 1).  

 

Despite their apparent objectivity (Busch 2013, p. 68), standards are “agreed-upon rules” that 

emerge from specific communities of practice (Bowker and Star 1999, p. 13): they translate 

specific values into action, and are “morally charged matter” (Busch 2013, p. 22). The institution 

puts at the center of its action the necessity to “clean” data in order to allow its further circulation 

and reuse in social science. Data processing, organized through the formalized pipeline just 

described, is the means to achieve “pristineness” of data, deemed essential for data reuse. As a 

                                                 
3
 I develop later in the article the optional Step 4 of contacting the original depositor.  
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manager at the processing unit puts it: “We want everything to be right, and everything to read 

properly [...] Trying to get that, so that the future users when they get [the data], they get 

everything in a pristine manner.” “Pristineness” is the core principle that shapes the multiple 

procedures to process data at the archive. While I present a critical reading of this notion in the 

fourth section of this article, I describe in the next two parts how this goal of “pristineness” is 

achieved by rendering invisible data processors’ work outside the archive while making 

completely visible their work inside the archive.  

2. Making processing invisible outside the archive  

This section describes the three steps that render data processors and their work invisible to 

outside users: (1) With rules preventing processors from leaving comments about the state of 

data on which they worked; (2) With rules limiting processors’ contact with users outside the 

archive; (3) Through lessons learned from the aborted attempt to disclose the “processing history 

file” (explained below) to future re-users of data.  

 

2.1 “Don’t get carried away, though”  

Through their deep engagement with the structure of the data, as well as their access to all the 

materials used to conduct the study, processors gain an insider’s view on the methodology of a  

study—and on its potential flaws. They can develop, with time, knowledge of research 

methodology and can assess the quality of the study—e.g. the quality of the questions or the 

types of variables chosen—beyond just spotting and fixing basic design flaws. As one processor 

mentions: “Sometimes I look at the stuff that comes to us and I'm like, ‘Jesus, this is terrible 

research!’” Another processor mentions: “Every once in a while I'm like, ‘That's not how you 

ask a question.’” However, processors are fully aware that methodological critique is not their 
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job and that they cannot voice such concerns in the final product. They adopt in their work a 

forced blindness, in which they only look at the structure of the data, and not at the content, the 

design, or the results of the study. As Caroline says
4
:  

 

What are we supposed to do at that point? Am I really going to put a processing note 

saying, “User should note that this questionnaire is flawed.” No. We wouldn't do that.   

 

The way the processing pipeline is designed does not leave any space for writing a note on the 

quality of the study, which might be contested by the management during the final quality 

control.  

 

In case they forget their position, the processing manual clearly reminds them: “Don’t get carried 

away, though. Our job is to make the data available to the research community, not to critique 

the original researcher’s methods and conclusions.”
5
 This is a direct reminder that data 

processing staff are not researchers, and that their action has to stay at the level of the “cleaning” 

of datasets. The final check, which we describe later, applies here to make sure the processors 

direct their actions at the level of “cosmetic” changes, and do not venture into criticizing the 

design of the study or the results.  

 

                                                 
4
 All the names in this article are pseudonyms. 

5
 Extract from the processing manual. 
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2.2. Breaching the invisibility: contacting the Principal Investigator  

As usual with infrastructures, invisible work becomes visible when something goes wrong or 

breaks (Bowker and Star 1999). This is the case when relying only on the documentation 

provided by the original Principal Investigator (PI) cannot solve a problem in the data. Problems 

of such magnitude are among the few instances when processors are allowed to breach the 

boundary of the data archive and to enter into contact with researchers.  

 

A study I was processing had such a major problem: the number of variables in the SPSS files 

containing the data was very different from the number of questions written in the questionnaire. 

Did such discrepancy come from the fact that not all the questions present in the questionnaire 

were asked? Or were they all asked, but columns in the datasets disappeared due to conversion 

problems, or other issues? As this discrepancy was not explained anywhere in the accompanying 

documents deposited with the dataset, my mentor and I came to the conclusion that I had to 

contact the PI to ask him/her directly (cf. Step 4 on Table 1).  

 

Contacting the PIs at this occasion represents processors’ sole contact with the outside world of 

research. This excursion outside the archive is considered only as a last resort, and like other  

steps along the pipeline, it must go through a strict procedure, clearly explained in the processing 

manual. The processor contacts the PI by email, pastes a standard email, adds the title and 

deposit number of the study, and attaches a spreadsheet that “lists the variable name, the dataset 

name (if the study has multiple parts) and the problem issue.” With these information and 



 12 

documents, the PI is supposed to “sort by dataset, variable name, type of problem, etc.” and to 

“put the correct information in the excel file and return it.”
6
 

 

Such intervention may be unsuccessful, because PIs regularly do not respond to such requests
7
. 

In this case, the processor will add a mention on the first page of the final public version of the 

data, explaining the problems that remain in the dataset. The first breach of invisibility of the 

processor through contacting the PI, when unsuccessful, results in a second breach in the 

documentation published on the website along with the data. A disclaimer warns future users 

problems were identified by the data processor that could not be fixed due to the absence of 

response from the PI. This message re-assigns the responsibility for the poor quality of a study to 

the PI and exonerates both the processors and the institution.  

 

2.3. The risk of disclosing too much  

While invisibility can be breached when something goes wrong in processing, an aborted attempt 

a couple of years ago to disclose publicly and systemically the details of internal data processing 

similarly revealed the institutional logic behind keeping data processing invisible. When they 

work, processors continually update a text file called “processing history file” (simply called “ph 

file”), where they keep track of all the actions they have performed on data. It aggregates the 

logs of the different scripts performed on the data, as well as notes written by the processors to 

                                                 
6
 Extract from the processing manual 

7
 I left the archive before receiving an answer from the PI concerning this problem and therefore 

never learned the cause. 
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explain the remedial actions taken. It constitutes an internal text file that acts as a notebook. 

However, its state changes as the processors go further down the pipeline and eventually 

constitutes the basis for a second external document, simply called the “processing note.” 

Whereas the ph file remains an internal document, the processing note is inserted at the 

beginning of each published version of the dataset.  

 

This transition from internal document to public note is a summary of all actions the processor 

took. The initial processing history file is a document of several pages, detailing the number of 

variables and cases, containing the logs of the scripts run on the data, potential emails with PIs, 

etc. It aims to document exhaustively the changes processors performed on the data, and is 

mostly intended for internal reviewers who can then track and understand what happened. At the 

other end, the public “processing note” is a much shorter document, usually a couple of 

sentences long, and contains only the information necessary to use the data, for example if the 

data are weighted or not.  

 

A couple of years ago, the option to publish the whole processing history file, and not only its 

shorter public version as processing note, was discussed at the management level of the archive. 

The rationale was mostly to increase the transparency surrounding how the institution works on 

the data deposited. However, this option was not taken, eventually, for fear that it would breach 

the guarantee of standardization of its data. As mentioned earlier, the archive’s emphasis on 

standardization concerns the final product, rather than how it is achieved. Showing all the 

variations in processing and making public all the ways processors “work differently” would, it 

was feared, undermine the impression of standardized internal processing. A manager of the 
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processing unit remembers worrying that such disclosure would create more questions from both 

depositors and re-users about the internal data processing: “How [do] you do [such disclosure] 

without having people ask questions, especially when you can write the code and do the 

processing in different ways?” By keeping the slight variability between processing styles inside 

the archive, instead of making them visible to the future re-users, the archive reinforces the 

impression—for both depositers and re-users—that data at the institution all follows the same 

processing guidelines.  

 

We saw in this part how the data processing pipeline erases all traces of processing in the final 

product, which simultaneously makes the data processors invisible to researchers outside. In the 

next section, we see how the goal of producing “pristine” data results paradoxically in the 

visibility of processing work inside the data archive: the high standardization and the multiple 

verification procedures exist to make the work of processors completely explicit to each other for 

quality control.  

3. Making processing visible inside the archive  

The same standards and verification procedures described above are in place to make explicit the 

idiosyncratic ways processors work, thereby reducing potential variations in the final output. I 

first describe how processors develop different ways of working, mostly to fight routine and to 

add challenge in a very standardized environment. However, I then show that such idiosyncratic 

ways of processing are tolerated only on the condition that they are made completely explicit and 

visible to the other workers: if processing practices do not follow such constraints, they are 

actively discarded and labelled as “folklore.” Third, I show how such constraint of visibility is 
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implemented through record keeping and final quality control of their work, which results in the 

curtailing of the agency of processors on the pipeline.  

 

3.1. “Everybody processes differently”  

Despite the firm commitment of the data archive management team to implement formalized 

routine, data processing includes room for agency and initiative, and processors develop a wide 

range of expertise and knowledge beyond the strict division of labor that defines their work.  

 

A first striking fact that contrasts with the idea of a homogeneous work practice is the consensus 

within the archive that everybody processes differently. Steps of data processing are presented as 

tightly entangled and to be conducted following a strict order (e.g. running scripts before 

analyzing the structure of data), yet data processors routinely alter the order. The step of writing 

metadata and documentation can, for example, be started almost at any time in the pipeline, as it 

mostly concerns the topic of the original deposited study, and can easily be updated later to 

reflect the result of the processing work. Those not having a particular interest in metadata can 

postpone it to a later stage, when it can no longer be avoided.  

 

Data processing entails a very distant reading of datasets, and any incursion inside the data takes 

the form of research and discovery. Looking at the results of a study is not strictly necessary for 

processing the dataset, but it offers another way of fighting the boredom while manipulating the 

materials that are at the center of the work. As Taylor explains:  
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It's my opinion that you can't work eight hours straight [...] So with those studies, though, 

you can just read the study and to me that's really interesting data. As I'm reading through 

the study, I'm like, "Oh I wonder if I crossed half like those two, what do these have in 

common?" That gets fun and then that's a way where you can take a break from the 

processing.  

 

Star (2002) famously invited researchers of infrastructures to study boring things to reveal how 

exciting they are. Data processors similarly develop a multiplicity of strategies to make their 

work more exciting and to fight the inherent boredom of such repetitive and highly standardized 

work. The management team is fully aware of all the adaptations in data processing and tolerates 

them. As a manager says: “Some people like to do things one way, others like to do it another; 

[...] we don't dictate how that happens, but people do their preferences.” However, it is only 

under this condition of being made completely explicit that idiosyncratic ways of data processing 

can be tolerated. If such obligation of visibility of the work process is not met, the institution will 

discard such knowledge as merely “lore” and “tales,” as opposed to explicit and reproducible 

work procedures.  

 

3.2. Processing guidelines vs. “folklore”  

In the early 2000s, the archive hired an external consultant to study the different ways processors 

work on data, in order to streamline the process. The key issues presented to the specialist as 

urgent were the lack of a single reference way of processing, coupled with highly singular ways 

of working. Through this process, he could appreciate the high level of idiosyncrasies in how 

each processor worked at the time:  
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because the only thing we really knew about this task over here was it was something 

magic that Janet did. [...] Over here, there was something called, “throw the boiling frog 

in the boiling cauldron” or something like that, some bit of sorcery and all we knew is 

that it was something that Sheila did, and efforts of asking Janet and Sheila for detail in 

the past have not been successful, but it was clear that they had to be done because things 

would fail otherwise.  

 

Retrospectively, the specialist describes his action at the institution as an effort to switch from 

what he calls “lore” and “tales” of processors—singular ways of processing data resulting from 

years of practice—to standardized procedures made explicit and shared by all.  

 

His method consisted of interviewing and observing processors at work, asking them to describe 

their activity, and comparing these accounts between different employees. What came out of this 

series of interviews and observations was a diagram of the different steps that constitute data 

processing, as the basis of the pipeline currently followed at the archive (reproduced in the 

processing manual available to processors, and reconstituted in table 1). These lore or tales, 

acquired through years of experiences and that remained unknown to other workers, were 

replaced with clearly identified, publicly known, and chronologically ranked procedures that 

eventually became explicit checklists to follow. As a consequence, the verification procedures 

currently in place in the archive exist to make data processors constantly explain the decisions 

they took in their work, to make sure their agency does not feed new “lore” and “tales” about 

competing ways of processing. These procedures combine a specific document, the processing 
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history file, with a peer review of all the outputs from data processing called quality check (cf. 

Step 6 on the Table 1).  

 

3.3. Complete visibility as disincentive to innovate  

As we saw earlier, data processors record all their actions on data in the processing history file. 

Once they have reached the end of the Stage 5 (“metadata and formatting”), they send all the 

documents constituting the study (processed datasets, reformatted documentation and metadata) 

as well as the processing history file for inspection. This penultimate step, called “quality 

check,” is essentially a peer review of the work done. Both a fellow data processor and a member 

of the management team alternately go through all the outputs of processing work, and ask 

specific questions: Are some “wild codes” still unfixed? Are the codebooks and metadata 

following the archive’s templates and standards for publication? Are all the documents present in 

the folder ready for publication? Depending on the answers, a back and forth between reviewers 

and processors can occur to ask for further questions about one stage, and even to send back the 

work for further processing.  

 

This final verification reveals the standardization of work practices resulting from making all the 

processors’ ways of working completely visible. The final quality check illustrates the obligation 

of visibility that comes with this work: all the stages of data processing need to be made 

completely explicit and visible to the reviewers. If something is missing or is not clear, the 

reviewer will ask the processors to elucidate how one stage of the pipeline was conducted. This 

complete visibility results in the elimination of any traces of agency from the processors. We 

mentioned already that each processor works slightly differently, and that it is tolerated as long 
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as their work remains close to the standardized procedures. However, this high level of 

verification also acts as a strong incentive for processors to rely on tools and processes that are 

common practice in the archive. Consequently, it acts as disincentive to develop innovative ways 

of processing data, as they would not fit easily in the highly standardized existing work 

procedures.  

 

Taylor reveals in an interview how he once found a more efficient way to simultaneously delete 

a large series of characters by using a technique not in the processing manual and a programming 

language other than those commonly used. However, he quickly realized how this innovation 

would not fit anywhere in the processing pipeline: “there's no way to record what I did, so I had 

to just write a paragraph explaining what I did.” This innovative way of solving a problem is 

tolerated, as long as it is made explicit in the processing history file; however, the verification 

procedures in place do not leave the space for this initiative to become standard procedure, and 

will eventually not go beyond the status of temporary “trick.”  

 

I have shown how procedures make the work of data processors completely invisible to 

researchers outside the archive, yet completely visible to their colleagues and managers inside 

the archive. In the next section, I show that this double constraint stems directly from the 

conception of data promoted by the institution: the archive takes as mission to deliver “pristine 

data,” which incidentally renders invisible the contributions of processors to data sharing.  
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4. Cleaning Data Twice: Social Use and Critique of Data 

“Pristineness”  

At the end of the pipeline described above, datasets are judged ready for publication when they 

possess two qualities, assessed during the final quality control. First, managers and peers verify 

that datasets are cleaned of all the flaws, irregularities, and other idiosyncrasies from the original 

data producers. This is the first level of cleaning, completed in the part 3 of the pipeline 

(“Review and Process,” cf. figure 1): processors here remove elements of the original context 

and ensure that datasets can be used in future contexts without biases or difficulties. The second 

and equally important cleaning concerns the work of processors themselves. Datasets are deemed 

ready when no traces of their cleaning and repair remain in the final dataset—something 

completed during the stage 5 of the pipeline (“Metadata and Formatting”), where data processors 

make sure that the final output follows standardized formatting. Similarly, by verifying that 

processors don’t get “carried away” in criticizing a study, and that all outputs are similar despite 

singular ways of working, other stages in the pipeline aim to erase any modifications of the 

original dataset. Processors therefore apply the same guidelines and procedures, first, to the 

mistakes and flaws from previous studies, then to their own work, so that they also remove all 

traces of their own cleaning. When they are sent for quality control, datasets have theoretically 

been cleaned twice—of loose ends from the original production, but also of any residue from 

their own processing. It is only under these conditions that datasets can eventually be considered 

pristine, and therefore ready for publication.  

 

Latour and Woolgar (1979) have shown that a similar process happens during the creation of 

scientific facts. Scientists remove competing and uncertain statements (the “modalities,” cf. 
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p. 81) to eventually position their interpretation as an incontestable fact. A parallel process 

happens in the data archive, but for a different purpose. The goal here is not to construct 

scientific facts, but to deliver standardized datasets that are pristine. This is first achieved by 

removing the flaws from previous studies; second, by restructuring the dataset to fit the archive’s 

template. As the processing pipeline is designed to make sure that no traces of this double 

cleaning appear in the final datasets, the data eventually appear at the end of this process as 

“raw” again (Denis and Goëta 2017). 

 

Pristineness occupies a key social function in the data archive: it acts as the leading principle that 

is implemented in the various stages of data processing (the “pipeline”), and in the work 

procedures and quality checks. However, emphasizing data as “pristine” runs the risk of 

perpetuating a misleading conception of data that overlooks all the various stages of production 

and formatting that occurred before a dataset is judged valid. Many commentators have shown 

how the recent trend of big data research can reproduce a positivist conception of data as central 

unique arbiter of truth for valid scientific result (Anderson 2008; Hey, Tolle, and Tansley 2009). 

Following up on critical research that has largely debunked such claims (Bowker 2005; boyd and 

Crawford 2012; Gitelman 2013), data archives are in a unique position to show that data never 

comes as raw, pristine, or ready to use, but that multiple interventions are always needed before 

data can be reused. 

 

Moreover, emphasizing a presupposed pristineness of datasets obscures all the intermediary 

work that is necessary to make data sharable and reusable. Scholarship on data sharing has 

shown that data do not circulate by themselves: they must be prepared, even “packaged” 
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(Leonelli 2016), to circulate among different parties and to “jump” between different contexts 

(Downey 2014). On the opposite, when the notion of pristineness is used to characterize the final 

output of the data archive, it operates a reduction of the very specificity and richness of data 

archives—that is, to hire dedicated employees who enhance the data they receive before reuse. 

As long as the institution commits to such a conception of data, it will continue to conceal all the 

information labor (Downey 2014) provided by its processors, and will thereby keep them 

invisible, instead of recognizing their essential contribution to the circulation of data in social 

science.  

Conclusion  

A rich scholarship in the social study of science has expanded the scope of actors that play a key 

role in the construction of scientific facts. Starting in the 1980s, multiple studies have 

specifically acknowledged the role that technicians play at the empirical interface of science and 

in the larger division of scientific labor (Barley and Bechky 1994; Timmermans 2003). This 

historical research provided the basis for the investigation of technicians in information 

infrastructures (Star and Ruhleder 1996; Bowker et al. 2010) focusing on the data managers who 

pre-process and prepare data for analysis (Baker and Millerand 2010; Millerand 2012; Dagiral 

and Peerbaye 2012). 

 

The ethnographic study presented in this article extends this study of invisible workers in science 

by focusing on one type of technicians: the employees in the processing unit of a social science 

data archive who work at the intermediary level between the deposit of datasets and their 

publication for archiving and reuse. By focusing on these data processors, who do not directly 

work at the empirical interface of scientific work but who are still involved in the circulation and 
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reuse of data, this article makes two contributions. First, it shows that technicians may be 

invisible to some but are made completely visible to others, such as colleagues and managers in 

their workplace. Invisibility and visibility are implemented through the same work procedures, 

and both stem from the goal of the institution to publish “pristine” datasets. Second, this study 

contributes to the social study of data sharing by detailing the work of data cleaning and 

reformatting that happens at the intermediary zone between data production and reuse. Doing so 

expands studies that have detailed the conditions and practices of data sharing (Wynholds et al. 

2012; Wallis, Rolando, and Borgman 2013; Borgman 2015), but it emphasizes the preparation 

required to circulate data among different contexts (Downey 2014; Leonelli 2016). 

 

Finally, investigating these invisible processors shows the value of a critical study of data in 

science. It is paradoxical that the data archive studied here promotes a conception of data as 

“pristine” while its managers know that there is no such thing: the data processors employed 

there do much more than reverting to a presumed original state of “raw” data. They actively 

improve and enhance the data they work on, and the datasets that come out of the data archive 

are of better quality than when they were submitted. By “going backstage” (Star and Strauss 

1999) and observing and practicing all the “boring” aspects (Star 2002) involved in processing 

data, this research takes part in the critical deconstruction, triggered recently by the rise of “big 

data” research, of data as an immediate commodity (Bowker 2005; Gitelman 2013). By putting 

this intermediary work and all the multiple stages of “cooking” data to the fore, data archives 

could be part of this debate, as they are the living proof that data processing is crucial to the 

circulation of data in science.  
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The motivation for data archives to make the work of their data processors more visible could 

come from competition emerging in the data archiving scene. The rise of “big data” science and 

of disciplines such as digital humanities challenge the traditional properties and missions of 

knowledge infrastructures (Edwards et al. 2013; Karasti et al. 2016). The past few years have 

seen the rise of web-based digital platforms that occupy key functions traditionally fulfilled by 

infrastructures, directly competing with data archives (Plantin, Lagoze, and Edwards 2018). 

Exemplified by the service Figshare.com, such entities promote self-deposit and quick release of 

deposited data over a thorough but slower processing of research data detailed in this article. The 

rise of these entities, which do not provide the same guarantee in terms of curation, long-term 

archiving, and metadata, could force data archives to openly embrace the value added by their 

data processors, hence making their contribution more visible to the world of research. 
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Table 1. Reconstitution of the “pipeline” for data processing by the author  

 

 

 

Action  1. Deposit 

the dataset 

2. 

Dispatch 

3. Review and Process 4. Contact 

with the PI 

(optional) 

5. Metadata and 

Formatting 

6. 

Verification 

7. Publication 

Descri

ption 

The PI or 

acquisition 

department 

deposit a 

study for 

processing 

The 

manager 

review and 

dispatch 

the study 

to a 

processor 

The 

processor 

first review 

the data, 

identify the 

problems, 

and draws 

a 

processing 

plan 

The 

processor 

then 

“fixes” the 

problems: 

“wild 

codes,” 

missing 

values, 

questions 

labels, etc. 

The 

processors, 

after contact 

with the 

manager, 

contacts the 

PI  

The 

processor 

writes 

the 

metadata 

for the 

study 

The 

processor 

format the 

datasets 

and the 

documents 

according 

to  

templates 

The 

processors 

send all the 

files to a 

manager and 

another 

processor for 

“Quality 

check” 

Once 

reviewed, the 

manager 

approves the 

publication of 

the study on 

the  website 

Staff Principal 

Investigator 

(PI) 

Manager Processor PI/Processor/

Manager 

Processor Processor/Man

ager 

Processor 

Tool Deposit 

form 

internal 

workspace 

Scripts, Unix, notepad, 

SPSS, “eyeball”  

Email, 

spreadsheet 

PDF, Hermes, internal 

workspace 

Unix, PDF, 

notepad, SPSS 

 internal 

workspace 
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