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1 Simulations

We conduct the following four additional Monte-Carlo exercises to demonstrate the robustness of
the estimator in alternative scenarios. We consider cases with lower sparsity, time-varying A*,
and explore how the correlations between covariates X;, instruments B; and disturbance term e¢;
affect results in Table 1. For that, we focus on the NV = 25, T'= 100 and “no expert knowledge”

case.

Results for various N, T and models are available upon request.

We specifically implemented the following four cases, which we present along with the findings.

(a)

()

(d)

Increase the number of non-zero elements of A* from 5% to 25%. Results can be found in
Table 1. We find that for moderate levels of sparsity the performance of the estimator is
maintained, at least up to 10% sparse. This corresponds to 60 non-zero paramenters with
N = 25. As the number of non-zero elements increases (and sparsity decreases), sensitivity
is reduced as parameters decrease and are shrunk to zero, while specificity is still above
90%.

Introduce time-varying A*, in the following way. A proportion (1 — p) of non-zero elements
of A* are taken as fixed over time, and a proportion p is reshuffled at every period. We
consider p € {0%, 10%, 20%, 30%, 40%}. Results are in Table 2. Specificity and sensitivity
performance indicadors are calculated with respect to the stable portion of A*. We find
that performance is robust even if A* is moderately changing over time.

We increase the correlation between X; and €;. Baseline data is generated according to
Xi = vy + ¢ ¢ where, ¢ = 0.5, 14 and €; are independent and drawn from a standard
normal distribution, which corresponds to a correlation of .447 between X; and €;. We take
¢ = {0.625,0.75,0.875,1}, respectively corresponding to correlations of .53, .6, .658 and

L = 707. We find that performance decreases only slightly as ¢ increases.

V2

We descrease the correlation between X; and B;. This is the case where instruments are
allowed to be weaker. In baseline simulations, we constructed the instruments as B; =
X¢ + v4, where X; and 1, are independent standard normals. So the baseline covariance
between X; and By is % We then multiply this correlation by 0.8, 0.6, 0.4 and 0.2. As
expected, the performance deteriorates as the correlation decreases. Yet, with correlation
0.2% ~ 0.141, we obtain 99% of specificity and 68% of sensitivity, although bias in 3
increases.



Table 1: Sparsity

s=5% 10% 15% 20% 25%
A” Specificity .998 .984 .958 .929 .902
(.002)  (.007) (.009) (.013) (.014)
A* Sensitivity 1.000 .964 .837 .693 .562
(.004)  (.026) (.044) (.047) (.046)
A* bias -.021 -.003 -.006 -.008 -.009
(.000)  (.001) (.001) (.001) (.001)
Lasso L1 .033 .020 .024 .027 .030
(.002)  (.001) (.001)  (.002) (.002)
AdaLasso L1 .022 .006 .010 .014 .017
(.000)  (.001) (.001) (.001) (.001)
Sparsity .948 .889 .839 .805 .786
(.002)  (.006) (.009) (.013) (.015)
3 bias .015 .015 .016 .017 .017
(.008)  (.008) (.008) (.009)  (.009)
" Specificity 1.000 1.000 1.000 1.000 1.000
(.000)  (.000) (.000) (.000)  (.000)
6" Sensitivity - - - - -
6" Bias .000 .000 .000 .000 .000
(.000)  (.000) (.000) (.000) (.000)

Notes: Simulated results for N = 25, T' = 100, “No knowledge case”and
1,000 iterations. Sparsity s of A* varies from 5% to 25%. Each column
refers to the results for a given sparsity of A*. Specificity (Sensitivity)
refers to the proportion of true zeros (non-zeros) that are estimated as
zeros (non-zeros). Lasso L1 and AdaLasso L1 refer to the L1 norm of the
vectorized sparse deviation matrix of the LASSO and adaptive LASSO
steps, respectively. Standard error across iterations Penalization para-
meters are chosen by BIC.



Table 2: Time-varying A*

p=0% 10% 20% 30%  40%

A”™ Specificity .998 977 .966 .960 .947
(.002)  (.007) (.008) (.009) (.010)
A”™ Sensitivity 1.000 1999 .999 1998 .999
(.004)  (.005) (.007) (.010) (.009)

A” bias -.021 -.005 -.005 -.005 -.003
(.000)  (.000) (.001) (.001) (.001)
Lasso L1 .033 .025 .028 .030 .031
(.002)  (.001) (.002) (.002) (.002)
AdaLasso L1 .022 .006 .008 .008 .007
000  (.001) (.001) (.001) (.001)
Sparsity .948 933 927 .926 919
(.002)  (.006) (.008) (.009) (.009)
3 bias .015 .016 .017 .019 .018

(.008)  (.008) (.010) (.010) (.011)
6" Specificity 1.000 1.000 1.000 1.000 1.000

(.000)  (.000) (.000) (.000) (.000)
6" Sensitivity - - - - -

0" Bias .000 .000 .000 .000 .000
(.000)  (.000) (.000) (.000) (.000)

Notes: Simulated results for N = 25, T' = 100, “No knowledge case”and
1,000 iterations. True A™* varies over time. A proportion (1 — p) of non-
zero elements of A* are taken as fixed over time, and a proportion p
is reshuffled at every period. Specificity (Sensitivity) refers to the pro-
portion of true zeros (non-zeros) that are estimated as zeros (non-zeros),
and refer to the time-invariant portion of A*. Lasso L1 and AdaLasso
L1 refer to the L norm of the vectorized sparse deviation matrix of the
LASSO and adaptive LASSO steps, respectively. Standard error across
iterations Penalization parameters are chosen by BIC.



Table 3: Correlation between X; and ¢;

c=.5 .625 .75 .875 1
A Specificity .998 987 .986 .986 .986
(.002)  (.008) (.009) (.008)  (.008)
A” Sensitivity 1.000  .889 .893 .899 .903
(.004)  (.050) (.055) (.052)  (.053)
A” bias -.021 -.003 -.003 -.003 -.003
(.000)  (.001) (.001) (.001)  (.001)
Lasso L1 .033 .027 .027 .027 .027
(.002)  (.003) (.003) (.003)  (.003)
Adalasso L1 .022 .006 .006 .006 .006
(.000)  (.001) (.001) (.001)  (.001)
Sparsity .948 .943 .942 941 941
(.002)  (.008) (.009) (.009)  (.009)
3 bias .015 .042 .042 .042 .044
(.008)  (.023) (.023) (.022)  (.022)
6" Specificity 1.000 1.000 1.000 1.000 1.000
(.000)  (.000) (.000) (.000)  (.000)
6" Sensitivity - - - - -
" Bias .000 .000 .000 .000 .000
(.000)  (.000) (.000) (.000)  (.000)

Notes: Simulated results for N = 25, T" = 100, “No knowledge case”and
1,000 iterations. Each column j of the matrix of covariates X is generated

as Xj; = v¢ + c - €. Columns of the table refers to different values of c.
Specificity (Sensitivity) refers to the proportion of true zeros (non-zeros)
that are estimated as zeros (non-zeros). Lasso L1 and AdaLasso L1 refer

to the L norm of the vectorized sparse deviation matrix of the LASSO

and adaptive LASSO steps, respectively. Standard error across iterations
Penalization parameters are chosen by BIC.



Table 4: Correlation between X; and B;

0oz =5 0875 0.6 0455 027

A™ Specificity .998 1991 .990 .990 .990
(.002) (.004)  (.004)  (.004)  (.004)

A™ Sensitivity 1.000 .826 N 731 .687
(.004) (059)  (.065)  (.065)  (.076)

A™ bias -.021 -.005 -.006 -.007 -.008
(.000) (001)  (.001)  (.002)  (.002)

Lasso L1 .033 .026 .027 .027 .028
(.002) (002)  (.002)  (.002)  (.002)

AdaLasso L1 .022 .008 .009 .010 011
(.000) (.001)  (.001)  (.001)  (.002)

Sparsity .948 .950 .952 .954 .957
(.002) (.005)  (.005)  (.005)  (.005)

3 bias .015 .052 .067 .107 .219
(.008) (028)  (.038)  (.060)  (.127)

6" Specificity 1.000 1.000 1.000 1.000 1.000

(.000) (.000)  (.000)  (.000)  (.000)
& Sensitivity - - - - -

6" Bias .000 .000 .000 .000 .000
(.000) (.000)  (.000)  (.000)  (.000)

Notes: Simulated results under various combinations of N and T for 1,000 ite-
rations. “No knowledge case”refers to the “No expert knowledge case”, where
expert matrices are not used in the estimated model, and the true network is
defined by the sparse deviation only. In the “Partial knowledge” case, the true
matrix is a combination of two expert matrices and a sparse deviation. There
are no sparse deviations in true matrix of the “Full knowledge”case, but it is
included in the estimated model. Specificity (Sensitivity) refers to the propor-
tion of true zeros (non-zeros) that are estimated as zeros (non-zeros). Lasso
L1 and AdaLasso L1 refer to the L; norm of the vectorized sparse deviation
matrix of the LASSO and adaptive LASSO steps, respectively. Standard error
across iterations Penalization parameters are chosen by BIC.



2 Proof of Theorem S.1, 1, 2, 3, 4, 5 and 6.

For proving Theorem S.1 below, we present an important Lemma which is a combination of
Theorems 2(ii) and 2(iii) of Liu et al. (2013).

Lemma 1 For a zero mean time series process x, = £(F;) defined in (3.11) with dependence
measure 07 ; ; defined in (5.12), assume O, , < Cm™* as in Assumption M4. Then there evists
constants C1,Co and C3 independent of v, T and the index j such that

1 T
qu;xﬁ

where & = a A (1/2 — 1/w), and B = (3 + 2aw)/(1 + w).
Furthermore, assume another zero mean time series process {z;} (can be the same process
{x¢}) with both ©F (S} < Cm™%, as in Assumption M4. Then provided max; H:thHm,

m,2w?r ~ m,2w

Tu(k-a) _
> U> < CI(TU;U + Cy eXp(—03T5U2),

max; sztHQw < ¢g < oo where ¢y is a constant, the above Nagaev-type inequality holds for the
product process {x iz — E(xj120)}-

This lemma concerns with the tail probability of the average of a general time series process as
defined in (3.11), and is an important foundation for all the theorems in Section 3.4. Note that if
a>1/2—1/w, then w(1/2 —a) = B = 1, simplifying the form of the inequality. This is what we
assumed in the theorems presented in Section 3.4. However, this can be relaxed at the expense of
more complicated rates in those theorems, which we chose not to pursue for the sake of simplicity
in presentation.

To be able to present the proofs smoothly, we present another lemma first.

Lemma 2 For any N x N matriz H = (hy,...,hy)" and any N x K matriz M, define
Ix ®hy
V=
Ix ®@hy
Then we have

HM = (Iy ® vec' (M))Vg.

Proof of Lemma 2. It is straight forward to verify that the (4, j)th entry of the RHS is indeed
the same as LHS. [J

Denote By;;j and X;;; the (i, ) entry of B, and X; respectively, and define M = 01'7:1 A,



T
1
Z[Bt,int,kE — E(Byij Xt ke))

A = max max |— <er b
1<i, k<N 1<j <K | T —
1T
As = max max |— B el < e
’ 1<i, k<N 1<j<K TZ; t:4jCht T (>
Y 1
— iL
A3_{ S5% T ZE:B sk€st| < cpIN272 }
- t=1 s=1
(S.1)
Ay =< max max |B. E(B: .| < ¢
4 1<1<N1<]<K‘ A ( tﬂ])‘ T (>

max max |X. ;| <er
1<i<N 1<j<K

= max ZB €
{1<k<K skCs,:

with B g =T 'S Biap, Xty =T 'S Xygjand & = TS et

Our theorems presented in the paper are actually describing properties of estimators on the
set M = (_, A;. Tt turns out that P(M) — 1 as T, N — 00, as shown in the following theorem.
Hence in the proof of the remaining theorems, it is sufficient to prove the corresponding properties
on the set M.

21/2CTN1/2 log1/2 (T vV N)Se(ma,x ’E(Bm’j” + CT)} y

Z?]

Theorem S.1 Let all the assumptions in Section 3.3 hold (M2, R5, R8 or M2’, R5’, RS8’).
Suppose a > 1/2 — 1/w in Assumption M/, and suppose for the application of the Nagaev-type
inequality in Lemma 1 for the processes in Ay to Ag, the constants Cy, Cy and Cs are the same.

Then with d > \/3/C5 where d is the constant defined in cp = dT~21og'/?(T' v N), we have

w/2 2 2 \T2
PM) > 1 8C, K2<03) N 8CLK2N? 2K

3 Tw/2-110g®/2(Tv N) T3VN3  TVN’
It approaches 1 if we assume further that N = o(T™/*~1/21og®/4(T)).

With Assumption M3, we can show that for any fixed w > 0, we have HBt,ijQw, HXtJ'kHQw
and Hethzw < 00, so that Lemma 1 in the supplementary material can be applied, allowing the
probability bound in the above theorem to hold. And, there are many examples with ©,, 2, <
Cm™ where only the constant C is dependent on w. See for example the stationary linear
process Example 2.2 in Chen et al. (2013). Therefore, we can set w to be large enough from the
beginning so that N = o(T%/4~1/210g"/4(T)) is satisfied, ensuring P(M) — 1. Note also that we
can actually allow o < 1/2 — 1/w at the expense of more complicated rates and longer proofs of
the theorems presented in the paper.

Proof of Theorem S.1. Our aim is to apply Lemma 1 on the processes defined in the sets A;
to A7 (see Section 3.4 for their definitions). To this end, we first show that with tail Assumption



M3, a process {z;} has max; sztHQw < oo for any w > 0. Indeed, by the Fubini’s Theorem,

|2;¢
Elzj|* = E/O
o0
S/ Dy exp(—Dgsqﬂw) ds
0

_ 4'U}D1 /OO x4w/q—1€—D2x2 dx
q 0

2wD1
= T/qf‘@w/q) = 3 < oo, (S.2)
qD,

‘210

ds :/ P(|zj| > sY?*) ds
0

so that sztH2w < pow < oo for any w > 0. Together with Assumption M4, Lemma 1 can be
applied for the processes { By i X¢ ke — E(Bt,ij Xeke)}s {Brijeek}, {Brij — i}, 1656 and {Xe 45}
in the sets Ay, A2, A4, A5 and Ag respectively. Since we assumed o > 1/2 — 1/w, we have
w(1/2 —a) = =1 1in Lemma 1. By the union sum inequality, we then have

> CT>

T
PA) < ) P(‘T_l > BuijXike — E(BrijXoke)
1<i,k<N t=1

1<G,0<K

1T
(TCT)w
w/2 N2 K2N2
< O K2 G + 023 -
3 Tw/2-1log®/*(T v N) T3VN

< N2K2< + s exp(—CchzT)>

Similarly, we have

O3\ /2 N2 Cy K N2
3) Tw/2=110g"/>(T' v N) TN
O3\ /2 N Oy KN
3) Tw/2=110g"/>(T' v N) +T3\/N37
AN N CyN
3> Tw/2=110g"/>(T' v N) TN
O3\ /2 N Oy KN
< ) Tw/2—110gw/2(T\/N)+T3VN3'

P(A§) < O

To find an upper bound for P(A$), define By to be the kth column of B,. If we can show that

12}%)([( HN_%_ﬁethka < 00, (S.5)

[e.e]

Om 2w = Z 1r§r}€a§XK H]\f_%_ﬁ(etTBw€ — e;TB;k)HM <am™?, (S.6)

for some a > 0 and all m > 1, then we can apply Lemma 1 for A3 to obtain
K
P <3 > or)
k=1

Cy\"? K CoK
< —= . .
=0 < 3 > Tw/2=110g"/2(T' v N) * T3V N3 (5:7)

T
1 1
71 E N2 z2ue; By
t=1




To show (S.5), write

N N
T T 1/2 _x T 1/2 *
E :Bt,jkeﬁ = Bt,ket = Bt,kze/ € = E (B kz / )] jto
j=1 j=1

where {€;} is as in Assumption R2. Then by the independence of {B;} and {€:} (thus {€;})
assumed in M3,

E((BZkEi/Q)je}ft!(BEkEi/Z)s,EZ}, s<j-— 1)
= E((Bf,XL2),|(BIEY?)s, s <j—1) - Beylel, s<j—1) =0,

since {€};}1<j<n is a martingale difference. Hence {(szZi/Q)jejt}lngN is a martingale diffe-
rence. By Lemma 2.1 of Li (2003), Assumptions M3, R2 and (S.2), we then have,

11 2w 11 N 2w
E’N—r%nget‘ — E'N—z—z S (BB
j=1
N
< N72(36w)™ (1 + (2w — 1)1 Y E|(B} B2 €5
7j=1

E|(Bf, 2%/ Bley >

Mz

= N"2(36w)** (1 + (2w — 1)~ H)¥

<.
I
—

2w
—92 1/2112w
< N2 (36wpgw)® (1 + (2w — 1)~ 2 E‘lg%let,jk\‘ [P>EEdl
-2
< N72(36wpgwS)* (1 4+ (2w — 1)~ g Nlr<rzax E|By x|

< (36w, S)* (1 + (2w —1)™H* < oo,

so that maxi<p<x HNféfﬁngetsz < 00, which is (S.5).
To show (S.6), observe that

[e.e]

T 1/2/7 *
Om2w < _mlgﬁXKN 2 [HBt,kze/ (€; HQw
+ [|BEEY? - BESY e |, |
N
<3 s N B0 Gl

+ || Z( §k22/2 - B;:,Tkzi/z )€t 2.

The terms {(B/,X 1/2)J( € — €;p)}; and {(ngiﬁ/2 - B;’Tkﬁim)j €5 }; can be shown to be mar-
tingale differences with respect to the filtration

J:] - U( €sts st? (BTk21/2)87 (B/ 21/2)5; S < ])

10



using similar arguments as before. Hence we can use Lemma 2.1 of Li (2003), Assumptions M3,
R2, M4 and (S.2) to show that

N

|52 3 (BEE) (e — i)
j:l

< 36w(l + (2w —1)"1)1/2
1/2w

N
2w
—2 1/2])2w * 2
V7] B O

*

< 36w Se(1 + (2w — 1)71)Y2 max 05y, ;.

1<j<N
Similarly,
1 1 N
[N"272 Z(ngzi/z - Bszim)ﬁﬁum
j=1
< 36w Se(1+ 2w —1)"HY2 max 62, ..

Hence combining and using Assumption M4, we have

O 2w < 36wty Se(1 + (2w — 1)"HV2(05, 5, + 05, 5,,)
< 72CWHSe(1 + (2w — 1)_1)1/2m_"‘,

which is (S.6).
Finally, to find an upper bound for P(A$), write

N N
> Bg. =y (BRI
j=1

Jj=1

where B. j, is the sample mean of {By}, and similarly for €;.. By the independence of {B;} and
{Et}7
E((Brl:kzi/2)]€;,|(B;5[:k:22/2)87 ezb = ]-7 A 7T7 § S .] - 1)
= E((BLZ%)|(BLZ?)s t =1, T, s < j— 1)
"B e, t=1,...,T, s<j—1)=0,

. . . . ST wl/2y - . . .
since {€};}1<j<n is a martingale difference. Hence {(Bsze/ )j€j-Ji<j<n is a martingale diffe-

rence. Moreover, on Ay N As, it is easy to show that max; |(]_3fk22/2)j€;,| < ey max + €1)Se.

11



Hence, we can apply the Azuma’s inequality to get

P(AS) < P(ASN AN As) + P(AS U Af),
N
> (BLXL?)E (S.8)

< KP(
j=1

> 21260 N (i ma + 1) Se log (T V N), As 1 “45>

+ P(Af) + P(AS)
_2C%N(Mb’nlax + CT)2S€2 log(T \/ N)
2Nc%’(ub,max + CT)QSe2

< 9K exp ( ) T P(AS) + P(AS)

2K
- TVN

Combining (S.3), (S.4), (S.7) and (S.9), and using P(M) > 1— 2]7.:1 P(A$), we can arrive at the
result as stated in the theorem. [

+ P(AS) + P(AS). (S.9)

For the remaining theorems, as argued before, we shall just prove the corresponding results
on the set M, and the result in Theorem S.1 does the rest.

Proof of Theorem 1. From (3.4), using y’ = II'®(1r ® p* + XB* + €) where we define
I® = (ITN — A*® — Zf\il 57“W(()8;)_1, we can easily show that

(2
,8(0*) — B* _|_ (XTBUBUTX)_IXTBUBUTGU.

Hence we have
M

ﬁ(é) — (XTB’UBUTx)fleBUBUT((H*@)*l + (A*® _ ;&®) + Z(é: — &)Wg)
=1
AT (1y @ ' + XB" + €)
M
= B(6%) + (XTB”B“TX)*lXTB“B“T((A’@ — A9+ 361 - &)WS%)H*@@(Xﬁ* +é€).
=1

From this, we can decompose B(g) - 3% = Z?Zl I;, where

I, = (E(X{B)E(B{X,)) " (E(X[B\)E(B{X;) - T"°X"B"B""X)(8(6) — 8°),
I, = (BE(XIBy)E(BIX;)) ' T2X"B"B""¢",

M=

Iy = (E(X}Bt)E(BtTXt))*1T*2XTB”B”T((A*® A+ 30 - &)Wg’;)n*@Xﬁ*,

@
I
_

=

Il
—

I = (E(XtTBt)E(BtTXt))*1T*2XTBUBvT((A*® — A 36 - &)W?;)H*@ev.

To bound the above, by Assumption R3, ox(F(X"B;)) > Nu, where u > 0 is a constant. This
implies that
Amin(E(XFBy)E(BIX,)) = 0% (E(X{B;)) > N*u?, so that
K1/2 K1/2
< .
Amin(E(XPBy)E(BfX;)) = N2u?

|(BE(XIB)EBIX)) ||, < (S.10)

12



Then defining U = Iy @ T-' Y.L vec(B; — B)vec™(X;) and Uy = Iy ® E(b;x}), we can write
T~'X"B” = Vi UVy, and E(X!B;) = V{, (Iy ® E(b;x{))V1, by Lemma 2.

We then have Hﬂ(g) - ﬁ*”l < Z?:j HI]- |» Where on the set M,

I, < [ (EOFBEBIX) |, (BT BIEBEX) - 72X B BX)(3(6) - )],
< %{HV?MUo UV, VI U
+[VE UV VL (O - 0, Vi (806) - )]
< ﬁ?i{mwvo—uum N K[Vl + (K VE, (U = U0 Vi,

# K VE ORI ) - K100 = U - 5186 ),
< K2 2700 (1 + pthmax + ¢7) + (1 + fipmax + c1)?)||B(8) — B,

= O(CTHﬁ(g) - B*HJ

where the second last line used Assumption R3, that the entries in Uy are uniformly bounded
away from infinity (by o4, < 00, say). To bound H[Q s on M,

K1/2

Hl S N2 2
Kl /2

< N2y, QHVIN

. (K . CTN2 2w + \/i_[{CT_ZVl/2 logl/z(T \ N)Se(,ulb,max + CT))

= O(erN 2% m).

122 I X B, 77T B e

(U - Ug) Vi, + Vi, UyVi, Hl

To bound HIng, we denote W, By ; and X ; the jth column of W, B; and X; respectively. Also,
define 71'} to be the jth row of II. Then on M, writing W = A + Zf\il 0; Woi,

K1/? T _ __
HI3H1 < N22 HT_IXTBUH1HT_1 Z(Bt - B)T(W* - W)H*XtH1H5*H1
t=1
K257 T , .
< gy b O (K max | Z ;<Bw - B.,)X{,m})

N
<ONY D (0be + er(1 + ptomax + 1)) |[WF = W[, |7,
j=1

<O (|le - &l +en s - o7,
=0([|g =&, + Nflg - €*[l,)
where the constants 17 and ¢ are from Assumptions M1 and R1 respectively. Similarly, on M,
1all, = Oter(|6 — 8[|, + erN]|€ — €[|,)
From the above, combining with P(M) — 1 from Theorem S.1, we have

186) — 8[|, = OplerN 2725 4|5 — 8", + N'[|€ ~ €. (511

13



It remains to find the order of HS — 5H1. Firstly, from (3.5),

B"Z¢ — By + K(Iry — A®)y" = BTZ(€ — £*) — B — BTZV (6" — B"X g vec(Ly)

+K(Iry — A*®)y? + K(A*® — A®)y", with
K(Iry — A*®)y"” = H6* + KX3* + Ke’

T
=H§"+ T '’N"?> "X, ® (B, - B)y8" + Ke"

=1
= Hé" + B"Xg-vec(Iy) + Ke".

Hence
B"Z¢ — By + K(Iyy — A®)y" = B'Z(€ — ¢*) — B"e + (H— B"ZV)5*
FK[(A® ~ A%)° 4 €]
With this, defining H = K[(A*® — A®)y” + €']), we can decompose

0 — 06" = D+ Dy, where

Dy =[(H—-B"ZV,)"(H - B"ZV,)| " {(H - B"ZV,)" (B Z(£ — ¢*) + H),

Dy = —[(H - B"ZV,)"(H - B'ZV,)]"'(H - B"ZV,))"B"e.

To proceed, we first find the order of HD1 Hl
by showing that it is asymptotically normal.
In order to do so, we define for i =1,..., M,

T
A =T") X;®(B,—B)y, Al=EX;®By),
t=1
Ay = (Vi UV, V] UVy )™t Af = (V[ UiV, V] UgVy,) ™,

A3 =V UV, Aj = Vi UjVvy,,
Ay = Vyyr UVn-6, Af = Vivr UoVi-57,

T
Asi = V$V§i (IN ®T1 Zvec(Bt - B)ef)vec(H*T).
=1

We find all related rates of the above first. On M, it is immediate that

|AL =AY, = Oler).

max
At the same time, using Assumption R5, on M,
1A, < [|AL]], + [|Ar = AL]]; = O(NTH* 4 erN?) = (NTF9).
Also, on M,
A3, < K[IVI Ug Vi

Hence writing Ay = (A3A%)7L,

K1/2 K1/2
< <
I= Ay = v

| A9 = O(N?).

14

=O(N), |[As—Af||, =0(crN), [As]|, =O(N).

on M, and then find the order of the elements of Doy

(S.12)

(S.13)

(S.14)

(S.15)

(S.16)



Also, since Ay — AY = (Ay — A ((AD ! — A7HAY + AJ((A~ — ASHAY, and on M,

1(A2)™" = A5 T]], = [[A3AS" — AsAz]), < [[A3 — A, [|A5", + [|Asl,[|A3" - A5,

:O(CTN2).
Hence we have on M,
0 A~ — Ay A8 crN?- N~ i
2 =l < Y agr g, O ) =0 S0

To bound HA42-

|» hote that

1A% < K[187], [ Viws Uo Vi

N
o = K18 s | 35 WL B

= O([[Woil|, 1] - V) = O(N), (S.18)
where the last line used Assumptions M1 and M3. Similarly, on M,

|Asi — ALl = Oer), [|Aui], = OV). (5.19)

I I

To bound HA52‘ note that on M, an element in As; is bounded by

Iy

N T
S WG T (Bry — Br)efwp| = O(crN),
(=1 t=1

so that on M,

h

With these rates, we now focus on the order of HD1 Hl first. We decompose D1 = F + Fy+ F3,
where

Fy = [(Hyo — Hyp)" (Hyo — Hlo)]_l{(Hzo — Hyo)" (Hao — Hyp)
—T7!N(H -B"ZV,)"(H — BTZVO)}Dl,
T
Fy = [(Hao — Hyg)"(Hao — Hyg)] <T71/2N“/2H —Hyy — T V2NY?’B"ZV, + H1o)

TTPN(BTZE - €7) + H),
F3 = [(Hao — Hip)"(Hag — Hio)] ' (Hao — Hig)" - T~ V2NY2(BYZ(€ — ¢*) + H),

with the definition of Hig and Hyg being
Hy — (IN ® (Ly ® 47) E(vec(BF Jvee(XF) ) Iy B*)H*T)VO,

Hao = E(X, ® Br) (E(XtTBt)E(BtTXt)>71E(XtTBt) (VT LV )(IM ® Uy V- 8°)

WOTI oM
0 40 40

where we used the definitions in (S.12).
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To bound the Lj norm of the F} to F3, we first observe that by Assumption R3, we have

ofi(Hio) = 03, (Vo)oi (In @ ~") E(vec(Bf Jvec(X)") Iy @ B)IT)
>CN-N®=CN!*te,
where C' > 0is a generic constant. Also, by Assumptions R4 and R5, the rate of Apin (F(X{B)E(B™X,))
in (S.10) and the rate in Ay; derived in (S.18) which is also true elementwise, we have
or(Hao) > 0k (A)ok (A ok (AS)omin(Aar, ..., Agnr)

S CNte.N.N
T dnax(B(XFBy)E(BTXY))

> CON'Te,

Hence Hsy has the smallest singular value of order larger than that for Hyg, and so we have
o3 (Hyo — Hyo) > uN'te, (S.21)
where v > 0 is a generic constant like C. Hence

1, < e LM
U= AMiin(Hoo — Hig)T(Hoo — Hypg)) = Nty

|| [(H20 — Hig)" (Hao — Hio)]~ (S.22)

Then we have

M3/ 1/2 nra/2 —1/2 nra/2T
Il < preay { B — Holl (728528 — o, + 72887 2V0 -~ Hho .
TN - BTV,
([T 2N~ H|, + [T ANBZV, — Hu,) } D4, (8.23)
M3/
1B, < e (772N H = Hao |, + |[T7/2N"*B"ZVo - Hu| )
(Il 1/2NG/QBTZH |- ¢, + /2N ), (5.:24)
M3/ ~ ~
173l < o fsy — oo (72N 2B € [, + T2 E] ). (829

To bound the above, observe that the max-norm of T-Y2N%2H — Hy, can be bounded by

|T7V2NY?H — Hap|| = max [|[AjA2A3(Ay + As) — AjAsAzA |

max 1< <M max

< max || Al | Azl [[As], ]| Asil],
+ max {A]],, [ A2AsAs — ASASAL, + (A1 - AL, [|ASAJAL ], }. with  (5.26)

|A2AsAs - ASAGAG|, < max (||As],[lAs - A, [l Aul,

I 1<i<M
+[|Ac], A3l [ As — AL+ A2 — AY[ [ AS],[|Axl)-
With (S.13) to (S.20), (S.26) is, on M,

|T7Y/2NY?H — Hyl| = O(er). Also, ||T~Y2N*H — Hyl|, = O(crN?). (5.27)

max

16



Also, defining L = T~ 3], vec((B; — B)")vec™ (X]),

T
7Bz, = [ - By
t=1

< H(IN ®@~v")L(Iy ®5*)H*TH1 + H(IN @~yT)T1 Zvec (B —

= O(crN + N + ¢rN) = O(N9).

(S.28)
Next, defining Lo = E(vec(Bj)vec(X{)") and wg; ; the jth row of Wy;, we have on M that
HT‘l/ZN“/QBTZVO — Hy|

e (Iy ® B7)ITT

1

max

= max H( 12 (B —
1<i<M

B)vyi — (Iv ® ") Lo(Iy ® 5*)H*T) W0i |
1<]<N
< mase {11y © 5"]| L~ Lof| [T @ 8 1077 wois
1<j<N
T
ity ey TS vee((By = B))et |, T wois [, } = Oter). ($29)
t=1
The above also implies
|T7Y2NY2B ZV, — Hyp||, = O(erN?) (S.30)
Finally, decompose
N T
T-1/2Ne/2H — A1A2A3(T 'S (B, - B)"(A - A%y, — 12 (B, — et)
t=1
=A1A5A; <V’(TA_A*)T (IN & T_1 ; VGC(Bt — B)VGC(Xt)T)VH*,@*
T —
F VIR ey (IN T} ; vec(By — B)eg)vec(n*T)
T
— Til Z(Bt — B)T(it),
t=1
so that on M,
~ ~ 1
I 2 N R, = O(NH“N‘QN{Hﬂ*Hl S (e
+ CTNQ 2w })
= 0O( NaHg—g Hl—I—CTN2+2u e, (S.31)
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Collecting all the inequalities proved from (S.22) to (S.31), we can then conclude that on M,

M3/2 2 2 2
D1, < syras (olerN?) + 0(1) - olerN? +exN) | ]
M3/? " .
+ 3yt (Oler) - ON?E = &)+ erNE+3e+))

M3/
+Nl+a NaH£ €H1+CTN2+ wte)
= O -], +erHak),

For the rate of HDng, we refer the readers to the proof of asymptotic normality of 5 g—0y in
the proof of Theorem 5 for the asymptotic normality of Dy (the proof is exactly the same except
that here there is no restriction to the set H), and we just state (proof omitted) here that

TY2(RyZRE)™V2Dy 25 N(0,1n),

where Ry = [(Hio — Hag) " (Hip — Hao)] "' (Hip — Ho)", and X is as defined in Theorem 3. By
Assumption R6, we can conclude that all eigenvalues of 3 are of order N?. Hence we have

Amax(]-:{/22]-:{;5) S )\max(z)Amax([(HIO - H2O)T(H10 - HZO)]il)
Amax ()

<
oy (Hio — Hao)

— O(N_l_a+b),

which can also be derived as the order for the lower bound of Api,(R2¥XRz2). Hence we have

HD2H1 = O,(T~1/2N~0+a=b)/2) Tt means that

15 = o%||, = 0p(| D |, + || D5,
_O 1”5 E HI—FCTN_E _|_T—1/2N—(1+a—b)/2)
_O 1”5 & H1+CTN 2+2w).

It is clear then from (S.11) that

18(8) — 8°|| = OperN~2+a5 + N!|€ — £°])).

If M =0, then 6 = 6* = 0, and so the above bound still holds from (S.11). This completes the
proof of the Theorem. [J

Proof of Theorem 2. Assume M > 0 first. Since 8 = (€*,8") is the LASSO solution for (2.7),
we must have

LHBTy ~B"Z€ — B"ZV,d — B"Xzvec(Iy)||”

< BTy - BTZE ~ BZVos — B Xgqeyveen) | + Ar([€, - €]}

But B"y = B"Z{* + B"ZV6* + B"X g-vec(In) + B"¢, so that the above becomes

LHBTz "~ &)+ B ZV((8" - §) + B'X,,. zvec(Ly) + Be||’

< B Koy vee(Tn) + Bel* + Ar(le”], — 1]l

18



Rearranging terms of the above and eliminating HBT€H2 on both sides,

%HBTZ(E* — g) + BTZVO(é* — g) + BTX,@(G*)—BVQC(IN)Hz

<+ +Is+ (]| €], = |€]l,), where

1 ~ 1 <
Il - TGTBBTZ(g — E*), IQ - TGTBBTZVO((s — 5*),
1 1
I3 = TeTBBTXﬁ_ﬂ*veC(IN), I, = TGTBBTXL-)*—,B(G*)VGC(IN)’

1 * e xS
I — fvecT(IN)Xg(e*)_ﬁ*BBT(Z(S &)+ ZVo(6" — 5)),

1
I = fvecT(IN)Xg(e*)_ﬂ*BBTXB(Q*)_Evec(IN).

Now by (S.28), on M,

(0] < [T By = B NI T7 By = Bo) 2, - [|€ - €],

= O(HTileT(B’Y - B’V)Hmang_ €>kHl)

We also have on M,

max 1< j<N

|7~ (By —B,)| = max ]T*lzetﬁ(bti —b.)| = O(er). (5.32)

Hence on M, using S.32, we have

1| = O(er||§ - &)
Similarly, . ~
12| = O(er|[Vo(8 — 6)|,) = O(crN||d — 6*|,)
For I3, on M,

I3 < [|T71€" (By = By)|[ e - N T (By = By) " X5_g.veeI) ||,

N T
=O(er)-N7¢ Z 'yT(T IZ (b —b th) [3—6*)
ij—1 —1
SO(CT)'Nia'KHZ;_IB Hl(c ]-+,U’bmax+CT)+Cbe1+a)
= O(erN|B 87

With similar techniques for handling I; to I3, we can show that on M,

[Is] = O(erN||B(67) - B7|,)
155 = O(|6e") — B7]], (ll& ~&[l, + ] —87[|,)).
|| = O(N|B(67) = £7][,[|8 — (67 ,)

With a similar technique as in the proof of Theorem 1, we can show that on M,

18(67) — 8, = OerN~—++3).
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in Theorem 1, we also have

Hence using the triangle inequality and the result for H E - B* H1

18— 8O, = OlerN—2+25 + N7H[|g — & ).

Substituting these rates back into those for |I4| to |Ig|, together with those for |I;| to |I3], we can
conclude that on M,

1 T * s T * T
57| BZ(E" &) +BZV, (6"~ §) + B X 59+ 5vec(In) |’
< Cer(erNatas 4 [l€ - &|,) + xx([l€”], - [I€]|,). (5:33)

where C' is a positive constant.

Set Ar = 2Ce¢p, and add both sides of (S.33) by the term CCTHg— &*||,. Noting that

Iy
2

1€ =€l + 1l = lell, = D (€ = &1l + lgall, = €xll)

i=1
<2ll&s - €I, +2]1€5,

we then have the following two inequalities:

Hg_s*Hl < hN,T+4HgJ1 _531 1’ (834)
1 . = -
57 | BTZ(E — &) + B'ZVo(8" —8) + B"X 5.y vec(Iy)||”
< Cep(hng + 4|60 — €5, ],)- (S.35)
where we define hyp = 4|5 ||, + erN3tae,
Since cTN%Jri dominates "532 Hl by Assumption R8, (S.34) becomes, on M,
[~ €ll, = OlerN="2s + n'/2]i€, — g5, ), (S.36)

which is the first inequality in the theorem.
To prove the second part, we need an intermediate result. Consider decomposing the left hand
side of (S.33) into Z?Zl D;, where

1 * 112 1 * N 1

Dy = B2 B, Do = B2V 37, Dy = BT, et
1. - = 1, =

Dy = f(g* —&)TZTBBTZV((6* — §), D5 = T(S* —&)"Z"BB"X 5 5.y gvec(Iy),

D = %(5* —8)"VIZ'BB X 4., _gvec(Ly).
Now on M, using (S.28) and the result of Theorem 1,
1Dall, < llg" = €[l T7' 2" (By = Bo)| - N7
=OW“[le - & flo - &)
= O €= €[l +ernez i€~ €7,
Similarly, on M,
[Ds, = O(lle ~ €[,]18 - B@O),) = ONTH €~ &[] + erN~2*2i]|€ ~ 7)),
[Doll, = O(1l6 — 87| {erN=" 20 + [|€ ~ 7], )
= ON"'|€ &[]} + erN =" mu [l = &[], + GN'™).

T~ By — B,)"Z|,[|Vo(5* - )|

max
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Since D9 and Dj are positive, from (S.35) and the bounds above, on M,

%HBTZ(E— &)° < D4, + |05, + (1],
+ Cer(erN7t2e +4|&5, — &5,
SOWN“€- €] +erNe—2taa||€ — &, + FN™)
+ Cer(erN7te +4|&5 — &5,
= O(N“Y|&5, — &5, |7 + er(1+ N3+ 20) €5, — &3,
AN N, (.37)

We are now ready to derive a bound for }|§ hn =& Hl By Assumption R4, the block diagonal

matrix G has full rank, which means it is positive definite. Hence for any o € RY 2, for some
constant u > 0,

j2 o 1G]
]

so that defining o = 5— &*, on M and using (S.37),

0<ul

G 2a HGl/QaH}

Smin{
leen [l [lees]]

< |[aalf < @ - 712'BBZ]|, [l + 7B Zal?

2
s ulles

ujecs
2 _ 2 1,1
= O(cTHaH1 +nN® lHaJl H + ern/?(1+ N° 2+2w)HO‘JlH
+ (N w + N3taw)
= O(n(er + N Y||ag, ||* + ern'/2(1 + N~ 2% 30) |y |
+ (N + N2¥aw), (S.38)
where the last equality sign used (S.36) and Assumption RS that ¢y N'=% = o(1), and the second
equality sign used
|G -T7'2"BB"Z|| <N °|T7'(B,-B,)"Z - E(T '(By - B,)"Z)|
+2||77'(By —B,)"Z - E( 1B, -B,)"Z)
N[BT (B, - B4)"Z)|,
= O(CTN1 ¢4 epNTYN+ NT™Y)) = O(er).
From (S.38), there exists a constant C' > 0 such that on M,

(u— Cn(er + N‘l_l))chaJ1 H2 — Cern'/?(1+ N“_%Jrﬁ)uajl H
— CA(N“"w 4+ N2T2s) <0,

By Assumption R8, we have n(cy + N%1) = o(1). Hence solving the above quadratic inequality
for Ha 2l

Hale = O(cT(nl/Q +N%+ﬁ) +CTN%+ﬁ(1 +n1/2N%)’

This completes the proof of the second inequality of the theorem. _ o

The rates for HB — ,3*H1 and H6 — 5*”1 are obtained by substituting HE — £*H1 by cr N2t 2w +
nl/zngl - &7 H in the results of Theorem 1, and finally substituting Héh - & H by the rate we
proved above and simplifying using Assumption RS.
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To prove the theorem for M = 0, note that since §=06"= 0, the decomposition of the left
hand side of (S.33) in the proof has Dy = Dy = Dg = 0, and so (S.37) becomes

1 ~ ~
o IBTZE — €| <[|Ds ], + Cer(erNatas 4 4fléy, — &5,]],)
= O(N"[[&, = €3I} + er(1+ N2Fan) €5, — g5, + ENE¥an). (3.39)
With this, (S.38) becomes

‘<@l <G - 172" BB Z|,, o, + T |B Za

2
, ulles

ulles,|
= O(CTHOtHf + nN_luaJl H2 + cTn1/2(1 + N‘%Jfﬁ)HaJl H
2 arigp L
+cpN2"2w)
=O(n(cr + N7 |ayy H2 +ern/?(1 + N_%Jrﬁ)Hajl I
+ A Nztaa + AN, (S.40)
Hence there exists a constant C' > 0 such that on M,
(u—Cnler + NN || ||? = Cern'?(1 + N=2%30) ||y, || - CENTw) <0,

By Assumption M2’, we have n = O(N), hence there is a constant C’ such that n < C’N. We need
to be sure that the constant u is large enough so that u—Cn(cr+N~1) > u—CC’'—Cern > 0 in the
above inequality. And since in the definition of G in Assumption R4 the constant ¢? can be chosen
to be large enough such that the constant u is enlarged accordingly with Ap,in(G) > u > CC’ > 0,
we can without loss of generality assume u — Cn(cy + N71) > 0 (recall that czn = o(1) in
Assumption RS8’).

Then solving this inequality leads to

e, || = Olern®/?(1 + N=3%2w) + &P N3t aw).

The rate of HB — ,8*“1 is obtained by substituting Hé— £*H1 by cTN%JFﬁ + nl/Qngl - &5 H in
the corresponding result of Theorem 1, and finally substituting H§ n =& H by the rate we proved
above and simplifying using Assumption R8’. This completes the proof of the theorem. [J

Proof of Theorem 3. Consider M > 0. We first prove the sign consistency of E in (2.8). After
that, we prove the asymptotic normality of £, .

Define the set D = JyU.J1UJ2, so that D is the set of all indices excluding those corresponding
to the diagonal of A*. The KKT condition implies that £ is a solution to the adaptive LASSO
problem in (2.8) if and only if there exists a subgradient

N V2 gi =0, _ieDs
g=0(v"g)=cgeR" : ¢ g; =usign(&;), & #0; , (S.41)
9:] < wi, otherwise.

such that differentiating with respect to €p, we have
T'Z5BB"Zpé — T 'ZLB(B"y — B'ZV(d — BXvec(In)) + Argp =0,

where for a matrix A, Ag is the sub-matrix of A with only those columns indexed by S. Using
By = B"Zp&}, + B"ZV(6* + B"Xg-vec(In) + B"€, the above can be written as

T-'Z5BB " Zp(€p — £5) + T 'ZHBB ZV (6 — 6*) — T 'Z})HBB"e

+ T_lz})BBTXE_ﬁ*vec(IN) = —\rgp.
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Hence, couple with the above, there is a partial sign consistent solution E such that E Joud, = 0
and sign(§,) = sign(£7,) if and only if
TZEBBZ,, (€, — &5,) — T 'ZEBBZ3, &5 + T 'ZLBBTZV(6 — &%)
~T7'Z)BB e+ T Z,BB X 3_g.vec(In) = —Argp.
The above can be rewritten as two, one on J; and one on J' = JyU Js:
_IZT BB'Z,, (&5, —€3) — _1ZT BB'Z% &5+ T‘lz§lBBTZV0(5 —0%)
-1~ 1ZT BBTe + T71Z% BBTXB B*vec(IN) = —-A1rgJ,,
T 1Z}’BBTZJ1 (€ — &,) — T7'25,BB 23, €5, + T~ 25, BB Z V(3 — &%)
~T7'2%BB"e+ T 'Z%,BB"X ;

(S.42)

3 ﬁ*vec(IN) < Apvyr.

Note that if J; = ¢, we only need to prove the second inequality above. So we assume J; # ¢
for now. Then Assumption R4 on G implies that G, j, is invertible, and so we can write

En =&+ 2?21 I;, where
I =-G;Y (T7'Z5 BB Z), — Gj,1,)(€s, — €1), = G}, T 23 BB Z €7,
Iy = —Gj; T2} BB'ZV(6 — §%), Iy = -G, T7'Z}, BB"X5 .
Iy =G,', T7'2} BB, Iy = -G}, Mgy, (S.43)

vec(Iy),

By Assumption M2, since the number of elements in J; in each row of A* is bounded by a constant
uniformly (say by n,), each block in G, s, has constant size n, x n,. Then

12 172
H JlJlHoo = )\mm(GJlJl) ="y :O(l)' (8.44)

B 531 Hmax < Z?=1 HImeax

111 < 1G5 7725, BB 2, = G [l 1€ = €5 e
= O(cr||€s, — €5, ]],00)

12| e < NGT 5 N7 25, (By = By) || [T By = By) 2o [0 | Tax, [EA R
= O( max_[|aj|l,),

[ 5 = 018 = 8°[|,) = OferN~2+20),

1l = 1G5, 1o N’“IiT’lzT (By —B,)|

oo

1

- |[vee(T 12 (B: — B)v(B - B8)'X))|.... = O(|B - B°|,) = O(crN~7F ),

HI5Hmax maXHT 12 Bt ’YﬁtJHmax :O(CT)7

)\T

) o, (S.45)
minjeJl |§*‘ - H£J1 - 531“ (CT)

6| <

where in the above, a is the jth row of A*. For 16, we also used Assumption R7 for the rate

of Ap, and the fact that Ha J1H = HS 5 —& J1H = 0o(1) by the second inequality proved in this
theorem, and the rates assumed in Assumption RS.
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The above implies that on M,

15~ €l = Oler + max [5,5,) = o), (s.40)

which implies that on M, we have sign(g 5) = sign(€7,). To complete the sign consistency proof,
we now prove the second part of (S.42) is satisfied indeed.
To this end we have on M,

HT_IZ}BBTZJl (gjl - éf}l)Hmax = O(Hng B Ej§1 Hmax) - O(CT + 12223\[ Ha>’f7J2H1)’

T 25 BB 21,5, e = O [[25, 1),

|T~Z5 BB ZV, (5 — 6%)|| .. = O(]|6 — &7,
177125 BB X 5. vee(Ix)||,.. = O(|B = B ).
|T~'Z5BB || . = O(cr).
On the other hand, the right hand side of the second part of (S.42) has minimum value of
A1 A1

— > =
182l 1185 [mase + 11655 = &5

so that it is sufficient to prove

)

(er+ 2 1255, ) 1E5, s + €5 = €5¢1) = 00r). (5.47)

1<j<N
Since we have rate for Hng — &5 ||, from (S.38), we know that on M,

[€5c — &5 || = O(||€n — €5,
so that it is sufficient to prove that on M,

(e + max[a5 g, V(IE5, e+ cr(n/2+ NE435)

+epN5 T2 (1+ 0 2N"2)) = o(Ar) = olcr),
since by Assumption R7, Ar has the same rate as cp. But the above is indeed satisfied by
Assumption R8, and hence the proof of partial sign consistency for §;, completes.

For proving the asymptotic normality result, we go back to the decomposition in (S.43), and
write for a constant vector o« € R™ such that HaHl < 00,

5
aT(Sjl _ 531 + G;lljl)\ngl) = Z aTIj,
j=1

where each I; is defined exactly the same as in (S.43). If we can show that a5 is T1/2N(e=b)/2
convergent, then by Theorem S.1, we can actually conclude from (S.45) that

01 = Opler |5, — €3 ) = Op(ch + e s[5, ,) = 12N~

"] = Op( max a5 5 |,) = op(T—H2NT(072),

" Is| = 0,(|8 = 8[| ,) = op(T7 AN ~I12),
™ Iy| = O,(||B — B7]|,) = op(T/2N~(e-0)/2),
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where we used Assumption R8 and the results of Theorem 2 to determine if the above rates are

dominated by T-Y/2N~(@=0)/2 Hence if we can show that a”I is also asymptotically normal

with rate T-1/2N~(=0/2 then asymptotic normality of ot (& — &5 + G}llJl Args, ) follows.
To this end, we decompose further

a'l; =" (N*G;!) ) (T7'Z}, (By — By) — E(T'Z},(B, - B,)))T "' (By - B,)"€
+a"(N*G, ! )E(T™'Z]}, (By — B,))T ' (E(B,) — B,
+a"(N"G,} )E(T™'Z},(By — B,))T ™' (B — E(B,))"

€,

€,

where clearly the third term on the right hand side above dominated the rest. To show asymptotic
normality of this particular dominating term, we use Theorem 3(ii) of Wu (2011). Denote ||Y|| =
EY2(Y)? for a random variable Y. Rewriting the term as

T
Tt Z QT(N_GG;11J1>E(T_1Z§1 By — B‘y))(et ® (B — mp)7),
t=1

it is clear that we need to show that

Z HPO (e} Rﬁt ® Bt lj'b H (848)

t>0

_ _ —1 _
where R = (E(T*1Z}1 (By —B,))E(T" (B, — BW)TZJ1)> E(T7'Z5 (B, — B,)), and Py(-) =
E(:|Go UHp) — E(-|G—1 UH_1). Then Theorem 3(ii) of Wu (2011) implies that

Tl/Qsal/QaTk 1/2 1/2 Z o’ Bt - ,Ub)’Y)(l + Op(1>)
2 N(0,1),
where
so = cov(a"Re ® (B — o)y, " Rerr @ (Bryr — ty)7)

= a'"R( Y Bleel,,) @ B((By — m)yy"(Bi — m)") )R e
Note that

HaH2Amin(RRT)Amin(2) S S0 S HaH2)\max(RRT))\maX(2)7
so that

| N i (G755 ) Amin(B) < 50 < [ N ™ Nmax(G 7L ) Amax ().

Since the eigenvalues of N™°3 are easily seen to be uniformly bounded away from 0 and infinity
by Assumption R6, we can see from the above that both sides are of order N~(¢~% and hence
the term oI5 is indeed TY/2N(@=b)/2_convergent. It remains to show (S.48).

Define E;(-) = E(:|G; UH;). Then observe that

Py(a"Re; @ (By — wp)y) = OéTR(Eo(Gt) ® Eo((Bt — pp)y) — E-1(er) ® E_1((By — Hb)’Y))
=" RPy(er) ® Eo((Bt — pp)7) + @' RE_1 (&) ® Po((Bt — pp)y)-
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Hence

HPO [0 RGt ® Bt — p,b H

< {20 RE(Ry(e) Pu(e)") © E(Eo((Br — )7 Bo(v" (B, — )" R}

+ {20 RE(E_\()E-1(e)") © E(R((B: — )7 Poly" (B, — )" ))Rar}

< 2/2)ja |, |R||,, max_|[Po(ew)]| - max var'2(b,)

+ 22 el Rl - omax - max (| Po(bz;)|
< 2|, R[] max | PoCees)]] - a1,

+ 22 ]| IR - s - max [[Po(Bre) [,

1<j<N
1<k<K
= O max [1Poten)| + o, [Po(Ben) )
=7= 1<i<K

where the second inequality used the decomposition
var(-) = var(E;(+)) + E(var;(+)) > var(E;(+)),

and the third inequality used Assumption R2, while the last equality used H’y“l =1and HRHOO =
O(1). Since Py(Bisk) = Pé’(Bmk) and Py(ej) = P§(ey), our assumptions (3.16) immediately
implies from the above that (S.48) is satisfied. The proof of the case M > 0 is completed by
noting that a fixed dimensional multivariate version is true also by theorem 3(ii) of Wu (2011),
replacing e by M = (a1, ..., 0u,)". R

We turns to the proof of the case M = 0. Consider § in (3.10). The KKT condition implies
that £ is a solution to the adaptive LASSO problem (3.10) if and only if there exists a subgradient
g in (S.41) such that differentiating with respect to &£p, we have

~(B"Zp — Kp)"(B"Zp — Kp)ép — T~ (B"Zp — Kp)"(B"y — Ky") = —Argp.

Since
B'y =B'Z¢" + B Xg«vec(Iy) + B'e
T
=B"Z¢" + N7 Y (X, @ (B, — B)"y)B" + Be,
t=1
T
Kyv — N—a/QT—l/Q Z(Xt ® (Bt _ B)T,y)(XTBUBvTx)—leBvBUTA*®yU
t=1
+ KXg3" + Ke’
= K'¢" + N~9/%7- 1/22 X; ® (B; — B)"y)3" + Ke",
t=1
we have

B'y - Ky' = (B"Zp — K»)¢}, + Be — Ke".
Hence E is a partial sign consistent solution to the adaptive LASSO problem (3.10) if and only if
T (B Zp - Kp)* (B'Zy, - K))(E), - €),) — T"'(B"Zp — K},)"(B'e - Ke")
“'(B"Zp — Kp)"(B"Zy, — K}},)€), = —Argp.

26



The above can be rewritten as two, one on J; and one on J' = JyU Ja:

T BTZ), K, ) (B2, — K ) (€, — €)= T (B, — K )" (BTe —Ke')
— T !/ T T / *
|T7:1(](312ZZ;] _ Klfglg(lé]?zZJi KIf<‘32<)§J2_ Iy A)T—g g;l(BTZ ' —K',))T(BTe — Ke")
_T—I(BTZ] o K]; )T(BTZIl o K]} ) {kl < ! Jl
J! g7 Jo 1)E5| < Argyr.
(S.49)
Similar to the proof before, we assume J; # ¢, and since G, j, is invertible by Assumption R4,

we can write éjl =& + Z?zl I; using (S.49), where
I =~G3Y, (T7' (B Z, ~ K})"(B'Z), ~K),)) — Gu)(€n — &),
I, =G}, T7'(B"Z;, — K/ )"B"€,
I3 =-G}!, T7'(B"Z;, - K/,)"Ke",
L= G, T7 (B Z, — K},)" (B Z), — K}, )&J,.
I; =-GJ!) Mg, (S.50)

Recall from (S.28) that HT‘l/gBTZH1 = O(N%/?) on M. Also on M, using Assumption R5’ and
M2 that n = O(N),

HT_1/2K{]1H00 = ON~%. (¢cp +1)- (N 2(N2cp)N"2+ N~2) . (Nep + N)

(erN + o(N) + erN)) = o(N~4?). (S.51)
|T72K||, = O(N~*- (erN?* + N) - (er N2+ N~2) - N)
= O(N~%?), (S.52)

We have ngl =&, Hmax < Z?Zl HImeaX, where on the set M, using (S.44), (S.51) and (S.52),

153 e < OG5 o - (17725, BB 2, — G|+ 177125, BK

|77 KB Zo ||, + [T KK ] - € = €5, )
_ O((CT + Na/QO(Nfa/2> +N7a/2 . Nfa/Q + Nfa/ZO(Nfa/2)) . ngl o E?}leaX)
= O(Hng - 5?}1 Hmax)7

15[, O T 225, B+ IT7 K ) - [T 2B e,
= O((N*? + N~92)N=92 . ¢1) = O(er),
slloe = OCNIT™225,B|, + | 772K | ) - 1T~ 2K,
_ O((Na/2 +N—a/2)CTN—1/2—a/2+1/(2w)) _ O(CTN_1/2+1/(2w)),
HI4Hmax = O(HT_1/2(BTZJ1 B KZJI)THOO(HT_1/2BTZ‘]2£J2Hmax + HT_I/QK{IQHOOHS?}Q Hmax))
= O NN o o+ N5 )
= O( max_[|aj||,),
Ar
Is max < - — = O()\T) = O(CT),
H H minge.j; |£;| - HEJI - Ej}l H

where the rate of I3 uses the rate on A3. Combining the above, we have on M,

1€ = €5l = Oler + max 25 1,1,) = (). (8.53)
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This means that we have sign(g ) = sign(ﬁf}l) on M. To complete the sign consistency proof,
we now prove the second part of (S.49). On M, using (S.51) and (S.52),

HT BTZJ/ - KJ/)T(BTZJI - Kf]l)(ng - 5:)}1)Hmax
= O T 2B TR 2| + [T 2B, |+ TR B 2

7KK, () - OC€n = €5, )
_O(Na/2N—a/2 Na/2 ( —a/2)_|_N—a/2N—a/2+N—a/20(N—a/2))

Oler + max a5 ll,) O(CT+12%;%}§V“af’J2}|1)
|77 (B2~ Kp) Be]|, = Ofer).
IT" 4B "Zy — Kj)"Ke'|| = O(cpN~V/21/(2w),
1T~ (B Z) — K))"(B"Zy, — K )&% = O( max_[[al],).

1<j<N
On the other hand, the right hand side of the second part of (S.49) has a minimum value of

/\T > )\T
= = ~ )
HgJIHmax HS?}QHIHaX—i_ HEJf _sil}meax

so that it is sufficient to prove

(er+ s [ad | )15 |+ 1 — €510 = olhr).

1<j<N

But this is exactly the same condition as (S.47) and is proved in the first part of the proof for
M > 0. Hence we have established the partial sign consistency of the solution & for (3.10).
Finally, for asymptotic normality of £ in (3.10), consider a € R™ such that HO‘H1 < 00,

aT(ng _ 5;1 + Gjlljl)\Tng) = ZaTIj,

where each I; is defined exactly the same as in (S.50). Then since |a™I;| < ||a|,||/Z]|
HI H , we have on M,

max

max

" 1] = 0(([€ = &5 [|ay) = Oler + max [Jaj ;)

T = TI.| = —-1/2+1/(2w) T *
laIz] = O(er), |a'Is| = O(erN ), |ty O(lrgr;ag)%HaJQHl)

Hence a1, is the dominating term, which can be further decomposed as I = I 1 + I3 2, where
Iy =G;!, T7'2}; BB, Ly=-G;'; T 'KJ}B"e
On M, we have

| L] = O(|T7 2K ||, - |IT7*B ]| ) = O(N~¥2N~2¢cr) = O(N~“cr) = o(cr).

rnax

Hence I is dominating, and the asymptotic normality of a™I5; is exactly the same as proved
before for the case M > 0 (the treatment of a™I5 where I5 is defined in (S.43)). This completes
the proof of the theorem. I
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Proof of Theorem 4. Consider M > 0. For a € R¥ such that HaH = 1, we can decompose

(5 B*)—Z _, "I}, where

I = (E(XB)E(BIX,)) ' (E(XIB)E(BIX;) - T*X"B"B""X) (3 - ),

-1

L = (E(X{B,)E(B{X;)) T *X"B'B""¢",

-1

'Mi

@
I
—

Iy = (E(XIB,)E(BIX,)) - T"*X"B'B"" <(A*® —AS 36 - Es})wgi) X 8",

-1

Mz

I, = (B(X'B,)E(BIX,)) " - T"*X"B'B"" ((A*® A £ 56 -5 )Wg?;) I®e’,

s
Il
—_

Similar to the treatment of Iy in the proof of Theorem 1, for the I; defined above, through
Theorem S.1, we have

@1 < |||, 1 11lly = Opler|B=87]),)

For I3 and I, similar to the treatment of the respective terms in the proof of Theorem 1, through
Theorem S.1, we have

[a"I5] = Oy(||d — &*||, + N7V ¢*|,)
" Is| = Op(er(||6 — &%, + N~

)

Iy

Using the sign consistency of EA and (S.46), and the rate for Hg — 0*||, from Theorem 2, we have

through Theorem S.1 that

I

1,1 1,1
‘aT13| = Op(CTN_E‘*‘% + N_ln(cT + 1r<r;a<)§v Ha;f,‘]z Hl)) = Op(CTN—a'i‘%)
= op(T*1/2N*(1*b)/2)’

where we used Assumption R8 to conclude with the last line above. Hence if we can show that
oI is T2 N(1=8/2_convergent, then the remaining task is to show the asymptotic normality of
a™ly as presented in the theorem.

We are going to show the asymptotic normality of a™ I, now and find its rate of convergence.
To this end, we further decompose

o'l = o (E(X{By)E(B{ X)) (IT'X"B" — E(X{B,))T~'B""¢"
+a’ (E(XtTBt)E(B;FXt))_IE(XtTBt)TlevTevj

with the second term clearly dominating. Rewriting this dominating term as
-1 Za E(X/B,)E(B}X,)) 'E(X/B,)Bfe,

if we can show that, defining Ry = (E(XIB;)E(BfX;)) ' E(XIB),

> [[Po(a"RoBle)| < oo, (S.54)
>0

then by Theorem 3(ii) of Wu (2011),

T
T2 Pady = T7V25 2™ aTReBF (1 + 0,(1)) 2 N(0,1),
t=1
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where

S0 = Z cov(a'RoB{ e, a"RoBj,  €14,) = Z o'RoE(Bj €€, By ) Rja.
T T

To determine the rate of sg, consider the (k, k) element of ) F(BJ €€/ Biir1),
> E(Bjei€)t,Biiri) = > tr(EB-xBLy) (el ,))
T T

= Z tr(cov(BtJrT’k, B, i;)cov (e, et+7)) + Z tr(pb’kuakcov(et, et+7)).

T T

By Assumption R6, the left term in the last line above has order N'*? exactly, while the right
term is bounded by

> B cov(er, €rer )k < /\max<ZCOV(6t, 6t+-r)) k]| = O(| ok |?) = O(N).
T T

Hence since ) E(B} €€/ Biir) is of size K x K which is finite, the order of the eigenvalues of
this matrix is exactly N'*%. It means that, since

HaHQ)\min(RoRg))\min(Z E<BtT€t6;F+TBt+T)) < sy < HaH2)\max(R0Rg)

. Amax( Z E(BgetngrTBt—i—T)) )

and RoR{ = (E(XIB;)E(BFX;))~! has all K eigenvalues of order N2, the order for sq is exactly
N~(=5_ Tt means also that oI5 is indeed TV/2N1-b)/2_convergent. It remains to show (S.54).
Since we can decompose
Po(aTRoB;FEt) = aTRopo(BE)EU(Gt) + O’,TRUEfl(B;F)PQ(Gt),
we have HPg(aTROB;ret)H < K14+ Koy, where
K3, = E(a"RoPo(B{) Eo(er) Eo (e} ) Po (B )Ry )
< a"RoE(Py(Bf)Po(By)) Ry - E(Amax(Eo(€r) Eo(€})))
2 2
< Jlallf[RollS, jmax B(Ry(Bx) Po(Br)) - B(Eo(e;) Eo(er))

=O(N"!  max E(Po( te)Po(Bey)) - (N~ Eo(ef) Eo(er)))

— 2 X 2 ]
= O max max [|Po(Brow)|” - max B(EG(ets)))

— b 2 . 2
= O( mave max |3 (Bron)]|* - ),
so that tho K1+ < oo by our assumption tho maXi<p<K Maxi<s<N “P(I))(Bt,sk)H < oo.
Similarly, we have

K3, = E(a"RoE_1(B])Py(er) Po(€] ) E_1(By)Rjx)

< Q"RoE(E_1(BF)E_1(B))RE - E(Amax(Po(er) Po(e})))
2

< llefl}IRolZ, | mass, E(E-(BE ) E-1(Bu) E(Po(e ) Poer)

= E(E*,(B .
O(lg}faéxxé{q%\/ (EZ1 (Bt sk)) 13;%\[]

|Polec)||”)

_ 2 2 NE
- O((Umax + n%ya‘sxub,ts) ' lgaé%v HPO(et,])H )

- O(lglja%%HPoe(et,j)Hz)’
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so that Y-, K24 < 0o by our assumption of >_,.maxi<;j<n ||P§(€;)|| < co. This completes
the proof of the theorem, by noting that extension to multivariate case is straight forward and
use the same Theorem 3(ii) of Wu (2011).

Now consider the proof when M = 0. By Assumption M2’, we have n = O(N), so that for
a € RE with Ha“ = 1, using the same definitions of I7 to I4 at the beginning of the proof of this

theorem (obviously setting § = §* = 0),

0" Iy = Op(N|E = €7 ,) = Op(N~ n(cT+1glzg§VH a2 l1)) = Opler + max [|aj 5 [l,).

This makes I3 the dominating term. Write, on M,

o"I; = a"(E(XIB,)EB;X,)) "' - T'X"BY - T 'B""(A*® — A®)IT*®X3*
= o (E(X{B)E(B{X;))"! - E(X{By)
T — o~
T') (B~ B)" @ BUXIIIN(E ~ €)(1+0(1)
t=1
o' (E(X{B)E(B{X,) ™" - E(X[By) - E(B] @ B X[II")(¢" — €)(1 + o(1))
= a"Ko(§" ~ €)(1 +o(1))
= (a"Ko(&), — &,) + a"Ko&J,) (1 + o(1))
= (@"Ko(&), — &5, — Gy Mrgr) + @"KoG ) Arg, + " Ko€,) (1 + o(1).
Finally, since HaTKOHOO = O(1), we can apply the asymptotic normality in Theorem 3 for M =0
to arrive at
T2 (a"KRER"Kia) /2" (8 — 8*)
=T"?(a"KoRER"K{a) 20 Ko(£5, — €5, — G311 Args,) (1 + 0,(1))
+T'2(a"KoRERTK o) 2 (a"KoG ') Args, + a"Ko€,) (1 + 0,(1)).
Since the last term in the above is of order o,(1) by using Assumption R8’, and the first term
is asymptotically standard normal by using Theorem 3 when M = 0 and the property that

HaTKOHOO = O(1), the proof completes by noting that a can be replaced by a matrix M =

(a1,...,0u,)" where m is finite and |||, < co. O

Iy

Proof of Theorem 5. By the KKT condition, there exists a solution 8 to (3.8) if and only if
there exists a subgradient

h = B(uT|5A|) = {h c RM . { h; = uisign(&), 25\1 £ 0; }’

|hil < ui, otherwise.
such that differentiating the expression in (3.8) with respect to 8, we have
“I(H-B"ZV,)"(H-B"ZV,)é — T (B"ZV, — H)"(B"y — B"Z¢ — h) = —\%h.
By B'y = B"Z£* + B"ZV (6" + B"Xg-vec(Iy) + B"¢, the above can be written as

T-'(H-B"ZV,)"(H—-B"ZV,)(6 — 6") + T~ (H - B"ZV,)"B"Z(¢* — €)
“{H - B"ZV)"(B"Xg-vec(Iy) + H6* — h) + T~ (H - B"ZV()"B"e = —\;h.
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Noting that Hé* — h= —BTXﬁ(gﬁ*)vec(IN), we can conclude that there exists a sign-consistent

solution & if and only if

T~ (Hy — B ZVoy)"(Hy — B"ZVoy) (8 — 6) + T (Hy — BTZVoy) "B Z(¢* — €)
_1(HH — BTZVOH)TBTXB*7ﬁ(g’5*)vec(IN) + T_I(HH - BTZVUH)TBT(—: = —)\/ThH,

T~V (Hye — B"ZVoye)"BTZ(¢* — €) + T (Hpye — B'ZV(p)"B™X vec(Iy)

B*—B(€.,5)

+T Y (Hpge — BTZVopue)"B" €| < Nrhye,

(S.55)
where H = {j : 0F # 0}. From the first equation above, we can decompose 6y = 7, + Z?Zl I,
where

I = —(N"%(Hgo — Hyg)}; (Hao — Hyo)g) ™ * <T71(HH —B'"ZVou)" (Hg —B"ZVp)

— N7%(Ha — Hyo);(Hoo — H10)H> (SH —0y),
I = (N~%(Hay — Hi0) 5 (Hao — Hio)r) T~ (Hy — BTZVoy) "B Z(€ — £7),
Iy = (N"*(Hao — Hi0)j; (Hoo — Hio)r) T (Hyr — B"ZVon)'B"X sEs)-pveelIn),
—(N"*(Hg —Hyp
(

Vi (Hao — Hyg)p) ™! hH7
“(Hzo — Hio)py )H

(

(HQO - HIO ) (HH - BTZVQH)TBTG.

By the same treatment of F; (see (S.23)) in the proof of Theorem 1, using Theorem S.1,
_Op(CT]V1 aH(SH 5HH

12 e

Similarly, using Theorem S.1, the same treatments of 5 and F3 (see (S.24) and (S.25)) in the
proof of Theorem 1 lead to

12|, = Op(N Y| € — €]],) = Op(NTL(|€5,]], + ern)),

m. ax

where we used the partial sign consistency property of E and (S.46).
Similarly, we also have
HI4Hmax = O(CTN_I)'

We now show that for a € R¥| with HaHl < ¢ < 00, both a™Is and a™ I5 are asymptotically
normal, with the rate of a®I3 dominating the rates of all other terms.
We first show the asymptotical normality of a™l5. To this end, decompose a5 further into

T
O(TI5 = aT((Hlo — Hgo)};(Hlo — Hgo)H)_l(Hlo — Hgo)}FJTil Z € X (Bt — }Lb)’}’(l + Op(l)),
t=1

so that to utilize Theorem 3(ii) of Wu (2011), we need to show

Z HPO a"Rie; @ (By — pp)y H (S.56)
t>0
where R; = ((HlO - Hgo) (HID — Hgg) ) (H10 — Hgo) With HR1H 1), we can use

the same lines used for proving the asymptotic normality of E J, in the proof of Theorem 3 to
conclude that

),

|Po(@™Raer @ (Be — ps)7)|| = O( max |[Po(ery)|| + max max [|By;
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so that again our assumptions on the predictive dependence measures complete the proof of (S.56).
And with Apin(R1RT) and Apax(R1RT) both of order N=!17% similar to the derivation of
(S.21) in the proof of Theorem 1, we have

S = OLTRl ERfa

having rate N~17%%? exactly since N~3 has all eigenvalues uniformly bounded from 0 and
infinity by Assumption R6. Also,

T2, 20 I; 25 N(0,1)

by Theorem 3(ii) of Wu (2011), and hence a™I; is TV/2N(+2=b)/2_convergent, so that oI5 has
rate T—1/2 N—(1+a—b)/2.
To show the asymptotic normality of als, note that we can decompose it further into

o'I; =a"RT 1By - E(B, )" X (g 5+ p-veclIn) (1 + 0p(1))

T
= a"Ryvec(T™' S (B, - E(B)v(B(E,6) - ﬁ*)Tx;f)(Hop(n)

(
t=1
— a"Ryvee( [v" (b — E(by))x7; (B, 6") = 8] ;e ) (1 + 0p(1)
= a"Ryvee( [v"cov(br,i, x15)(B(E,6) = B8], ) (1+ 0p(1)
= a"RiS4(B(€,8%) — B)(1 + 0p(1)).
But we can easily see from the proof of Theorem 4 that we have
V2851 %(B(€.67) — A7) > N(0,Tk),
where Sy is as defined in Theorem 4 with M = I. We then immediately have
T2’ I; = a"RiS, Sy * (TV?S, ' (B(€,6%) — %))
being asymptotically normal with asymptotic variance a*R1S,SoSJR{a, i.e.,
TY2%(a"R1S,SoSIRT @) /2™ I3 — N(0,1).
But we have
[[e]|* Amin (R1SSERT) Amin (So) < @"R1S,S0SIRT @ < || ||* Amax(R1S5STRT) Asnax (So).-
Observe that
Amax(R1SySIRY) < Apax(R1RT) Anax (S28) = O(N 172 N1*0) = O(1)

by Assumption R5 and what we derived for the rate of Amin(R1R7) and Amax(R1R7) in the proof
of the asymptotic normality of a™I5. At the same time, we also assume in the theorem that
R1S,SJR] has its smallest eigenvalue of constant order. It means that then a*R1S,SoS ;R
is of order exactly N~(1=0) Hence a™I; is of order exactly T-1/2N—(1-0)/2

By Assumption R8, it is not difficult to see that HIQH HI4H and a™I5 are all of order
smaller than T~Y2N~(1-9/2 Hence we have proved that

max’ max

T%(a™R1S,SoSIR ) "2 (85 — 877) > N(0,1).
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Note that the above can be extended in a straight forward fashion to proving multivariate
asymptotic normality presented in Theorem 5, since Theorem 3(ii) of Wu (2011) is in fact ap-
plicable to proving multivariate asymptotic normality. This completes the proof of asymptotic
normality for d.

Incidentally, since || I || to HI5HmaX are all 0,(1), we have 51gn(5H) = sign(d7;). It remains

max

to show the second part of (S.55) for the sign consistency of 5.
To this end, observe that

|77 (B = BT ZVoue) " BYZ(E" = &) 0 = Op (€5, ], + ),
|77 (Hpe = BYZVone) B X 5. _gg 50y Vec(IN) || o = Op(T T2 N(+0)/2),
|77 (Hpe — B"ZVope)"™BT€|| = O, (T /2NITb=a)/2),

max

while the right hand side of the second inequality in (S.55) has minimum value of

MM
H(SHC max H(ch—(s;IC
so that it is sufficient to prove
(€5, + erm-+ VN2 L N-0/2)) (15 = 5°]) = o (er).

With the rate for Hg -0 Hl in Theorem 2, it is straight forward to verify that the above is indeed
satisfied under Assumption R8. This completes the proof of the theorem. [

Proof of Theorem 6. We have

M
[W = W[ < |W = W= Op(| A — A"+ > 18 — 671 Woil| )
=1

= Op([[€5 = &5 |+ 16 = 871, + max 1)

= Op(cr + max |la . ||,) = Op(cr).

1<j<N ’]QH

Also, we can decompose
fi — p = (W = W)(IT'p" + IFX B + IT°€) + X(B" - B) + &,
so that

1 = 1| = O W™ = W (= )7 1+ X 187+ N )

X [18 = 87+ (€l )
= Op(er + max [|aj;,[|,) = Op(er).

This completes the proof of the theorem. [J
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