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Interbank Clearing in Financial Networks with Multiple Maturities*

Michael Kusnetsov! and Luitgard Anna Maria Veraart!

Abstract. We consider the problem of systemic risk assessment in interbank networks in which interbank
liabilities can have multiple maturities. In particular, we allow for both short-term and long-term
interbank liabilities. We develop a clearing mechanism for the interbank liabilities to deal with the
default of one or more market participants. Our approach generalizes the clearing approach for the
single maturity setting proposed by Eisenberg and Noe [Management Sci., 47 (2001), pp. 236-249].
Our clearing mechanism focuses on the vector of each bank’s liquid assets at each maturity date and
develops a fixed-point formulation of this vector for a given set of defaulted banks. Our formulation
is consistent with the main stylized principles of insolvency law. We show that in the context of
multiple maturities, specifying a set of defaulted banks is challenging. We propose two approaches
to overcome this challenge: First, we propose an algorithmic approach for defining the default set
and show that this approach leads to a well-defined liquid asset vector for all financial networks with
multiple maturities. Second, we propose a simpler functional approach which leads to a functional
liquid asset vector which need not exist but under a regularity condition does exist and coincides
with the algorithmic liquid asset vector. Our analysis permits construction of simple dynamic models
and furthermore demonstrates that systemic risk can be underestimated by single maturity models.
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1. Introduction. Since the financial crisis of 2007-2008 there has been a rapid expansion
of literature which aims to explain bank failure in interconnected financial systems; see, e.g.,
[25] for a recent overview. One main modeling aim is to find a suitable contagion mechanism
that describes how losses can spread through a financial network. The ultimate objective of
such an analysis is to assess the degree of systemic risk in a financial network and use this to
make informed policy decisions to increase financial stability.

One approach to assessing systemic risk in financial networks is to derive clearing cash
flows between financial institutions and to study which market participants default during the
clearing process. Such clearing payments represent the actual payments made by the market
participants and are constructed such that they obey certain stylized principles of contract
and insolvency law.

We contribute to this area of research by proposing an extension of the clearing approach
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first developed by Eisenberg and Noe [14] from financial networks with only one maturity
date to networks with multiple maturity dates. In practice, financial networks do consist of
liabilities with different maturity dates. When the clearing process is triggered at the first
maturity date long-term debt must not be ignored. We develop clearing mechanisms that
account for long-term debt in a way that is consistent with the main principles of insolvency
law. This approach is also extended to a multiperiod model that can be used as a basis for a
full dynamic model of systemic risk.

Typically bank default models assume, as, e.g., proposed in [14], three stylized principles
of insolvency law which are common to many jurisdictions. These are the principles of limited
liability, which says that a financial institution never pays more than it has, absolute priority
of debt claims, implying that all outstanding debt has to be completely paid off first before
shareholders can be considered, and proportionality. The principle of proportionality states
that the total value of assets paid out in this case is distributed between all the creditors in
proportion to the size of their nominal claims.

A crucial nuance of the principle of proportionality is that all liabilities, including future
liabilities, are required to be treated equally for the purposes of proportional distribution
to creditors. For example, the UK Insolvency Service Technical Manual stipulates that: A
creditor may prove for a debt where payment would have become due at a date later than the
insolvency proceedings [...] and it is only because the company [...] has entered into insolvency
proceedings that the debt is claimed by the creditor in advance of its due payment date. Where
this occurs, the creditor is entitled to the dividend equally with others [...] [33, Chapter 36A,
section 48].

Our model explicitly incorporates this important feature. This contrasts with single ma-
turity models where it is assumed that assets of defaulting banks are distributed to creditors
proportionally to the short-term liabilities only. The failure to account for future liabilities
in calculating the proportional distributions leads to an incomplete view of systemic risk in
financial systems. We show that two financial systems with the same overall interbank lia-
bilities but different maturity profiles can lead to different clearing outcomes. In particular,
it follows that uncertainty about maturity profiles of banks’ portfolios is a distinct source of
systemic risk that is unaccounted for in single maturity models. Our approach can be used in
an analysis of systemic risk to evaluate the effect of such maturity profile uncertainty.

This paper makes four main contributions. First, in section 2 we introduce the notion
of an equilibrium achieved by clearing the financial markets at the first maturity date and
accounting for long-term liabilities which are due beyond the first maturity date (Definition
2.3). We also show that in contrast to the single maturity setting, developing a notion of
default in a multiple maturity setting is challenging. A key insight that emerges out of this
observation is that characterizing the set of banks in default is an integral part of the solution
to the clearing problem. This is in contrast to much of the literature, where default sets are
treated as secondary quantities derived from the clearing cash flows. In particular, we show in
Lemma 3.17 and Remark 3.20 that under a mild assumption financial systems have at most a
finite number of clearing solutions, each uniquely determined by a corresponding default set.

Our second contribution, in section 3, is to introduce two possible approaches to clearing
at the first maturity date. We show that these two approaches—algorithmic (Definition 3.1)
and functional (Definition 3.3)—solve the general equilibrium problem in Propositions 3.2 and
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3.5. In section 3.3 we describe how the algorithmic approach extends the functional approach,
which in turn extends the Eisenberg and Noe [14] model. Construction of clearing solutions
under both approaches is addressed in section 3.4.

Our third contribution is to show that the functional approach, used in much of the
literature in a single maturity setting, is problematic in a multiple maturity setting. In
particular, we elucidate the importance of monotonicity in clearing problems. In general,
under the functional approach, the clearing function is not monotone and may not have
a fixed-point solution. Nevertheless, we show in section 3.2 that a simple condition, the
Monotonicity Condition, Definition 3.7, is sufficient to ensure the existence of a solution.

Finally, we highlight some applications of the algorithmic approach. In section 3.5 we
apply the algorithmic approach to demonstrate how single maturity models can underestimate
systemic risk. In section 4, we discuss the evolution of the financial system after clearing at
the first maturity. In particular, in section 4.3, we describe a simple multiperiod extension of
our model. Such an extension then captures both the multimaturity and multiperiod aspects
and therefore is a basis for a full dynamic model of financial systems.

The remainder of this section provides a summary of the current literature and how it
relates to the multiple maturity clearing problem that we consider here.

1.1. Literature review. The role of complexity and contagion in financial networks has
been studied by numerous authors, e.g., [1], [20], [5], and [12]. There has been an increasing
recognition that there are in fact multiple channels through which network complexity can
give rise to systemic risk. Bisias et al. [6], for example, provide a wide-ranging overview.

In most studies it is assumed that the financial network itself is observable. We will also
make this assumption here. Under incomplete information, network reconstruction methods
could be applied first; see, e.g., the Bayesian approach proposed in [22], [21], and the references
therein.

We focus on one specific channel of contagion, namely the domino effect which arises when
complex networks of debt obligations are cleared. This places our work at the intersection
of two strands of literature. The first focuses on contagion and domino effects; see, e.g., [9],
[34], [30], [17], [11], [23], and [15]. The second investigates clearing, typically in the context
of central counterparty clearing in over-the-counter (OTC) markets. Some contributions from
this latter strand include [10], [13], [8], and [2].

Our paper presents a generalization of the classic static single maturity approach that
originates with [14]. While the model in [14] was concerned primarily with payment systems,
the key ideas have been adapted by numerous authors to model systemic risk in a financial
system. In this stream of literature, an interbank system is modeled as a directed graph
with weighted edges. The nodes of this graph correspond to systemically significant banks
which are endowed with initial assets. Each edge represents an outstanding debt owed by
the bank at the tail of the edge to the bank at the head of edge. The weights correspond to
the nominal values of the debt. A central question is of clearing the financial system, that
is, calculating the actual amounts that banks transfer to each other in satisfaction of their
nominal obligations. This question is particularly pertinent when a shock is applied to the
asset side of their balance sheets, which may cause some banks to default.

The key findings include the existence and construction of clearing solutions and the
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conditions for their uniqueness. These results rely on a number of simplifying assumptions on
clearing, which subsequent authors have attempted to relax. Thus Hurd [27] clarifies the role
that the external liabilities play, Rogers and Veraart [31] investigate the effect of liquidation
costs, while Elsinger [16] incorporates cross-holdings and different seniorities of debt. The
combined effect of cross-holdings and bankruptcy costs is investigated in Weber and Weske
[36]. All these extensions are single period models and hence assume a single maturity for the
liabilities.

Glasserman and Young [24] provide an alternative interpretation of clearing as dynamic
re-valuation of bank assets by the market. Since in many extensions the uniqueness of clearing
solutions is lost, this interpretation is particularly interesting in the systemic risk context as
different solutions can be given meaningful interpretation in terms of alternative valuations.
Veraart [35] follows this approach and investigates the effect of predefault contagion, i.e.,
contagion that can be triggered prior to the actual default event due to distress and mark-
to-market losses. The notions of distress and time-dependent valuation are also developed in
Barucca et al. [4].

Recent papers (e.g., [7], [19], [3]) have developed multiperiod models. The model in Cap-
poni and Chen [7] has a “central bank” node and random interbank liabilities. In particular, it
highlights the distinction between illiquid and insolvent banks which arises whenever liabilities
can become due at different times. This model focuses on the role of liquidity injection poli-
cies by the central bank and only tangentially analyzes the differences in the default behavior
that arise from this generalization. Meanwhile, Ferrara et al. [19] describe how a multiperiod
system can be cleared simultaneously for every period. Similarly, Banerjee, Bernstein, and Fe-
instein [3] consider both a discrete and a continuous-time dynamic extension of the Eisenberg
and Noe [14] model.

While these models generalize the single period aspect of [14], they remain fundamentally
single maturity models. Future liabilities are only revealed one period at a time and are
not considered as long-term debt at the short-term maturity date, but are rather considered
as new short-term debt that started at a later point in time. The clearing mechanism they
consider therefore corresponds effectively to a repeated application of a single maturity clearing
algorithm.

Sonin and Sonin [32] provide a dynamic solution approach to the static [14] setting but
again do not account for a multiple maturity structure as we do in our paper.

In contrast, our model accounts for long-term debt before short-term debt is cleared
and settled. In practice, banks have instruments of many maturities in their portfolio, and
therefore it is important to account for this feature. To the best of our knowledge, our
contribution is the first attempt to explicitly account for multiple maturities in a manner
consistent with the insolvency rules.

Related work is the approach by Feinstein [18], who considers an extension of the single
network approach by Eisenberg and Noe [14] to a multilayered financial network to study
contagion in multiple asset classes. This approach could also be applied to a multiperiod or
multimaturity setting.
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2. Clearing in financial systems with multiple maturities.

2.1. The financial market. We consider a financial market consisting of N banks with
indices in N' = {1,..., N}. Banks have liabilities to each other and to external entities which
are due at two different maturity dates 0 < 77 < T5. We will later show that we can easily
generalize our model to more than two maturities. Hence, time ¢ = 0 represents the starting
point of the analysis, and we model what happens at the two maturity dates ¢t € {T1,T>}. We
assume that all liabilities of the same maturity have the same seniority.

Each bank’s liabilities for some maturity can be represented by a liability matriz. Together
with vectors representing the banks’ cash assets, these are sufficient to describe the financial
system at ¢ = T7. These and other related concepts are summarized in Definition 2.1. In the
following we denote by 1 the n-dimensional vector of ones.

Definition 2.1 (financial system).
1. A matriz M € RfXN is called a liability matrix if, for all i € N', M;; = 0.
2. A financial system is given by the tuple (a,L(S),L(l);v), where L), LU are liability
matrices with maturity dates Th and T», respectively, and a € Rf, v € [0,1].
We will refer to the following quantities:
e the cash assets a;
e the short-term, long-term, and overall liability matrices L6, LW and L :=
L) + LO | respectively;
e the short-term, long-term, and overall total nominal liability vectors L(®) :=
L1, LW .= 101, and L := L) + LW respectively;
e the short-term, long-term, and overall interbank asset vectors A := (L())T1,
AW = (LOYT1, and A := (L)1, respectively;

e the short-term and overall relative liability matrices ) and 10, respectively,
A g _
which are given by HS) = ZZ(JS) and II;; = ij for alli,j € N if LES) > 0
s)

(respectively, L; > 0) and Hl(j =0 (respectively, I1;; = 0) otherwise;

e the bankruptcy cost parameter ~.

Table 1
Initial stylized balance sheet at t = 0 of bank i € N.

l Assets ‘ Liabilities
e Cash assets: a; e Short-term interbank liabilities:
e Short-term interbank loans: L& = Z;\;l LS.)
AE” = Z;\le L;?) o [jong-term interbank liabilities:
e Long-term interbank loans: Ly) = Z;V:l LE;)
e l :
AE) = Z;V:1 Lé.i) e Equity: E;

Thus, given a matrix M of liabilities of some maturity, a bank 7 has an outstanding liability
of that maturity to bank j if M;; > 0 and the nominal value of this liability is given by M;;.
If M;; = 0, then ¢ does not owe anything to j and in particular M has a zero diagonal since
we assume banks do not owe anything to themselves. The ith row sum of M then gives the
total nominal value of liabilities of each bank of the relevant maturity, and the ¢th column
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sum gives the total nominal value of assets of that maturity.
Table 1 shows the stylized balance sheet at time ¢t = 0 of bank 7 € N' where the equity is
defined as F; := a; + AES) + ;12@ — EES) — EEZ).

Remark 2.2. The set of banks N is assumed to contain a “sink node,” e.g., in this paper
N € N. This node has no cash assets or liabilities. However, other banks may well have
liabilities to the sink node. These represent banks’ liabilities external to the interbank market,
but for ease of reference we refer to all entries of the liability matrices as “interbank” liabilities.
In [16] it is pointed out that in order to use a sink node in this manner external liabilities
need to be treated as having the same seniority as interbank liabilities; this is indeed our
assumption in this paper.

2.2. General equilibrium. In this paper we formulate a characterization of an equilibrium
achieved by clearing the market at the first maturity date that is based on the requirements of
the UK insolvency rules as outlined in [33], which can be heuristically summarized as follows:

e Banks are not required to make any payments either in excess of the total value of
their liquidated assets or in excess of the total amount they owe across all maturities.

e Conversely, shareholders are not permitted to retain any value of the defaulting banks
as long as any part of any creditor’s outstanding claims remains.

e Such claims include both short-term and long-term liabilities, which are treated with
the same priority within the same seniority class.

e A bank that is liquidated under the insolvency rules ceases to exist and cannot recover
even if liquidators recover sufficient assets to fully compensate all creditors.

Suppose we are at the first maturity date ¢ = T} and suppose some banks with indices in
D C N are in default at t = T;. We postpone the discussion on the cause of these defaults to
section 2.3. We will now determine a clearing equilibrium at ¢t = T7.

We start by considering the case where a bank j does not default, i.e., j € N'\ D. Then
it pays its short-term nominal obligations Eg-s) in full; in particular, it pays Lgfz) to every
bank 7. Next, we consider a bank j that defaults, i.e., j € D. Bank j is liable to pay its
creditors all of its available liquid asset resources, denoted by v;, subject to two constraints.
First, since default is costly and lawyers and other service providers need to be paid, only a

fraction v € [0, 1] of its liquid asset resources reaches its creditors. Second, we now need to
(s)

J
We assume that the creditors are not entitled to

consider both its short-term and its long-term liabilities. In general, Ej > L

any long-term liabilities, then J:Jj > I:;S).

and if j has

more than the overall total liabilities Ej.

Finally, we also need to model what is permitted to happen to the long-term interbank
assets flgl) of a bank j at or prior to the first maturity date. In practice they can be auctioned
to provide additional cash to satisfy the total liabilities, especially if the bank j is attempting
to avoid being in default. In the interests of model parsimony and tractability, we refrain
from modeling an auction mechanism here and take a reduced approach where, following an
auction, the bank j would have a further amount Rflg-l) of liquid assets where R > 0 is the
recovery rate. See, for example, [7] for an example of an auction mechanism. We discuss this
further in section 4.

Provided the auction of long-term assets does not take place concurrently with the clear-
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ing process, the two can be separated in time. In other words, we assume that the auctions
take place before the clearing at the first maturity date and any auction proceeds are already
incorporated into the cash assets a; of the bank j by the time the clearing process commences.
Therefore, we make this explicit by making a further modeling assumption that, during clear-
ing, R = 0. The situation can become significantly more complex if the auctions can take
place concurrently with the clearing process. To keep the model tractable, the assumption
that R = 0 then also allows us to avoid dealing with such a case.

We therefore need to determine the liquid asset resources v that each bank has at time
t = T1. We characterize v in terms of a fixed-point problem for a given financial system
(a, AN AOR 7). Note that in this paper 0 denotes the vector of zeros which in Definition 2.3
below corresponds to an N-dimensional vector.

Definition 2.3. Let (a, L®), L");~) be a financial system and D € N. Define ¥(-;D) :
[0,a+ A] — [0,a + A] where [0,a+ A] C RY and, for eachi € N,

‘IJZ'(’U;D) =a; + Z ng) + ZHW(EJ /\’)/Uj).
JEN\D j€D

We refer to any vector v € [0,a + A] satisfying v = V(v; D) as a general liquid asset vector
with respect to D.

Remark 2.4. Note that, indeed, 0 < ¥(v; D); < a;+A; for all v and 4. This follows directly
from the fact that for each ¢,j € N and v € Rf, Hji(f/j Nyvj) < Hjil_',j = Lj;. Therefore,
since Lﬁ) < Lj; for all 4,5 € N,_we have that ¥(v;D); < a; + Zje/\/ Lj; =a; + A;.

Importantly, the set [0, a + A] forms a complete lattice under the componentwise ordering
of ]Rf .

Definition 2.3 defines the liquid asset vector with respect to a default set D. In the following
we discuss properties of the default set D before we propose two approaches to define it in
subsection 3.1.

2.3. ldentification of default. Most models based on the Eisenberg and Noe [14] frame-
work deﬁnie default by checking whether some value is less than the total nominal short-term
liabilities L(*). This leads to the following general definition.

Definition 2.5. Let (a, L(f), Lo, v) be a financial system of bank N with the total nominal
short-term liabilities vector L'®). We define the function D by setting, for each vector x € Rf,

(1) D(z) = {i e N | 2; < L\V}.

This allows us to define fundamental defaults, i.e., defaults that occur even if everyone is
assumed to satisfy their payment obligations. The fundamental default set is given by

F:=D(a+ A¥) = {Z eENa;+ Z LS-‘;) < I_/Z(S)}.
JEN
Fundamental defaults can be read off directly from the stylized balance sheet. It is reasonable

to assume that any default set D satisfies F C D. Furthermore, it is reasonable to assume
that F = () implies D = ().
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Nevertheless, F is too small to be a suitable choice for the default set D. Not all defaults
are fundamental defaults. A bank may have interbank assets whose book value is sufficient
but contingent on its counterparties avoiding default. If some of the counterparties default,
this would cause the market value of assets to be adjusted down, making the bank illiquid
and thus triggering its default. This type of default is known as a contagious default and is
well established as one of the key drivers of systemic risk. These contagious defaults cannot
be directly determined from the stylized balance sheet.

To capture some of these contagious defaults, we can ask whether some bank i is illiquid
in the sense that its liquid assets v; are insufficient for it to meet its own short-term liabilities
in full. The set of such illiquid banks is then given by D(v). We would expect that for any
default set D one should have D(v) C D. As with the fundamental defaults, the converse is
not necessarily true. Since default changes the rules of distribution between counterparties,
it may be the case that after a bank defaults, its liquid assets exceed its short-term liabilities.
However, default is an absorbing state, and, once defaulted, a bank cannot recover. Thus
D(v) may also be too small to be a suitable choice for the default set D.

Combining these considerations leads to the necessary condition on the default set D:

(2) (1) DD FUDw), (2)F=0=D=0.

3. Clearing at the first maturity.

3.1. Algorithmic and functional approaches to defining default. In the following we
introduce two particular approaches to formalize the notion of default and hence to define
the default set D, which we refer to as the algorithmic approach and the functional approach.
In section 3.2 we will discuss the conditions under which these approaches are well defined
and ensure existence of liquid asset vectors. Alternative definitions of a default set are also
possible, but we will not investigate them further here.

3.1.1. Algorithmic approach. In the algorithmic approach we will start by providing an
algorithm which outputs a vector and a set, which we define as a liquid asset vector and a
default set.

It is similar in spirit to the Fictitious Default Algorithm (FDA) developed in [14], but in
contrast to the FDA we use it to define default and the liquid asset vector and do not just
use it as a convenient computational tool to calculate a predefined quantity of interest.

We consider a fixed financial system (a,L(s),L(l);'y) and make the crucial modeling as-
sumption that default is an absorbing state. In particular, we assume that once a bank enters
the default set, it will stay there. Furthermore, a bank enters the default set if and only if
the value of its liquid assets is less than its total short-term liabilities. Algorithm 1 formalizes
this idea.

Thus, for a given financial system (a, L(*), L();~) Algorithm 1 computes a vector v* and
a set D* which will correspond to a liquid asset vector with respect to the default set D*.

Definition 3.1. Let D* and v* be the outputs of Algorithm 1. We refer to
e D* as the algorithmic default set; and
e v* as the algorithmic liquid asset vector with respect to D*.
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Algorithm 1 Algorithmic definition of the default set

1: Set DO =0, v =g+ AG) n=1.
2: Set
DM = D=1y DY),
3: if D =D~V then
4. return D* = D™D and v* = ("D,
5: else
6:  determine the greatest fixed point v satisfying

(3) o) = (™), D),

where W is defined in Definition 2.3.
7: end if
8 Set n =n+ 1 and go to 2.

Proposition 3.2. Let (a, L) L0, v) be a financial system, and let D* and v* be the outputs
of Algorithm 1. Then, the algorithmic liquid asset vector v* is a general liquid asset vector
with respect to D*.

Since Proposition 3.2 follows directly from the definition, we omit the proof.

The algorithmic approach incorporates the intuition of default sets discussed in section
2.3. Namely, it ensures that default is an absorbing state and that the necessary criteria on
the default set D* specified in (2) are satisfied. To see that the latter claim is true, consider
that F = D(a+ A®) = D(v(©) = D) C D*. Furthermore, if F = ) = D), then Algorithm
1 terminates with D* = () and v* = a + A®) = W(v*; ).

The other key intuition behind the algorithmic approach is that it views the clearing
process as a dynamic process that proceeds in several rounds. It starts with the assumption
that initially the default set is empty, and then it computes in every round the best possible
outcome for the financial system based on the given (absorbing) default set by finding the
greatest fixed point.

The algorithmic approach therefore introduces an ordering of financial institution, depend-
ing on the round in which they default. This ordering depends on the initial default set (in
our case the empty set which corresponds to no defaults). One could consider modifications
of the algorithm with different (initial) default sets, but it would be less clear what the output
of the algorithm represents. Intuitively, we think of the solution returned by the algorithmic
approach as a best-case outcome similar to the greatest clearing vector in [14], since we start
with no defaults and in every round compute the greatest fixed point rather than just any
fixed points to keep the number of additional defaults minimal in every step of the algorithm.

3.1.2. Functional approach. We will argue in the following sections that the algorithmic
approach is a more general approach that works for any financial system with multiple matu-
rities. However, it is instructive to consider why the more conventional route along the lines
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of [14] is problematic in the multiple maturity setting. To this end we consider an alternative
approach where the default set is characterized as a closed-form function D(v) of the liquid
asset vector.

Definition 3.3. Let (a, L\®), LW: v) be a financial system. Define U [0,a+ A] — [0,a+ A],
where

(4) \ilz(’u) =a; + Z L;-j) + v Z IT;;v;.

JEN\D(v) JED(v)

We refer to any vector v € [0,a + A] satisfying v = U(v) as a functional liquid asset vector
and the set D(v) as a functional default set.

Proposition 3.4. Let (a, L'®), L");~) be a financial system. Then
U(v) = ¥(v; D(v)) Vv € [0,a+ Al

The following proposition is a direct corollary to the definitions and Proposition 3.4 and
provides the link between functional and general liquid asset vectors.

Proposition 3.5. Let (a, L(s),L(l);’y) be a financial system, and let v be a functional liquid
asset vector. Then v is a general liquid asset vector with respect to D(v).

We will show that, in contrast to the algorithmic liquid asset vector, which exists for all
financial systems, a functional liquid asset vector need not exist in a multiple maturity setting.

3.2. Existence of liquid asset vectors. To see that the algorithmic liquid asset vector
and the algorithmic default set are well defined and exist for any financial system, consider
the following theorem.

Theorem 3.6. Let (a,L(s),L(Z);'y) be a ﬁnangial system. Then, the greatest solution to the
fized-point problem (3) exists and lies in [0, a+ A]. Furthermore, Algorithm 1 terminates after
a finite number of steps.

The proof of Theorem 3.6 and all subsequent results can be found in Appendix A unless
indicated otherwise. We will discuss the construction of the algorithmic liquid asset vector in
section 3.4.

The functional liquid asset vector does not exist for all financial systems. There is a
sufficient (but not necessary) monotonicity condition, however, that guarantees existence of a
functional liquid asset vector.

Definition 3.7 (Monotonicity Condition). Let (a, L'®), L";~) be a financial system, with
short-term and overall relative liability matrices TI'®) and I1, respectively. We refer to a finan-
cial system as satisfying Monotonicity Condition 3.7 if and only if

I > 105 Vi, j € N

From a financial point of view, Monotonicity Condition 3.7 just asserts that, for any bank
1 in the system, it is guaranteed that if it defaults, it does not pay a larger proportion of its
liquid assets to any bank j in the system than its original proportion of short-term liabilities
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to this particular bank j. In this sense no bank benefits from the default of another bank in
the system.

From a mathematical point of view, Monotonicity Condition 3.7 is a sufficient condition
for the function ¥ being nondecreasing. Furthermore, it highlights the fact that the distinction
between I1() and II in our model is a crucial element that is missing in single maturity models.

Remark 3.8. Note that networks in which LZ(-;) =0 and LZ(-;) > 0 for some 7, 7 will never
satisfy Monotonicity Condition 3.7. Furthermore, if v = 1, Monotonicity Condition 3.7 implies
) =1I.

Remark 3.9. Suppose [i(l) = Z, where Z is a zero matrix. Then the short-term and overall
nominal liabilities vectors L(®) and L are equal, and hence so are the short-term and overall
relative liability matrices II® and II. Thus Monotonicity Condition 3.7 is always satisfied if
LU =17,

Theorem 3.10 (sufficient conditions for the existence of a functional liquid asset vector). Let
(a, L), LW ~) be a financial system.

1. If U is nondecreasing, then there exist functional liquid asset vectors v~ (the least
functional liquid asset vector) and v™ (the greatest functional liquid asset vector)
such that for any functional liquid asset vector v we have that v~ < v < v™.

2. If Monotonicity Condition 3.7 is satisfied, then the function W is nondecreasing. In
particular, the greatest and least functional liquid assets vectors exist.

In practice, checking whether U is nondecreasing can be quite cumbersome, whereas check-
ing whether Monotonicity Condition 3.7 is satisfied is straightforward.

The following proposition demonstrates that Monotonicity Condition 3.7 is not a necessary
condition, but neither is it a redundant condition.

Proposition 3.11.

1. There exists a financial system that does not satisfy Monotonicity Condition 3.7 for
which a functional liquid asset vector exists.

2. There also exists a financial system that does not satisfy Monotonicity Condition 3.7
for which no functional liquid asset vector exists.

3.3. Relationship between clearing models. In this section we look at the relationship
between several clearing models. In particular, we show that the algorithmic approach is
indeed a proper generalization of the functional approach, which in turn generalizes the models
of [14] and [31].

We introduce a new algorithm, Algorithm 2, which can be used to construct a functional
liquid asset vector under Monotonicity Condition 3.7. We then show that under Monotonicity
Condition 3.7 Algorithm 1 is reduced to Algorithm 2. Therefore, the algorithmic liquid asset
vector and the algorithmic default set coincide with the functional liquid asset vector and the
functional default set under Monotonicity Condition 3.7.

The only difference between Algorithm 1 and Algorithm 2 is in step 2, when the new
default set is defined. Algorithm 2 only considers banks in default which in the current round
have fewer liquid assets than nominal short term liabilities. Algorithm 1 makes the absorbing
property of default explicit in the definition by additionally always keeping those banks in the
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default set that have defaulted in one of the previous rounds of the algorithm.

Algorithm 2 Functional approach to define the default set and the liquid asset vector under
Monotonicity Condition 3.7

: Set DO =, v =g 4 AG) n=1.

2: Set

sy

D = D™ V) = {ie N | < LW},

7

if D) =D~ then
return D* = D" and o* = (D),
else
determine the greatest fixed point v(™ satisfying

(5) o™ = W (p™; D),

where V¥ is defined in Definition 2.3.
7. end if
8 Set n =n+ 1 and go to 2.

From the definition of Algorithm 2 and Proposition 3.4 we immediately get the following
result.

Proposition 3.12. Let D* and o* be the output of Algorithm 2. Then, D* = D(v*), and
hence D* is a functional default set and v* is a functional liquid asset vector.

Theorem 3.13. Let (a, L(®, L(l);’y) be a financial system satisfying Monotonicity Condition
3.7. Then
(i) Algorithm 2 produces a monotone sequence of wectors (v(™),>o such that v(™ <
v < g+ A®) ¥n > 1 and a monotone sequence of sets (D™),>q such that
D=1 C D) \yn > 1. In particular, D™ = D(v("_l)) Vn > 1.
(ii) Algorithms 1 and 2 coincide.
(iii) The output of Algorithm 2 satisfies v* = v™.

The assumption of Monotonicity Condition 3.7 is crucial. Without it Algorithm 2 can fail
to terminate.

Proposition 3.14. There exists a financial system not satisfying Monotonicity Condition
3.7 such that the sequence of vectors (v(")) constructed in Algorithm 2 is not monotone

n>0
and Algorithm 2 does not terminate.

By Remark 3.9, a functional liquid asset vector exists for any financial system (a, L) 7 v)
where Z is a zero matrix. In fact, the system then reduces to a special case of the model in
[31] where the parameters modeling the default costs in [31] denoted by «, 5 are all the same
and equal to v, i.e., v = a = . Proposition 3.15 formalizes this relationship.

Proposition 3.15. Let (a, L), Z;~) be a financial system where Z is a zero matriz.
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1. Let v be a functional liquid asset vector. Let q be a vector defined by

LY ifie N\ D),
“= yv; if i € D(v),

for each i € N'. Then q is a clearing vector in the sense of [31], i.e., q solves the

fixed-point problem

(6) o Li if ai + 3 jen Wjigj > Ly,
vai +9 2 jen Wiigy i ai + 3 jepn igs < Ly

2. Let q be a clearing vector in the sense of [31], i.e., a solution of (6). Thenv = a+I1"q
s a functional liquid asset vector.

If v = 1, then (a, L(*), Z; 1) is effectively a (single maturity) financial system as defined in
[14], as the following proposition demonstrates.

Proposition 3.16. Let (a,L(s), Z;1) be a financial system where Z is a zero matriz.
1. Let v be a functional liquid asset vector. Let p := L) Av. Thenp is a clearing vector
in the sense of [14], i.e., p solves the fized-point problem

(7) p=L9A(a+T"p).

2. Let p be a clearing vector in the sense of [14], i.e., a solution of (7). Thenv = a+II"p
is a functional liquid asset vector.

3.4. Construction of liquid asset vectors. One of the questions we postponed answering
was how to construct the liquid asset vectors (and hence default sets) using Algorithms 1 and
2 given that this requires us to compute a solution to the fixed-point problems (3) and (5),
respectively.

In the statements and proofs of the results in this section we use the following notation for

sub)vectors and (sub)matrices. For a vector v € RW and some nonempty index set A C N,
L pty

vy € R‘f‘ denotes the vector given componentwise by (v4); = v; for all ¢ € A. Similarly, for

another nonempty index set B C N and a matrix M € RK\/‘X‘M, Mg € RT‘X‘B‘ denotes the
matrix given componentwise by (M. AB)ij = M;; for all ¢ € A and j € B. Furthermore, for
n € N we denote by I the n x n identity matrices and by 1 the n-dimensional vector of ones.

In both fixed-point problems, for each n, the relevant set D™ is fixed. This leads to
the following general lemma, which we will use to construct the solutions to these fixed-point
problems.

Lemma 3.17. Let (a,L(s),L(l);'y) be a financial system, D C N some fized set of m := |D|
banks, and b € R some vector. Suppose that

1. y<1or

2. b; >0VieD.
Then the system of m linear equations x; = b; + 'yzjep ILj;x; for all i € D has a unique
nonnegative solution.
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We can now state the result on how to construct the functional liquid asset vector.

Proposition 3.18. Let (a,L(S),L(l);v) be a financial system satisfying Monotonicity Con-
dition 3.7 such that a; > 0 for all i € N'. Then, for each n, the fized-point problem (5) in
Algorithm 2 has a unique nonnegative solution given by

(n) Z; ifi S D(n),
v = s oo n
@i + 2 e\ D L§i) +9 2 jep Wyixj ifi € N\ DM,

where v = (I — 'y(HD(n>D<n))T)_1(aD(n> + (LE;S()H)D(n))TlE(n)) and LM == N \ D0,

We now turn to the algorithmic approach. First, note that for v = 0 the fixed-point
problem (3) in Algorithm 1 is trivial since, for each n in Algorithm 1, we have v = +

(Lt
the key observation is that, for each n in Algorithm 1, the banks in the set D™ can be
treated as a financial system in their own right. Moreover, such a financial system satisfies
Monotonicity Condition 3.7, and hence we can apply Proposition 3.18 to construct the fixed

point satisfying fixed-point problem (3) in Algorithm 1.

Proposition 3.19. Let (a, L(S),L(l);’y) be a financial system such that a; > 0 for alli € N
and v > 0. For each n in Algorithm 1 with D™ # () we can construct a financial system Sy
of ]D(")] +1 banks such that S,, satisfies Monotonicity Condition 3.7 and v, the solution to
the fized-point problem (3), is given by

)11 c. Thus v(™ is explicitly fixed, and no fixed point needs to be found. For v > 0,

v, =

ny i ifi e D™,
ai + Y jenpe LS + X jepen WL Avay)  if i € N\ D),

where x is the greatest functional liquid asset vector of Sy,.
The precise form of the system S, is given in the proof of Proposition 3.19 in Appendix A.

Remark 3.20. We showed in Proposition 3.15 that clearing in the model of [31] can be
formulated in terms of the functional liquid asset vector. In that paper it was observed that,
unlike in [14], even when a > 0 the clearing vectors are not necessarily unique, and therefore
the same observation must hold of functional liquid asset vectors.

One interesting consequence of Lemma 3.17 is that it implies that there is at most a finite
number of functional liquid asset vectors for any given financial system with ¢ > 0. This
follows from the fact that there is only a finite number of possible default sets and for each
such possible default set there is at most one v satisfying Definition 3.3.

3.5. Uncertainty of the maturity profile. The ability to construct algorithmic liquid asset
vectors and default sets for any financial system allows us to demonstrate that the maturity
profile of a financial system has a substantial impact on which banks can default.

Proposition 3.21. There exists a financial system S = (a, LG, L(l);'y) with the algorithmic
default set D} such that the financial system Sy := (a,L(s) + L(l),Z;'y), where Z is a zero
matriz, has the algorithmic default set D3 that satisfies D5 C Dy.
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In Proposition 3.21 the system Ss has the same overall interbank liabilities as S7, but
all the interbank liabilities are now short-term liabilities. The proposition shows that if we
treat all maturities as if they are the same, then we could end up with the financial system
So in which fewer banks default than if we account for the different maturity dates as in
S1. Therefore, this shows that approximating multiple maturity systems by single maturity
systems can underestimate the severity of the risk of default. More generally, any uncertainty
about the maturity profile in a financial system is itself a potential source of systemic risk.

This observation is particularly pertinent because in practice regulators do not have precise
information about the banks’ maturity profiles. Typically regulatory reports group liabilities
into broad categories without recording the exact maturity dates. According to [29], in the UK,
“Banks report exposures with breakdown by the maturity of the instrument” and “Categories
of maturities are: open; less than 3 months; between 3 months and 1 year; between 1 year and
5 years; and more than 5 years. Derivatives are not reported with a maturity breakdown.” It
is therefore an open question whether these five categories are a sufficient representation of
the maturity profile in the UK financial system for the purposes of assessing systemic risk.

4. Financial system after the first clearing.

4.1. Stylized balance sheet after clearing at the first maturity date. Let us denote the
financial system (a, L®), L®); v) that we have been considering so far by S(0) to indicate that
it represents the system at time ¢t = 0, prior to clearing at t = T}. Following clearing at t = 711,
using the algorithmic approach described above, we obtain the algorithmic liquid asset vector
and the algorithmic default set, which we now denote by v*(77) and D*(77). This allows us
to formulate a new financial system S(T1) := (a(T1), L) (T1), LU (T1);~) of banks in some
set N (T1) C N after clearing at ¢ = T;. The banks that defaulted as part of the clearing at
t =T are no longer a part of the financial system, and so

(8) N(Ty) = N\ D*(Ty).

Note that the sink node N € N does not default as it has no liabilities and hence N € N (T7).
We assume that the only changes between ¢t = 0 and ¢t = T} are attributable exclusively to
the clearing process itself. Thus the new cash assets a(T}) are just the liquid assets of banks
in NV (T7) less their payments at T7. Since the banks that do not make their full payments at
Ty default and are not in N(T}), it follows that for all i € N (T}),

(9) a(TI)i = ’U*<T1>Z‘ — I_/Es)

At maturity date T3, a typical surviving bank in N (77) may have had outstanding long-term
liabilities both to banks in D*(T}) that defaulted at T; and to banks in N(T}) that did not.
As between the surviving banks in N(T}), the new short-term liabilities at T} are just the
remaining liabilities that were not due at Ty. Thus for all i, 5 € N(T}) such that i,j # N

S l
(10) LE(Ty)i; = LY.

The outstanding liabilities of surviving banks in N (7) to the defaulting banks in D*(77) may
comprise, for example, long-term interbank assets that the defaulting banks were not able to
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liquidate in time to avert the default. The surviving banks do not escape those liabilities by
virtue of the defaults. There is, however, the question of who now owns these liabilities and
thus to whom are they owed. In reality, such liabilities are assets of the banks in D*(7}) and
these assets typically would be redistributed by liquidation administrators, likely through an
auction. Such an auction would then determine who becomes their new owner. However, as
discussed earlier in the paper, modeling such auctions is outside the scope of this paper, and
we refer the reader to [7] for a model of an auction in this context.

We address the problem of who acquires the long-term assets of defaulting institutions by
just assuming that all defaulting banks sell their long-term interbank assets to the sink node
N. This assumption keeps the model clear and does not require arbitrary choices of who else
in the network would be willing to acquire these assets.

The important consequence of this transaction is that, coupled with (10) above, we can
now complete the characterization of the new short-term liability matrix L(*)(T}). As before,
we continue with the assumption that the sink node has no liabilities. Hence for all i, j € N (T})

(11) LE(Ty)n = LY + > LY,
keD*(T1)
(12) LTy = LO(Ty) N, = 0.

In particular, it follows that L()(T}); = >N (THUD* (T1) Lg? = Egl) for all i € N(T7).

Furthermore, since these are the only liabilities of banks N (T7) at ¢t = T1, we also have
that for all 4,j € N(T}) there are no new long-term liabilities:

(13) LY(Ty)y = 0.

The following proposition confirms that we have indeed constructed a new financial system.
Proposition 4.1. Let N'(T1) be a set given in (8). The tuple S(Ty) = (a(T1), L' (T}),
LO(Ty); ) satisfying (9)—(13) is a financial system.
The stylized balance sheet of each bank except the sink node in this new financial system

is given in Table 2. The sink node in the new financial system has no cash assets or short-term
interbank liabilities, and hence E(T})y = A®)(T})y. Its short-term interbank loans are given

(s l l
by ATy = Y enimn LN + Sienn) Skep-ry) Lor-

Table 2
Stylized balance sheet at t =Ty of bank i € N(T1) \ {N} after clearing.

l Assets [ Liabilities
e Cash assets: e Short-term interbank liabilities:
a(Th); = v* (Ta); — L L)1) = 3 e p LY
e Short-term interbank loans: | e Equity:
AT = ¥ oy LYY E(Th)i = a(Th)i + A¥(Th); — L) (Th);

4.2. Clearing at the second maturity date. The financial system S(7}), described in
section 4.1, can be cleared again by the application of Algorithm 1. In fact, by Remark 3.9,
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S(Ty) satisfies Monotonicity Condition 3.7 and so can be cleared by the application of the
simpler Algorithm 2. Moreover, by Propositions 3.16 and 3.15, we can see that at the last
maturity the financial system is reducible to the familiar models of [14] and [31].

Let 9*(T%) and D*(T%) be the output of Algorithm 2 applied to the financial system S(77).
Then, after clearing at ¢ = T5, we obtain a new financial system S(7%) consisting of banks
in the set NV (Ty) := N(T1) \ D*(T3). Since the banks in A'(T3) have only cash assets and no
liabilities, this system is given by S(13) := (a(12),Z,Z;~). Thus Sy is characterized by the
cash assets given by

a(Ty); = 0" (Ty); — L¥(Ty) Vi e N(Td).

We also have that A®)(Ty) = LE)(Ty) = 0 and hence a(Ty); = E(T3); for all i € N(Ty).
Moreover, no further clearing of S(7%) is necessary.

4.3. Extension to more than two maturity dates. So far we have focused on financial
systems with at most two maturities. However, provided we track the precise maturity profile
of all the liabilities amalgamated in the long-term liability matrix L), we can readily extend
our modeling framework to n > 2 maturity dates 0 < T1 < Ty < -+ < Tp,.

We write LTV ¢ Rf *N' for the matrix containing all interbank liabilities maturing
at T;, i € {1,...,n}. We then consider an n-maturity financial system as a tuple S =
(a, LT LT LTn); ), At t = 0 we can define a 2-maturity financial system S(0) :=
(a, L), LW ~) given by L() := L) and Lg-) =, Lgf) for all 4,7 € N. Then clear-
ing the n-maturity financial system S at time t = T} reduces to clearing the 2-maturity
financial system S(0) at time ¢ = 7 using Algorithm 1 and, using the methodology similar
to the one described in section 4.1, produces a new 2-maturity financial system S(T) :=
(Q(T1)7 L) (T1)7 Lo (Tl); '7)'

The new liquid assets vector a(77) is as in (9) and only the definition of the new short-term
and new long-term interbank liability matrices change so that the liabilities maturing at ¢t = 75
become the new short-term liabilities and all liabilities maturing at ¢ > T3 are aggregated into
the new long-term liabilities. Thus we obtain, for all i, € N (T}) with i,j # N, that

L(S)(T )ij = L(.F‘.F"’),
L(s)(Tl)z' Z L(T2 ’

keD*(T1)

L@ngZEZﬂﬂ%

LO(Ty)x }:L + ) E:L :

keD*(Ty) =3
L¥(T1) L“(Tl) = 0.

Similarly, we can clear S(7%) using our methodology for two maturities and then repeat
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this approach until we reach the point ¢t = T),_1, where, for all 7,j € N(T}) with 7,5 # N,
L) (Th-1)in = LEJ.T"),
LE(T1)nj =0,

k€D* (Tp—1)

and LO(T,,_,) = Z.

This system can now be cleared using Algorithm 2, analogously to what we did in section
4.2. In the end we obtain the last financial system S(7},) := (a(13,), Z, Z; ) such that a(T},) =
E(T,) and no further clearing is necessary.

5. Conclusion. This paper has developed a rigorous clearing framework for interbank
networks with multiple maturities. We have shown that a vector of clearing cash flows (a
vector of liquid assets, in our case) on its own is not sufficient to fully describe the clearing
framework. A suitable definition of the set of banks in default is needed. This does not arise
naturally from the description of the stylized balance sheets and must be specified as part of
the model. We discussed the necessary conditions on such a default set. These conditions
are not sufficient, and we considered the algorithmic approach and the functional approach
as two possible approaches to specifying default.

The functional default set corresponds to the definitions that have been used in previous
literature and has a simple functional representation. It does not have an absorbing property,
and, as a consequence, a liquid asset vector using the functional default set may not exist for
every financial system. On the other hand, the algorithmic default set has a more complex
algorithmic definition that guarantees that default is an absorbing state. Therefore, the
algorithmic liquid asset vector can be found for any financial system. We proposed Algorithm
1, which produces a sequence of vectors that converges to the algorithmic liquid asset vector.
This sequence of vectors is not in general monotone, but the absorption property of the default
sets ensures that the algorithm converges in a finite number of steps.

The functional approach has a number of uses despite restrictions on the existence of
functional liquid asset vectors. We have shown that for certain types of financial systems
the algorithmic approach reduces to the functional approach. Furthermore, we have shown
that the functional approach reduces to the models in [14] and [31] if only one maturity is
considered. In addition, we have shown that functional liquid asset vectors can be used in
the construction of clearing solutions under the algorithmic approach. For these reasons the
properties of functional liquid asset vectors are important. We have shown that under a
regularity condition functional liquid asset vectors can be characterized as fixed points and
a greatest functional liquid asset vector and a least functional liquid asset vector exist. We
have also shown that functional liquid asset vectors are in general not unique, but under a
mild condition we could show that there can be at most one such vector corresponding to any
given default set.

We have illustrated two key applications of Algorithm 1. We demonstrated that the
default risk of a bank depends in a nontrivial manner on the precise maturity profile of its
liabilities. Relying on the assumption that all interbank liabilities have the same maturity
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can lead to an inaccurate assessment of risks. Our clearing approach provides a rigorous tool
to incorporate different maturities in the clearing process. We also showed how to extend the
model to a multiperiod one by describing a settlement mechanism which characterizes the
stylized balance sheets of the surviving banks after clearing.

There are many directions in which one could extend this line of research. The most
ambitious extension of the multiple maturity model would be to develop a full dynamic model
of interbank networks. The multiperiod approach in section 4.3 provides a solid basis for this.
The next steps would involve developing a control theory by deciding on a set of actions that
financial institutions can choose from as they move forward in time. Examples of such actions
could, for example, be new borrowing or lending activities. For such dynamic models one
could then also include stochastic dynamics for some of the quantities of interest.

Appendix A. Appendix.

Proof of Proposition 3.4. Let v € RY; then for all j € D(v) ={i e N | v; < EES)} it holds
that yv; < l_}g-s) < I_Lj and hence I_Lj A ~yv; = yvj. Hence for all i € N

U(v, D(v)); = a; + Z L Z i ANyvj)

]EN\D ) ]GD
=ait Y L+ Z jiyv;
JEN\D(v) JED(v)

In order to prove Theorems 3.6 and 3.10, we need the following lemma.

Lemma A.l. Let S = (a,L®),LW;~) be a financial system and d : RY — P(N) some
function, where P denotes the power set. Let ¥%: [0,a+ A] — [0,a+ A] be the function given
by x +— U(z;d(z)) for all x € [0,a + A].

1. Suppose d = D, i.e., d(z) = D for all * € [0,a + A] and some fized D C N. Then
U = U(;D) and V¢ is nondecreasing; i.e., for all o', x € [0,a + A] with ' < x we
have that U (z') < Wi (x).

2. Suppose d = D, i.e., d(x) = D(x) = {i e N | z; < EES)} for all z € [0,a + A]

and suppose that S satisfies Monotonicity Condition 3.7. Then Ul = U and U is
nondecreasing; i.e., for all ¥',x € [0,a + A] with 2’ < x we have that ¥4 (z') < Wd(z).

Proof of Lemma A.1.

1. Suppose d = D for some fixed D C A. Then, for each z € [0,a + A], ¥¢(z) =
U (z;d(x)) = ¥(z; D), and hence ¥¢ = ¥(-; D).
Let 2/, 2 € Ry with 2/ < z. Define E(z2') := {i € D | vz} < L;} and, similarly, E(x).
Since vz, < ya; for all i € N, we see that E(z) C E(z') C N. Then, for each i € N,
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W(z') = Ui(a'; D) = a; + Z L(S + ZHJ’ i Ay

JEN\D j€D

=a; + Z L§» + Z HJ,L + v Z Hﬂl"
JEN\D JED\E(x') jEE(x")

=aqa; + Z L(s + Z Lj; +~ Z Hﬂaz
JEN\D JED\E(x') JjEE(x

cat X B Lien 3t
JEN\D jED\E(x) JEE(x

+ ) (i) — Ly)
JjeE(@ )\E(x)

<a;+ Z L + Z L]z+’7 Z H]zx

JEN\D JjED\E(x) JEE(x
<a;+ ZLj + Y LﬁvZHzxj
JEN\D jED\E(x) JEE(x

= W;(2;D) = Ui(x).

The first inequality (on the sixth line) follows since vz < L; for j € E(2') and hence
Hji'yx;- —Lj < Hjil_/j — Lj; = 0. The second inequality (on the seventh line) follows
since 2/ < x by assumption. Therefore, U? is nondecreasing.

. Suppose d = D. Then, for each z € [0,a + A], ¥¢(z) = ¥(z;d(z)) = V(z; D(z)) and
hence, by Proposmon 3.4, Ul =0,

Again, let 2/, € Ry with 2/ < z. Note that D(z) C D(2’) C N. Then, for each
i € N, we have

V(') = Wy(a') = a; + Z L(S) + Z I

JEN\D(z') jED(z')
=a; + Z L(S) +y Z Hji:c;- +y Z Hﬂl‘g
JEN\D(2’) jeD(x")\D(z) JjED(z)
<at+ Y W+ Y W4 Y I
JEN\D(z') JED(z")\D(x) jED(z)
< a; + Z ng) Z S)L(S NN Z Iz,
JEN\D(z’) JED(a")\D(z) jeD(x)
=g+ > LWV Y LYy 3 I
JEN\D(z") JED(a")\D(z) JjeD(x)
=a; + Z L(S +y Z Hjixj
FJEN\D() jeD(z)

= U;(z) = Ud(x).
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The first inequality (on the third line) follows due to Monotonicity Condition 3.7 and

the fact that v < 1. The second inequality (on the fourth line) follows because 2’ < x
by assumption and :L‘; < Eés) for all j € D(x'). Therefore ¥? is nondecreasing. [ |

Proof of Theorem 3.6. For each n, D™ depends on v~ but not on v(™. Therefore, by
Lemma A.1, ¥(-;D™) is nondecreasing and by Remark 2.4 is a mapping from a complete
lattice to itself. Hence, by the Tarski-Knaster theorem, W(-; D(")) has the greatest fixed point,
which lies within the image of ¥(;D™), i.e., in [0,a + A]. In Algorithm 1 this fixed point
is denoted v(™. Hence whenever D™ is well defined, Dt is also well defined until the
algorithm terminates.

In particular, (D(n))nZO is a well-defined and, by construction, increasing sequence of
subsets of the finite set A”. Hence there exists the least n such that D™ = D=1 and so

Algorithm 1 terminates after n iterations. |

Proof of Theorem 3.10.

1. The result follows directly by the application of the Tarski-Knaster theorem since ¥
is nondecreasing by assumption and it is a mapping from a complete lattice to itself
by Remark 2.4.

2. Since U is nondecreasing by Lemma A.1, the result follows directly from part 1 of this
theorem. |

Proof of Proposition 3.11.

1. We first provide one example of a financial system in which the functional liquid asset
vector exists even though Monotonicity Condition 3.7 is not satisfied.
Let (a, L(®), L"W; 1) be a financial system of three banks where

1 02 2 000 02 2
a= (98|, LG =2 0 98|, LU =11 0 1|, L=(3 0 99
10 00 0 0 0 0 00 0
Then,

4 4 o 1 1 o & 1

_ _ 2 42 2 2
_ _ _ 1 9 _ 1 33
L& =100, L=[102]), O& =1L 0 2], I=(4 0 2
0 0 0 0 0 0 0 0

In particular, we see that Monotonicity Condition 3.7 is not satisfied because Hésl) =

= < 2 = II51. Nevertheless, it can be verified that (vy,ve,v3)" = (352,998 1091)T
~ (3.94,99.97,109.5) " is a functional liquid asset vector.
One can check that in this example the function ¥ is nondecreasing even though
Monotonicity Condition 3.7 is not satisfied.

2. Next, we provide an example of a financial system in which Monotonicity Condition
3.7 is not satisfied and a functional liquid asset vector does not exist.
We construct an example with three banks in which only bank 1 is in fundamental
default. We set up the network such that this leads to a contagious default of bank 2,
which is asset rich. We introduce long-term liabilities in such a way that once bank 2
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defaults, it repays a much larger proportion of its debt to bank 1 than if it were not

in default. This leads to bank 1 being able to pay more than f/gs).

Let (a, L), L"W; 1) be a financial system of three banks where

1 02 2 0 2 2 0 4 4
a=[98|, L&=[2 0 98|, LO=|100 0 0|, L=[102 0 98
10 00 0 0 0 0 0 0 0
Then,

4 8 o i 1 o 1 1L

_ _ 2 42 2 42
_ _ _ 1 9 _ 51 9
L& =1100|, L=1{200], m&=[L 0 |, OI=[3 0 &
0 0 0 0 0 0 0 0

Note that Monotonicity Condition 3.7 is not satisfied since, for example, Hgsl) = 5—10 <

% = Ils;. Hence, if bank 2 defaults, it repays a larger proportion to bank 1 than if

it survives. We show in the following that no functional liquid asset vector exists.

According to Definition 3.3, bank 3 can never default since it does not have any short-

term (or indeed any) liabilities. In particular, since U is nonnegative, we have that

{i € N'| ¥(v); <0} =0 for any v. Hence we need to consider four cases.

All banks survive. Suppose there exists a functional liquid asset vector v, such that
D(v) = 0. Hence, v; > I)Es) for all 4. Then, for all i € NV,

v = a; + Z Lgf)
JEN

Consider i = 1. Thenv; =1+2=3<4 = I_/gs), implying that 1 € D(v) and
therefore contradicting the assumption that D(v) = 0.
Only bank 1 defaults. Suppose there exists a functional liquid asset vector v, such

that D(v) = {i : v; < L\”} = {1}. Then,

v=a+ Y LY =1+2+0=383<4=L{,
Jje{2,3}

1 1 _
vy = ag + L) + Mypv; = 98 + 0 + 53 =995 <100 = L.

Hence 2 € D(v), contradicting the assumption that D(v) = {i € D : v; <
L} = {1},

Only bank 2 defaults. Suppose there exists a functional liquid asset vector v, such
that D(v) = {i € D : v; < LV} = {2}. Then,

v=a+ Y L =08+2+0=100=LY.
je{13}

Hence 2 ¢ D(v), contradicting our assumption.
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Both bank 1 and bank 2 default. Suppose there exists a functional liquid asset
vector v, such that D(v) = {i: v; < Egs)} = {1,2}. Then,
(s)

51
vy = a1 + Ly +H21U2_1+0+ﬁ V9,

1
() :CL2+L§382) + IT10v7 :98—|—§ - V7.

We then obtain that ( 2115010)1)1 1498 15010 and hence v1 ~ 68.43 >4 = L( °)
Therefore, 1 ¢ D(v), contradicting our assumption.
Hence, in all cases we get a contradiction, and therefore no functional liquid asset
vector exists. |

Proof of Theorem 3.13. The proof uses arguments similar to those in [31, Proof of Theo-
rem 3.7].
(i) We prove that ) < =) < g+ AG) ¥y > 1 and DM = D(v(”*l)) Yn > 1 by
induction.
Note that for all n and 7 € NV we have E A yv(n) < vv(n) < v(n). Furthermore, for
all n and j € D(v(”)) we also have v(n) < L(s) Therefore, by Monotonicity Condition
3.7, for all n, i € N and j € D(v™ )) we have that

(14) Hji(ij A ")/’U(n))j < H;?Egs) = ng)
Now let n = 1. Then by the definition of the algorithm DM = DO U D(©®)) =

U D) = D). Next we show that v(V) < v =g 4+ A®),
By (14), for all i € N/, we have

DD =g+ Y L+ Y WL Avel?)

JEN\DD) jep™
<a; + Z ng + Z L(s
JEN\DD) jep@
=a; + Z Lﬁ) =a; + AZ(-S) = Ugo).
JEN

By Lemma A.1(1), ¥(;; DM) is nondecreasing, and so
0 < U (@, DMy < F . D) < O = g 4 A®)

for all k where W* is a k-fold composition of ¥. Since this sequence is bounded
from below by zero, the limit v := limy_ 0 \Ilk(v(o);D(l)) exists and solves v(1) =
(v, D)),

Induction hypothesis: Suppose for an n € N it holds that

D) _ D(U(nfl))

Y

W) < =) < O — g 4 A,
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We show that

DD — D),
D) < (M) < 0 — ¢ 1+ A,

We start with the default sets
DD — p) j p(ym) ind. hyp. part 1 D(u"D) U D(r™) ind. hyp. part 2 D).
Next we consider the vector
ot — q;(v(nﬂ);p(nﬂ)) - \Ij(v(n+1);D(/U(n)))'
Then, by (14), for all i € A/, we have

U (v™; D)
=a; + Z L;j) + Z Hji(jfj A 'Yan))

jE/\/\D(n+1) jeDn+1)
D(v(™)
=a; + Z Lﬁ) + Z I;i(Lj A ’ijn))
FEN\D(v(™) JED(v(n=1)
+ Z sz‘(l_}j A *yvj(-n))
JED(M)N\D(v(n=1)
JEN\D(v(™) jeD(wn=1) jeD(WM)\D(v(n—1))
=a; + Z Lgf) + Z Hji(ij A ’y’ljj(n))
jenmD (v D) jeD(" )
(n) (n)
p(n p(n

= \Ili(v(");D(”)) = UZ(") <a;+ /_12(5).
Again, as before one can show by Lemma A.1 that

ind. hyp. part 2
<

0< \I,k-i-l(v(n);rD(n-i-l)) < \Ilk('u(n);D(TH_l)) < U(n) a+ A(s)

for all k. Therefore, the sequence (\I/"’ (v(”);D(”H))) k>0 decreases monotonically to
the limit limy_,oe ¥*(v(™; D(+1)) > 0, which we denote by v("*1). In particular, this
limit satisfies v 1) = W(p+D), DO+ and v+ < () < 4(0),

(ii) Since the only difference between the two algorithms is the definition of the default sets
in step 2 and we have just proved in (i) that the default sets coincide, both algorithms
are indeed identical under Monotonicity Condition 3.7.
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(iii) By Proposition 3.12 and maximality of v™, we have that o* < v™, and so the result
follows as soon as we show that o* > v*. Since #* = v(™ for some n, we proceed by
induction to show that v(™ > v* for all n.

First, observe that by Monotonicity Condition 3.7 we have for each i € N/

vf =00t =a+ Y L;‘z) + > T

YL v
FEN\D(v+) jeDt) Y.

<nfy <)
S ai+ Z Ji + Z Ji
JEN\D(vT) JjED(vt) "( )
=L\
Jt

=a; + Z Lgf) =a; + AZ(S) = UZ-(O).
JEN

Hence v(© > vT. Now suppose that p() > ot for some n. We then show that
,U(n—H) > vt

By the induction hypothesis and Lemma A.1 it follows that ¥(v(™; D"+ > w(yt;
D+ We will also show that W(vt;D"+1D) > y+. Therefore, by Lemma A.1,
T (p); D)) > oyt for all k > 0. But we showed in the proof of Theorem 3.13.(i)
that the sequence (\Ilk(v(”);’D("H)))pO decreases monotonically to its limit v(™+1),

Therefore, v+ >y which completes the induction.

It remains to show that, indeed, \I'(U+;D("+1)) > v given the induction hypothesis
above. This follows by Monotonicity Condition 3.7 as follows. Note that D"+ =
D(v™) C D(v") since ™ > vt by the induction hypothesis. Moreover, for j €
D(v(")) we also have that 'yvj'-F < v](-n) < E;S) < Ej, and so Hji(f/j A ,W;r) = fijiv;F.
Then, for any i € N' we have that

WD) o T L T sl

FJEN\D(v(™) jED(v(M)
car Y e Y
JEN\D(vt) je€D(vt)
D L =l vf
; n ~~—
JEDW D) )
Y Y
JEN\D(vt) jeD(vT)
:\i/i(v+):v;". u

Proof of Proposition 3.14. Let (a, L), LW:1) be as in the proof of Proposition 3.11(2),
where, as mentioned above, Monotonicity Condition 3.7 fails. Algorithm 2 would fail to
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terminate since the sequences v and D(v("™) would evolve as follows:

0 = (3,100,110), D) = {1},
D = (3,99.5,109.5), D(wM) = {1,2},
~ (68.43,132.21,93.43), Dw®) =9,
= (3,100, 110), Dw®) = {1},
and it is clear that this sequence would not terminate. |

Proof of Proposition 3.15. Since L") = Z, we have that L = L) and II = I1(%),
1. For i € N we have

v, = a; + Z Lgf + Z IT;; ’yv]
JEN\D() 7 - jeD) 7
1, L(-S) j

=a; + Z sz'q]'.

JEN

Hence, D(v) = {i € N | a; + 3 ;en 11jig5 < L;}. Hence, for all i € D(v)

g =i =va;i +7 Y Wjigj,
JEN

and for all i € N\ D(v) we have that ¢; = EZ(S) = L;. Hence, q satisfies the fixed-point
equation (6).

2. Let ¢ be a solution to (6). We show that v = a + II"¢q is a functional liquid asset
vector, i.e., W(v) = v. Note that D(v) = {i € N | a; + > jen Wjigj < Li}. Therefore,
for alli e N

‘Pi(v):ai"‘ Z ]f) + Z ILj; 'VUJ
FEN\D(v) \fj() j€D(v) q]

=I1,; L\®

~~

Proof of Proposition 3.16. Since LW = Z, we have that L = L), L = L(®) and II = ).
The result follows directly from Proposition 3.15 with v = 1.
1. Let v be a functional liquid asset vector and D(v) ={i e N | v; < I_/ES)}. Hence, with
4 = 1 in Proposition 3.15, ¢ = L) A v. Furthermore, the fixed-point equation (6)
simplifies to ¢ = L) A a + 11" ¢, which is exactly (7), and hence the result follows.
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2. Similarly, since the fixed-point equations (6) and (7) coincide for v = 1 the result
follows directly from Proposition 3.15. |

The following lemma is used in the proof of Lemma 3.17 below.

Lemma A.2. Suppose 11 € RfXN is a row-substochastic matriz, 0 < p < 1 its spectral
radius, and 0 <y <1 a constant.
(i) If v < 1 or p < 1, then the matriz (I —AI1") is invertible and (I —~IIT)~! is non-

negative.
(ii) If y =1 and p = 1, then there exists a set C C N such that for all i € C we have that

Proof. (i) If v = 0, then (I — 'yHT) = I, which is clearly invertible with a nonnegative

inverse. So we assume that 0 < ~.
Since p is the spectral radius of II, it is also the spectral radius of II". Since II is
a row-substochastic matrix, we have that p < 1. As II" is nonnegative, standard
results for M-matrices (see, for example, Theorem 2.5.3.2 and 2.5.3.17 in [26]) imply
that (al — IIT) is invertible with a nonnegative inverse if and only if a > p. Set
a=71>0 Ify<1 thena>1>p, andify=1but p <1, then o =1 > p.
Hence (I — vﬂT) =a ! (aI — HT) is invertible with a nonnegative inverse.

(ii) As a standard result in the theory of finite-state Markov chains (see, for example,
Theorem 2.1 in [28]), the number of sets C C N satisfying the property that for all
1eC Zjec IL;; = 1 is equal to the multiplicity of the eigenvalue 1 of II. Since p = 1
by assumption, the multiplicity must be at least 1, and hence at least one such set C
must exist. |

Proof of Lemma 3.17. The system of m linear equations has a unique solution, x € R,
if it can be expressed as

xr = (I - (HDD)T>_1 b,

where (I—~ (IIpp) ) is invertible.

We note that IIpp is a row-substochastic matrix. By Lemma A.2.(i), we only need to
consider the case where v = 1 and the spectral radius of Ilpp is exactly 1. In this case, by
Lemma A.2.(ii), there is a set C C D such that ) ._.II;; = 1 for each ¢ € C. By assumption,
if v =1, then b > 0, and so

jec

x; = b; + Z HjZ':L‘j
J€D

>b; + Zﬂjixj > ZHJ‘,’LL‘]‘.

jec jec
By summing x; for all ¢ € C, we arrive at the contradiction

Zazi > ij ani :ij.

ieC jec jec jec
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Thus v < 1 or p < 1, and so (I —y(ILpmypw ) ') is invertible and z is the well defined and
unique solution to the system of linear equations.
Nonnegativity of = follows by Lemma A.2.(i). [ |

Proof of Proposition 3.18. By Theorem 3.13, D™ C D("+1) = D(y(™), and, under Mono-

tonicity Condition 3.7, v(™ is a fixed point of W(-;D(™). Then for all j € D™ we have that

L; A yvj(.n) = yvj(.n). Therefore, the fixed-point problem (5) in Algorithm 2 is in fact a system

of linear equations:

(15) vz-(n) = 0;(v™; D) = g; + Z Lgf? + Z sz‘vj('n)
FJEN\D™) jeD™)
for i € N'. Moreover, it is sufficient to consider (15) only for i € D™, Indeed, if z € R7,
where m := |D(™|, is some such solution, then we can simply set vl-(n) .= x; for i € D and
vgn) 1= @i + e p D) ng) + 92 jepm Wjiaj for i € N7\ D),
Setting b; = a; + EjeN\DW Lgfz) for each i € D™, we note that b; > a; > 0 for all

i € D). Therefore, by Lemma 3.17, x is a unique solution to the system of linear equations
(15) for i € D™, In particular, letting £ := N\ D™, we can write

T —1
r = (I =7 (pwpm) ) b,

where (I —y(Ipepew) ) is invertible and b= apw + (L)) 1.
Nonnegativity of v(™ then follows by Lemma 3.17 and the fact that ¥ is nondecreasing
(Lemma A.1). [ ]

Proof of Proposition 3.19. To simplify the notation we set m := |D(”)| and in this proof
assume that whenever, for some i, we let 1 < i < m, that means that i € D™. In this
context, if i = m + 1, then i ¢ D™ . Moreover, we set £ := N\ D™ and let b € RTH,

AB) e Rimﬂ)x(mﬂ) be given by
a1+ jerm Lﬁ) Ly ... Lim % = 2he1 Lk
b= : . A® = : . :
Am + Ejeﬂ(n> Lgii Lml e me Tm — 2?21 Lmk
0 o ... 0 0

It is clear that Z, the (m + 1) x (m + 1) zero matrix, is a liability matrix. To see that
A®®) is a liability matrix, we need to check that the last column is nonnegative and all other
properties follow immediately from the definition. For alli € {1,...,m} we have ~ Sy Lik <
ey Lip < Zivzl Liy, = L;. Since L; > v> vy Lix, & % — > pey Lir > 0, the last column is
indeed nonnegative.
So we define a financial system S, := (b, A®®),Z: 1) on the set of m + 1 banks containing
D),
Since S, has no long-term liabilities, we denote both the short-term and overall total
nominal liabilities vector of S,, by A and we immediately see that A; = %Li for1 <i<m
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and A,,;1 = 0. Moreover, the short-term and overall relative liability matrices of S,, are also
the same. Denoting them by ©) and ©, respectively, we have that ) = © > 1.0, and so
Monotonicity Condition 3.7 is satisfied. Note that for 1 < ¢, 5 < m we have

Aii Ly
% =% -

Suppose that x € RTH is some functional liquid asset vector of S,, with respect to
D(x)={ie{l,....mm+1}|2; < N;} = {i € D™ | ya; < Ly},

where we used the convention that the m elements of D(™ are labeled by 1,...,m, and the
last equality holds because A,,;1 = 0 and hence the index m + 1 will never be in the default
set.

Since « is a functional liquid asset vector, we have that z; < A; = %I_/i and hence ©;x; <

Lj; fori,j € D) Moreover, ASLM =0 for all i € D™ and hence we have for each i € D™

XT; = \ill(ac) =b;, + Z Agf) +1- Z @jix]’

F€DM\ D(x) JjE€D(x)
=at Y LY+ Y Lit Y Ml
JEN\D™) FEDN\D(x) je€D(x)
(16) =ait Y LY+ Y MLty Y M
JEN\D(™) F€DM\ D(x) jeD(z)
—ait+ Y LY+ Y MWL Avy)
jeN\’D(n) je'D(n)
= U;(z; D™).
Then, we set
(n) T; for i € D(”),
(17) v = (s) 7 . (n)
a; + ZjeN\D(") Lji + Zjep(n) IL;(Lj AN yxj) forie N\ D).

Note that ¥(v(™;D™) does not depend on vgn) for i € N'\ D). Hence, from (16) we
immediately see that UZ(”) = U, (v™; DM) for all i € D™,

Furthermore, for all i € N\ D™ we have by (17) that vl-(n) = U;(v(™; D). Hence we
have shown that W((v(™); D) = (), [ ]

Proof of Proposition 3.21. Let S1 = (a, L Lo, 1) denote the financial system introduced
in the proof of Proposition 3.11(2) and also used in the proof of Proposition 3.14 above. In
Algorithm 1, using the construction in Proposition 3.19, the sequences v(™ and D(v(”)) would
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evolve as follows:

0@ = (3,100, 110), D) = {1},

v = (3,995,1092), D) = {1,2},

o® — (531 102,65 D(?) = {2}.
50" 725 )

Thus we conclude that v* = v and D} = {1,2}.

Now let Sy = (a, L& 410 7. 1). Then we can verify that the vector v*, obtained above, is
also the unique functional liquid asset vector of Sy with the functional default set D(v*) = {2}.
By Remark 3.9, Sy satisfies Monotonicity Condition 3.7, and hence by Theorem 3.13 Dj := {2}
is the algorithmic default set of .Ss. |

Proposition of 4.1. We need to show that a(T}) is nonnegative and L*)(T}) and LW (T})
are liability matrices.

By construction of Algorithm 1 v*(77) = ¥ (v*(11); D*(11)) such that D(v* (1)) C D*(T1).
Suppose there is some i € N(T1) such that v*(T1); < EZ(.S). Then i € D(v*(T1)), and so
i ¢ N(T1). Hence, for all i € N(T1), a(T1); = v*(Th)i — Egs) > 0.

The fact that L(®)(T}) and LW (T}) are liability matrices follows from the definitions since

it is immediately clear that they are nonnegative matrices with zero diagonals. |
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